Properties

Label 9610.2.a.be.1.2
Level $9610$
Weight $2$
Character 9610.1
Self dual yes
Analytic conductor $76.736$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9610,2,Mod(1,9610)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9610, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9610.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9610 = 2 \cdot 5 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9610.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.7362363425\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.874032\) of defining polynomial
Character \(\chi\) \(=\) 9610.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -0.874032 q^{3} +1.00000 q^{4} -1.00000 q^{5} +0.874032 q^{6} +3.23607 q^{7} -1.00000 q^{8} -2.23607 q^{9} +1.00000 q^{10} +5.11667 q^{11} -0.874032 q^{12} +2.28825 q^{13} -3.23607 q^{14} +0.874032 q^{15} +1.00000 q^{16} -6.32456 q^{17} +2.23607 q^{18} -7.23607 q^{19} -1.00000 q^{20} -2.82843 q^{21} -5.11667 q^{22} +3.16228 q^{23} +0.874032 q^{24} +1.00000 q^{25} -2.28825 q^{26} +4.57649 q^{27} +3.23607 q^{28} -2.62210 q^{29} -0.874032 q^{30} -1.00000 q^{32} -4.47214 q^{33} +6.32456 q^{34} -3.23607 q^{35} -2.23607 q^{36} +2.28825 q^{37} +7.23607 q^{38} -2.00000 q^{39} +1.00000 q^{40} +3.23607 q^{41} +2.82843 q^{42} +0.206331 q^{43} +5.11667 q^{44} +2.23607 q^{45} -3.16228 q^{46} -11.7082 q^{47} -0.874032 q^{48} +3.47214 q^{49} -1.00000 q^{50} +5.52786 q^{51} +2.28825 q^{52} -1.62054 q^{53} -4.57649 q^{54} -5.11667 q^{55} -3.23607 q^{56} +6.32456 q^{57} +2.62210 q^{58} +9.70820 q^{59} +0.874032 q^{60} -8.94665 q^{61} -7.23607 q^{63} +1.00000 q^{64} -2.28825 q^{65} +4.47214 q^{66} +5.23607 q^{67} -6.32456 q^{68} -2.76393 q^{69} +3.23607 q^{70} +8.94427 q^{71} +2.23607 q^{72} +3.90879 q^{73} -2.28825 q^{74} -0.874032 q^{75} -7.23607 q^{76} +16.5579 q^{77} +2.00000 q^{78} +3.90879 q^{79} -1.00000 q^{80} +2.70820 q^{81} -3.23607 q^{82} -12.8554 q^{83} -2.82843 q^{84} +6.32456 q^{85} -0.206331 q^{86} +2.29180 q^{87} -5.11667 q^{88} +16.2241 q^{89} -2.23607 q^{90} +7.40492 q^{91} +3.16228 q^{92} +11.7082 q^{94} +7.23607 q^{95} +0.874032 q^{96} -11.4164 q^{97} -3.47214 q^{98} -11.4412 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{4} - 4 q^{5} + 4 q^{7} - 4 q^{8} + 4 q^{10} - 4 q^{14} + 4 q^{16} - 20 q^{19} - 4 q^{20} + 4 q^{25} + 4 q^{28} - 4 q^{32} - 4 q^{35} + 20 q^{38} - 8 q^{39} + 4 q^{40} + 4 q^{41} - 20 q^{47}+ \cdots + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −0.874032 −0.504623 −0.252311 0.967646i \(-0.581191\pi\)
−0.252311 + 0.967646i \(0.581191\pi\)
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) 0.874032 0.356822
\(7\) 3.23607 1.22312 0.611559 0.791199i \(-0.290543\pi\)
0.611559 + 0.791199i \(0.290543\pi\)
\(8\) −1.00000 −0.353553
\(9\) −2.23607 −0.745356
\(10\) 1.00000 0.316228
\(11\) 5.11667 1.54273 0.771367 0.636390i \(-0.219573\pi\)
0.771367 + 0.636390i \(0.219573\pi\)
\(12\) −0.874032 −0.252311
\(13\) 2.28825 0.634645 0.317323 0.948318i \(-0.397216\pi\)
0.317323 + 0.948318i \(0.397216\pi\)
\(14\) −3.23607 −0.864876
\(15\) 0.874032 0.225674
\(16\) 1.00000 0.250000
\(17\) −6.32456 −1.53393 −0.766965 0.641689i \(-0.778234\pi\)
−0.766965 + 0.641689i \(0.778234\pi\)
\(18\) 2.23607 0.527046
\(19\) −7.23607 −1.66007 −0.830034 0.557713i \(-0.811679\pi\)
−0.830034 + 0.557713i \(0.811679\pi\)
\(20\) −1.00000 −0.223607
\(21\) −2.82843 −0.617213
\(22\) −5.11667 −1.09088
\(23\) 3.16228 0.659380 0.329690 0.944089i \(-0.393056\pi\)
0.329690 + 0.944089i \(0.393056\pi\)
\(24\) 0.874032 0.178411
\(25\) 1.00000 0.200000
\(26\) −2.28825 −0.448762
\(27\) 4.57649 0.880746
\(28\) 3.23607 0.611559
\(29\) −2.62210 −0.486911 −0.243456 0.969912i \(-0.578281\pi\)
−0.243456 + 0.969912i \(0.578281\pi\)
\(30\) −0.874032 −0.159576
\(31\) 0 0
\(32\) −1.00000 −0.176777
\(33\) −4.47214 −0.778499
\(34\) 6.32456 1.08465
\(35\) −3.23607 −0.546995
\(36\) −2.23607 −0.372678
\(37\) 2.28825 0.376185 0.188093 0.982151i \(-0.439769\pi\)
0.188093 + 0.982151i \(0.439769\pi\)
\(38\) 7.23607 1.17385
\(39\) −2.00000 −0.320256
\(40\) 1.00000 0.158114
\(41\) 3.23607 0.505389 0.252694 0.967546i \(-0.418683\pi\)
0.252694 + 0.967546i \(0.418683\pi\)
\(42\) 2.82843 0.436436
\(43\) 0.206331 0.0314652 0.0157326 0.999876i \(-0.494992\pi\)
0.0157326 + 0.999876i \(0.494992\pi\)
\(44\) 5.11667 0.771367
\(45\) 2.23607 0.333333
\(46\) −3.16228 −0.466252
\(47\) −11.7082 −1.70782 −0.853909 0.520423i \(-0.825774\pi\)
−0.853909 + 0.520423i \(0.825774\pi\)
\(48\) −0.874032 −0.126156
\(49\) 3.47214 0.496019
\(50\) −1.00000 −0.141421
\(51\) 5.52786 0.774056
\(52\) 2.28825 0.317323
\(53\) −1.62054 −0.222599 −0.111299 0.993787i \(-0.535501\pi\)
−0.111299 + 0.993787i \(0.535501\pi\)
\(54\) −4.57649 −0.622782
\(55\) −5.11667 −0.689932
\(56\) −3.23607 −0.432438
\(57\) 6.32456 0.837708
\(58\) 2.62210 0.344298
\(59\) 9.70820 1.26390 0.631950 0.775009i \(-0.282255\pi\)
0.631950 + 0.775009i \(0.282255\pi\)
\(60\) 0.874032 0.112837
\(61\) −8.94665 −1.14550 −0.572751 0.819730i \(-0.694124\pi\)
−0.572751 + 0.819730i \(0.694124\pi\)
\(62\) 0 0
\(63\) −7.23607 −0.911659
\(64\) 1.00000 0.125000
\(65\) −2.28825 −0.283822
\(66\) 4.47214 0.550482
\(67\) 5.23607 0.639688 0.319844 0.947470i \(-0.396370\pi\)
0.319844 + 0.947470i \(0.396370\pi\)
\(68\) −6.32456 −0.766965
\(69\) −2.76393 −0.332738
\(70\) 3.23607 0.386784
\(71\) 8.94427 1.06149 0.530745 0.847532i \(-0.321912\pi\)
0.530745 + 0.847532i \(0.321912\pi\)
\(72\) 2.23607 0.263523
\(73\) 3.90879 0.457489 0.228745 0.973486i \(-0.426538\pi\)
0.228745 + 0.973486i \(0.426538\pi\)
\(74\) −2.28825 −0.266003
\(75\) −0.874032 −0.100925
\(76\) −7.23607 −0.830034
\(77\) 16.5579 1.88695
\(78\) 2.00000 0.226455
\(79\) 3.90879 0.439773 0.219887 0.975525i \(-0.429431\pi\)
0.219887 + 0.975525i \(0.429431\pi\)
\(80\) −1.00000 −0.111803
\(81\) 2.70820 0.300912
\(82\) −3.23607 −0.357364
\(83\) −12.8554 −1.41107 −0.705534 0.708676i \(-0.749293\pi\)
−0.705534 + 0.708676i \(0.749293\pi\)
\(84\) −2.82843 −0.308607
\(85\) 6.32456 0.685994
\(86\) −0.206331 −0.0222492
\(87\) 2.29180 0.245706
\(88\) −5.11667 −0.545439
\(89\) 16.2241 1.71975 0.859873 0.510508i \(-0.170543\pi\)
0.859873 + 0.510508i \(0.170543\pi\)
\(90\) −2.23607 −0.235702
\(91\) 7.40492 0.776246
\(92\) 3.16228 0.329690
\(93\) 0 0
\(94\) 11.7082 1.20761
\(95\) 7.23607 0.742405
\(96\) 0.874032 0.0892055
\(97\) −11.4164 −1.15916 −0.579580 0.814915i \(-0.696783\pi\)
−0.579580 + 0.814915i \(0.696783\pi\)
\(98\) −3.47214 −0.350739
\(99\) −11.4412 −1.14989
\(100\) 1.00000 0.100000
\(101\) 18.9443 1.88503 0.942513 0.334170i \(-0.108456\pi\)
0.942513 + 0.334170i \(0.108456\pi\)
\(102\) −5.52786 −0.547340
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) −2.28825 −0.224381
\(105\) 2.82843 0.276026
\(106\) 1.62054 0.157401
\(107\) 16.9443 1.63806 0.819032 0.573747i \(-0.194511\pi\)
0.819032 + 0.573747i \(0.194511\pi\)
\(108\) 4.57649 0.440373
\(109\) −17.7082 −1.69614 −0.848069 0.529886i \(-0.822235\pi\)
−0.848069 + 0.529886i \(0.822235\pi\)
\(110\) 5.11667 0.487856
\(111\) −2.00000 −0.189832
\(112\) 3.23607 0.305780
\(113\) 9.52786 0.896306 0.448153 0.893957i \(-0.352082\pi\)
0.448153 + 0.893957i \(0.352082\pi\)
\(114\) −6.32456 −0.592349
\(115\) −3.16228 −0.294884
\(116\) −2.62210 −0.243456
\(117\) −5.11667 −0.473037
\(118\) −9.70820 −0.893713
\(119\) −20.4667 −1.87618
\(120\) −0.874032 −0.0797878
\(121\) 15.1803 1.38003
\(122\) 8.94665 0.809992
\(123\) −2.82843 −0.255031
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 7.23607 0.644640
\(127\) 3.16228 0.280607 0.140303 0.990109i \(-0.455192\pi\)
0.140303 + 0.990109i \(0.455192\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −0.180340 −0.0158780
\(130\) 2.28825 0.200692
\(131\) −1.70820 −0.149246 −0.0746232 0.997212i \(-0.523775\pi\)
−0.0746232 + 0.997212i \(0.523775\pi\)
\(132\) −4.47214 −0.389249
\(133\) −23.4164 −2.03046
\(134\) −5.23607 −0.452327
\(135\) −4.57649 −0.393882
\(136\) 6.32456 0.542326
\(137\) 14.1421 1.20824 0.604122 0.796892i \(-0.293524\pi\)
0.604122 + 0.796892i \(0.293524\pi\)
\(138\) 2.76393 0.235282
\(139\) −12.1089 −1.02707 −0.513533 0.858070i \(-0.671664\pi\)
−0.513533 + 0.858070i \(0.671664\pi\)
\(140\) −3.23607 −0.273498
\(141\) 10.2333 0.861803
\(142\) −8.94427 −0.750587
\(143\) 11.7082 0.979089
\(144\) −2.23607 −0.186339
\(145\) 2.62210 0.217753
\(146\) −3.90879 −0.323494
\(147\) −3.03476 −0.250303
\(148\) 2.28825 0.188093
\(149\) 11.2361 0.920495 0.460247 0.887791i \(-0.347761\pi\)
0.460247 + 0.887791i \(0.347761\pi\)
\(150\) 0.874032 0.0713644
\(151\) −13.0618 −1.06295 −0.531476 0.847073i \(-0.678362\pi\)
−0.531476 + 0.847073i \(0.678362\pi\)
\(152\) 7.23607 0.586923
\(153\) 14.1421 1.14332
\(154\) −16.5579 −1.33427
\(155\) 0 0
\(156\) −2.00000 −0.160128
\(157\) 6.94427 0.554213 0.277107 0.960839i \(-0.410624\pi\)
0.277107 + 0.960839i \(0.410624\pi\)
\(158\) −3.90879 −0.310967
\(159\) 1.41641 0.112328
\(160\) 1.00000 0.0790569
\(161\) 10.2333 0.806501
\(162\) −2.70820 −0.212777
\(163\) 14.1803 1.11069 0.555345 0.831620i \(-0.312586\pi\)
0.555345 + 0.831620i \(0.312586\pi\)
\(164\) 3.23607 0.252694
\(165\) 4.47214 0.348155
\(166\) 12.8554 0.997776
\(167\) 22.9613 1.77680 0.888398 0.459074i \(-0.151819\pi\)
0.888398 + 0.459074i \(0.151819\pi\)
\(168\) 2.82843 0.218218
\(169\) −7.76393 −0.597226
\(170\) −6.32456 −0.485071
\(171\) 16.1803 1.23734
\(172\) 0.206331 0.0157326
\(173\) 9.41641 0.715916 0.357958 0.933738i \(-0.383473\pi\)
0.357958 + 0.933738i \(0.383473\pi\)
\(174\) −2.29180 −0.173741
\(175\) 3.23607 0.244624
\(176\) 5.11667 0.385684
\(177\) −8.48528 −0.637793
\(178\) −16.2241 −1.21604
\(179\) −11.4412 −0.855158 −0.427579 0.903978i \(-0.640633\pi\)
−0.427579 + 0.903978i \(0.640633\pi\)
\(180\) 2.23607 0.166667
\(181\) 16.7642 1.24608 0.623038 0.782192i \(-0.285898\pi\)
0.623038 + 0.782192i \(0.285898\pi\)
\(182\) −7.40492 −0.548889
\(183\) 7.81966 0.578046
\(184\) −3.16228 −0.233126
\(185\) −2.28825 −0.168235
\(186\) 0 0
\(187\) −32.3607 −2.36645
\(188\) −11.7082 −0.853909
\(189\) 14.8098 1.07726
\(190\) −7.23607 −0.524960
\(191\) 17.4164 1.26021 0.630104 0.776511i \(-0.283012\pi\)
0.630104 + 0.776511i \(0.283012\pi\)
\(192\) −0.874032 −0.0630778
\(193\) 2.94427 0.211933 0.105967 0.994370i \(-0.466206\pi\)
0.105967 + 0.994370i \(0.466206\pi\)
\(194\) 11.4164 0.819650
\(195\) 2.00000 0.143223
\(196\) 3.47214 0.248010
\(197\) −11.8539 −0.844555 −0.422277 0.906467i \(-0.638769\pi\)
−0.422277 + 0.906467i \(0.638769\pi\)
\(198\) 11.4412 0.813093
\(199\) −13.3168 −0.944004 −0.472002 0.881598i \(-0.656468\pi\)
−0.472002 + 0.881598i \(0.656468\pi\)
\(200\) −1.00000 −0.0707107
\(201\) −4.57649 −0.322801
\(202\) −18.9443 −1.33291
\(203\) −8.48528 −0.595550
\(204\) 5.52786 0.387028
\(205\) −3.23607 −0.226017
\(206\) 4.00000 0.278693
\(207\) −7.07107 −0.491473
\(208\) 2.28825 0.158661
\(209\) −37.0246 −2.56104
\(210\) −2.82843 −0.195180
\(211\) 10.4721 0.720932 0.360466 0.932772i \(-0.382618\pi\)
0.360466 + 0.932772i \(0.382618\pi\)
\(212\) −1.62054 −0.111299
\(213\) −7.81758 −0.535652
\(214\) −16.9443 −1.15829
\(215\) −0.206331 −0.0140717
\(216\) −4.57649 −0.311391
\(217\) 0 0
\(218\) 17.7082 1.19935
\(219\) −3.41641 −0.230859
\(220\) −5.11667 −0.344966
\(221\) −14.4721 −0.973501
\(222\) 2.00000 0.134231
\(223\) −3.82998 −0.256474 −0.128237 0.991744i \(-0.540932\pi\)
−0.128237 + 0.991744i \(0.540932\pi\)
\(224\) −3.23607 −0.216219
\(225\) −2.23607 −0.149071
\(226\) −9.52786 −0.633784
\(227\) −21.5967 −1.43343 −0.716713 0.697368i \(-0.754354\pi\)
−0.716713 + 0.697368i \(0.754354\pi\)
\(228\) 6.32456 0.418854
\(229\) −7.86629 −0.519819 −0.259909 0.965633i \(-0.583693\pi\)
−0.259909 + 0.965633i \(0.583693\pi\)
\(230\) 3.16228 0.208514
\(231\) −14.4721 −0.952197
\(232\) 2.62210 0.172149
\(233\) 29.8885 1.95806 0.979032 0.203707i \(-0.0652991\pi\)
0.979032 + 0.203707i \(0.0652991\pi\)
\(234\) 5.11667 0.334487
\(235\) 11.7082 0.763759
\(236\) 9.70820 0.631950
\(237\) −3.41641 −0.221920
\(238\) 20.4667 1.32666
\(239\) −13.0618 −0.844896 −0.422448 0.906387i \(-0.638829\pi\)
−0.422448 + 0.906387i \(0.638829\pi\)
\(240\) 0.874032 0.0564185
\(241\) −21.8809 −1.40947 −0.704736 0.709469i \(-0.748935\pi\)
−0.704736 + 0.709469i \(0.748935\pi\)
\(242\) −15.1803 −0.975829
\(243\) −16.0965 −1.03259
\(244\) −8.94665 −0.572751
\(245\) −3.47214 −0.221827
\(246\) 2.82843 0.180334
\(247\) −16.5579 −1.05355
\(248\) 0 0
\(249\) 11.2361 0.712057
\(250\) 1.00000 0.0632456
\(251\) −17.3531 −1.09532 −0.547660 0.836701i \(-0.684481\pi\)
−0.547660 + 0.836701i \(0.684481\pi\)
\(252\) −7.23607 −0.455829
\(253\) 16.1803 1.01725
\(254\) −3.16228 −0.198419
\(255\) −5.52786 −0.346168
\(256\) 1.00000 0.0625000
\(257\) 5.41641 0.337866 0.168933 0.985628i \(-0.445968\pi\)
0.168933 + 0.985628i \(0.445968\pi\)
\(258\) 0.180340 0.0112275
\(259\) 7.40492 0.460119
\(260\) −2.28825 −0.141911
\(261\) 5.86319 0.362922
\(262\) 1.70820 0.105533
\(263\) −24.2967 −1.49820 −0.749098 0.662459i \(-0.769513\pi\)
−0.749098 + 0.662459i \(0.769513\pi\)
\(264\) 4.47214 0.275241
\(265\) 1.62054 0.0995493
\(266\) 23.4164 1.43575
\(267\) −14.1803 −0.867823
\(268\) 5.23607 0.319844
\(269\) 14.1908 0.865231 0.432616 0.901579i \(-0.357591\pi\)
0.432616 + 0.901579i \(0.357591\pi\)
\(270\) 4.57649 0.278516
\(271\) −18.0509 −1.09652 −0.548258 0.836309i \(-0.684709\pi\)
−0.548258 + 0.836309i \(0.684709\pi\)
\(272\) −6.32456 −0.383482
\(273\) −6.47214 −0.391711
\(274\) −14.1421 −0.854358
\(275\) 5.11667 0.308547
\(276\) −2.76393 −0.166369
\(277\) 2.70091 0.162282 0.0811409 0.996703i \(-0.474144\pi\)
0.0811409 + 0.996703i \(0.474144\pi\)
\(278\) 12.1089 0.726245
\(279\) 0 0
\(280\) 3.23607 0.193392
\(281\) −26.0000 −1.55103 −0.775515 0.631329i \(-0.782510\pi\)
−0.775515 + 0.631329i \(0.782510\pi\)
\(282\) −10.2333 −0.609387
\(283\) −1.23607 −0.0734766 −0.0367383 0.999325i \(-0.511697\pi\)
−0.0367383 + 0.999325i \(0.511697\pi\)
\(284\) 8.94427 0.530745
\(285\) −6.32456 −0.374634
\(286\) −11.7082 −0.692321
\(287\) 10.4721 0.618151
\(288\) 2.23607 0.131762
\(289\) 23.0000 1.35294
\(290\) −2.62210 −0.153975
\(291\) 9.97831 0.584939
\(292\) 3.90879 0.228745
\(293\) −8.65248 −0.505483 −0.252742 0.967534i \(-0.581332\pi\)
−0.252742 + 0.967534i \(0.581332\pi\)
\(294\) 3.03476 0.176991
\(295\) −9.70820 −0.565233
\(296\) −2.28825 −0.133002
\(297\) 23.4164 1.35876
\(298\) −11.2361 −0.650888
\(299\) 7.23607 0.418473
\(300\) −0.874032 −0.0504623
\(301\) 0.667701 0.0384856
\(302\) 13.0618 0.751621
\(303\) −16.5579 −0.951227
\(304\) −7.23607 −0.415017
\(305\) 8.94665 0.512284
\(306\) −14.1421 −0.808452
\(307\) 24.0000 1.36975 0.684876 0.728659i \(-0.259856\pi\)
0.684876 + 0.728659i \(0.259856\pi\)
\(308\) 16.5579 0.943474
\(309\) 3.49613 0.198888
\(310\) 0 0
\(311\) −7.41641 −0.420546 −0.210273 0.977643i \(-0.567435\pi\)
−0.210273 + 0.977643i \(0.567435\pi\)
\(312\) 2.00000 0.113228
\(313\) 25.4558 1.43885 0.719425 0.694570i \(-0.244406\pi\)
0.719425 + 0.694570i \(0.244406\pi\)
\(314\) −6.94427 −0.391888
\(315\) 7.23607 0.407706
\(316\) 3.90879 0.219887
\(317\) 15.7082 0.882261 0.441130 0.897443i \(-0.354578\pi\)
0.441130 + 0.897443i \(0.354578\pi\)
\(318\) −1.41641 −0.0794282
\(319\) −13.4164 −0.751175
\(320\) −1.00000 −0.0559017
\(321\) −14.8098 −0.826604
\(322\) −10.2333 −0.570282
\(323\) 45.7649 2.54643
\(324\) 2.70820 0.150456
\(325\) 2.28825 0.126929
\(326\) −14.1803 −0.785376
\(327\) 15.4775 0.855910
\(328\) −3.23607 −0.178682
\(329\) −37.8885 −2.08886
\(330\) −4.47214 −0.246183
\(331\) 22.3423 1.22804 0.614021 0.789290i \(-0.289551\pi\)
0.614021 + 0.789290i \(0.289551\pi\)
\(332\) −12.8554 −0.705534
\(333\) −5.11667 −0.280392
\(334\) −22.9613 −1.25638
\(335\) −5.23607 −0.286077
\(336\) −2.82843 −0.154303
\(337\) 0.412662 0.0224791 0.0112396 0.999937i \(-0.496422\pi\)
0.0112396 + 0.999937i \(0.496422\pi\)
\(338\) 7.76393 0.422302
\(339\) −8.32766 −0.452296
\(340\) 6.32456 0.342997
\(341\) 0 0
\(342\) −16.1803 −0.874933
\(343\) −11.4164 −0.616428
\(344\) −0.206331 −0.0111246
\(345\) 2.76393 0.148805
\(346\) −9.41641 −0.506229
\(347\) 16.7642 0.899951 0.449976 0.893041i \(-0.351433\pi\)
0.449976 + 0.893041i \(0.351433\pi\)
\(348\) 2.29180 0.122853
\(349\) −7.23607 −0.387338 −0.193669 0.981067i \(-0.562039\pi\)
−0.193669 + 0.981067i \(0.562039\pi\)
\(350\) −3.23607 −0.172975
\(351\) 10.4721 0.558961
\(352\) −5.11667 −0.272720
\(353\) −0.255039 −0.0135744 −0.00678718 0.999977i \(-0.502160\pi\)
−0.00678718 + 0.999977i \(0.502160\pi\)
\(354\) 8.48528 0.450988
\(355\) −8.94427 −0.474713
\(356\) 16.2241 0.859873
\(357\) 17.8885 0.946762
\(358\) 11.4412 0.604688
\(359\) −3.88854 −0.205229 −0.102615 0.994721i \(-0.532721\pi\)
−0.102615 + 0.994721i \(0.532721\pi\)
\(360\) −2.23607 −0.117851
\(361\) 33.3607 1.75583
\(362\) −16.7642 −0.881108
\(363\) −13.2681 −0.696395
\(364\) 7.40492 0.388123
\(365\) −3.90879 −0.204595
\(366\) −7.81966 −0.408740
\(367\) 27.9504 1.45900 0.729500 0.683981i \(-0.239753\pi\)
0.729500 + 0.683981i \(0.239753\pi\)
\(368\) 3.16228 0.164845
\(369\) −7.23607 −0.376695
\(370\) 2.28825 0.118960
\(371\) −5.24419 −0.272265
\(372\) 0 0
\(373\) 4.65248 0.240896 0.120448 0.992720i \(-0.461567\pi\)
0.120448 + 0.992720i \(0.461567\pi\)
\(374\) 32.3607 1.67333
\(375\) 0.874032 0.0451348
\(376\) 11.7082 0.603805
\(377\) −6.00000 −0.309016
\(378\) −14.8098 −0.761736
\(379\) −25.7082 −1.32054 −0.660271 0.751028i \(-0.729559\pi\)
−0.660271 + 0.751028i \(0.729559\pi\)
\(380\) 7.23607 0.371202
\(381\) −2.76393 −0.141601
\(382\) −17.4164 −0.891101
\(383\) 8.81913 0.450637 0.225318 0.974285i \(-0.427658\pi\)
0.225318 + 0.974285i \(0.427658\pi\)
\(384\) 0.874032 0.0446028
\(385\) −16.5579 −0.843869
\(386\) −2.94427 −0.149859
\(387\) −0.461370 −0.0234528
\(388\) −11.4164 −0.579580
\(389\) −21.3407 −1.08202 −0.541009 0.841017i \(-0.681957\pi\)
−0.541009 + 0.841017i \(0.681957\pi\)
\(390\) −2.00000 −0.101274
\(391\) −20.0000 −1.01144
\(392\) −3.47214 −0.175369
\(393\) 1.49302 0.0753131
\(394\) 11.8539 0.597190
\(395\) −3.90879 −0.196673
\(396\) −11.4412 −0.574943
\(397\) 23.1246 1.16059 0.580295 0.814406i \(-0.302937\pi\)
0.580295 + 0.814406i \(0.302937\pi\)
\(398\) 13.3168 0.667511
\(399\) 20.4667 1.02462
\(400\) 1.00000 0.0500000
\(401\) 6.40337 0.319769 0.159884 0.987136i \(-0.448888\pi\)
0.159884 + 0.987136i \(0.448888\pi\)
\(402\) 4.57649 0.228255
\(403\) 0 0
\(404\) 18.9443 0.942513
\(405\) −2.70820 −0.134572
\(406\) 8.48528 0.421117
\(407\) 11.7082 0.580354
\(408\) −5.52786 −0.273670
\(409\) 37.1034 1.83465 0.917323 0.398145i \(-0.130346\pi\)
0.917323 + 0.398145i \(0.130346\pi\)
\(410\) 3.23607 0.159818
\(411\) −12.3607 −0.609707
\(412\) −4.00000 −0.197066
\(413\) 31.4164 1.54590
\(414\) 7.07107 0.347524
\(415\) 12.8554 0.631049
\(416\) −2.28825 −0.112190
\(417\) 10.5836 0.518281
\(418\) 37.0246 1.81093
\(419\) −19.2361 −0.939743 −0.469872 0.882735i \(-0.655700\pi\)
−0.469872 + 0.882735i \(0.655700\pi\)
\(420\) 2.82843 0.138013
\(421\) −6.65248 −0.324222 −0.162111 0.986773i \(-0.551830\pi\)
−0.162111 + 0.986773i \(0.551830\pi\)
\(422\) −10.4721 −0.509776
\(423\) 26.1803 1.27293
\(424\) 1.62054 0.0787006
\(425\) −6.32456 −0.306786
\(426\) 7.81758 0.378763
\(427\) −28.9520 −1.40108
\(428\) 16.9443 0.819032
\(429\) −10.2333 −0.494071
\(430\) 0.206331 0.00995016
\(431\) 18.0000 0.867029 0.433515 0.901146i \(-0.357273\pi\)
0.433515 + 0.901146i \(0.357273\pi\)
\(432\) 4.57649 0.220187
\(433\) 25.2982 1.21575 0.607877 0.794031i \(-0.292021\pi\)
0.607877 + 0.794031i \(0.292021\pi\)
\(434\) 0 0
\(435\) −2.29180 −0.109883
\(436\) −17.7082 −0.848069
\(437\) −22.8825 −1.09462
\(438\) 3.41641 0.163242
\(439\) 8.47214 0.404353 0.202176 0.979349i \(-0.435199\pi\)
0.202176 + 0.979349i \(0.435199\pi\)
\(440\) 5.11667 0.243928
\(441\) −7.76393 −0.369711
\(442\) 14.4721 0.688369
\(443\) 24.0000 1.14027 0.570137 0.821549i \(-0.306890\pi\)
0.570137 + 0.821549i \(0.306890\pi\)
\(444\) −2.00000 −0.0949158
\(445\) −16.2241 −0.769094
\(446\) 3.82998 0.181355
\(447\) −9.82068 −0.464502
\(448\) 3.23607 0.152890
\(449\) −1.15917 −0.0547048 −0.0273524 0.999626i \(-0.508708\pi\)
−0.0273524 + 0.999626i \(0.508708\pi\)
\(450\) 2.23607 0.105409
\(451\) 16.5579 0.779681
\(452\) 9.52786 0.448153
\(453\) 11.4164 0.536390
\(454\) 21.5967 1.01359
\(455\) −7.40492 −0.347148
\(456\) −6.32456 −0.296174
\(457\) −18.9737 −0.887551 −0.443775 0.896138i \(-0.646361\pi\)
−0.443775 + 0.896138i \(0.646361\pi\)
\(458\) 7.86629 0.367568
\(459\) −28.9443 −1.35100
\(460\) −3.16228 −0.147442
\(461\) 13.2681 0.617957 0.308979 0.951069i \(-0.400013\pi\)
0.308979 + 0.951069i \(0.400013\pi\)
\(462\) 14.4721 0.673305
\(463\) 24.5517 1.14101 0.570507 0.821293i \(-0.306747\pi\)
0.570507 + 0.821293i \(0.306747\pi\)
\(464\) −2.62210 −0.121728
\(465\) 0 0
\(466\) −29.8885 −1.38456
\(467\) 7.05573 0.326500 0.163250 0.986585i \(-0.447802\pi\)
0.163250 + 0.986585i \(0.447802\pi\)
\(468\) −5.11667 −0.236518
\(469\) 16.9443 0.782414
\(470\) −11.7082 −0.540059
\(471\) −6.06952 −0.279669
\(472\) −9.70820 −0.446856
\(473\) 1.05573 0.0485424
\(474\) 3.41641 0.156921
\(475\) −7.23607 −0.332014
\(476\) −20.4667 −0.938089
\(477\) 3.62365 0.165915
\(478\) 13.0618 0.597432
\(479\) 25.8885 1.18288 0.591439 0.806350i \(-0.298560\pi\)
0.591439 + 0.806350i \(0.298560\pi\)
\(480\) −0.874032 −0.0398939
\(481\) 5.23607 0.238744
\(482\) 21.8809 0.996648
\(483\) −8.94427 −0.406978
\(484\) 15.1803 0.690015
\(485\) 11.4164 0.518392
\(486\) 16.0965 0.730153
\(487\) 8.81913 0.399633 0.199817 0.979833i \(-0.435965\pi\)
0.199817 + 0.979833i \(0.435965\pi\)
\(488\) 8.94665 0.404996
\(489\) −12.3941 −0.560479
\(490\) 3.47214 0.156855
\(491\) −28.2542 −1.27509 −0.637546 0.770412i \(-0.720051\pi\)
−0.637546 + 0.770412i \(0.720051\pi\)
\(492\) −2.82843 −0.127515
\(493\) 16.5836 0.746887
\(494\) 16.5579 0.744975
\(495\) 11.4412 0.514245
\(496\) 0 0
\(497\) 28.9443 1.29833
\(498\) −11.2361 −0.503500
\(499\) 7.53244 0.337198 0.168599 0.985685i \(-0.446076\pi\)
0.168599 + 0.985685i \(0.446076\pi\)
\(500\) −1.00000 −0.0447214
\(501\) −20.0689 −0.896612
\(502\) 17.3531 0.774508
\(503\) 2.11146 0.0941452 0.0470726 0.998891i \(-0.485011\pi\)
0.0470726 + 0.998891i \(0.485011\pi\)
\(504\) 7.23607 0.322320
\(505\) −18.9443 −0.843009
\(506\) −16.1803 −0.719304
\(507\) 6.78593 0.301374
\(508\) 3.16228 0.140303
\(509\) 32.2418 1.42909 0.714546 0.699589i \(-0.246633\pi\)
0.714546 + 0.699589i \(0.246633\pi\)
\(510\) 5.52786 0.244778
\(511\) 12.6491 0.559564
\(512\) −1.00000 −0.0441942
\(513\) −33.1158 −1.46210
\(514\) −5.41641 −0.238908
\(515\) 4.00000 0.176261
\(516\) −0.180340 −0.00793902
\(517\) −59.9070 −2.63471
\(518\) −7.40492 −0.325353
\(519\) −8.23024 −0.361268
\(520\) 2.28825 0.100346
\(521\) −16.3607 −0.716774 −0.358387 0.933573i \(-0.616673\pi\)
−0.358387 + 0.933573i \(0.616673\pi\)
\(522\) −5.86319 −0.256625
\(523\) −21.0857 −0.922013 −0.461006 0.887397i \(-0.652511\pi\)
−0.461006 + 0.887397i \(0.652511\pi\)
\(524\) −1.70820 −0.0746232
\(525\) −2.82843 −0.123443
\(526\) 24.2967 1.05939
\(527\) 0 0
\(528\) −4.47214 −0.194625
\(529\) −13.0000 −0.565217
\(530\) −1.62054 −0.0703920
\(531\) −21.7082 −0.942056
\(532\) −23.4164 −1.01523
\(533\) 7.40492 0.320743
\(534\) 14.1803 0.613643
\(535\) −16.9443 −0.732565
\(536\) −5.23607 −0.226164
\(537\) 10.0000 0.431532
\(538\) −14.1908 −0.611811
\(539\) 17.7658 0.765226
\(540\) −4.57649 −0.196941
\(541\) 42.0689 1.80868 0.904341 0.426810i \(-0.140363\pi\)
0.904341 + 0.426810i \(0.140363\pi\)
\(542\) 18.0509 0.775354
\(543\) −14.6525 −0.628798
\(544\) 6.32456 0.271163
\(545\) 17.7082 0.758536
\(546\) 6.47214 0.276982
\(547\) 16.2918 0.696587 0.348293 0.937386i \(-0.386761\pi\)
0.348293 + 0.937386i \(0.386761\pi\)
\(548\) 14.1421 0.604122
\(549\) 20.0053 0.853806
\(550\) −5.11667 −0.218176
\(551\) 18.9737 0.808305
\(552\) 2.76393 0.117641
\(553\) 12.6491 0.537895
\(554\) −2.70091 −0.114751
\(555\) 2.00000 0.0848953
\(556\) −12.1089 −0.513533
\(557\) 17.7658 0.752760 0.376380 0.926465i \(-0.377169\pi\)
0.376380 + 0.926465i \(0.377169\pi\)
\(558\) 0 0
\(559\) 0.472136 0.0199692
\(560\) −3.23607 −0.136749
\(561\) 28.2843 1.19416
\(562\) 26.0000 1.09674
\(563\) 24.6525 1.03898 0.519489 0.854477i \(-0.326122\pi\)
0.519489 + 0.854477i \(0.326122\pi\)
\(564\) 10.2333 0.430902
\(565\) −9.52786 −0.400840
\(566\) 1.23607 0.0519558
\(567\) 8.76393 0.368051
\(568\) −8.94427 −0.375293
\(569\) 37.1034 1.55546 0.777728 0.628601i \(-0.216372\pi\)
0.777728 + 0.628601i \(0.216372\pi\)
\(570\) 6.32456 0.264906
\(571\) 18.4335 0.771417 0.385709 0.922621i \(-0.373957\pi\)
0.385709 + 0.922621i \(0.373957\pi\)
\(572\) 11.7082 0.489545
\(573\) −15.2225 −0.635929
\(574\) −10.4721 −0.437099
\(575\) 3.16228 0.131876
\(576\) −2.23607 −0.0931695
\(577\) −16.0000 −0.666089 −0.333044 0.942911i \(-0.608076\pi\)
−0.333044 + 0.942911i \(0.608076\pi\)
\(578\) −23.0000 −0.956674
\(579\) −2.57339 −0.106946
\(580\) 2.62210 0.108877
\(581\) −41.6011 −1.72590
\(582\) −9.97831 −0.413614
\(583\) −8.29180 −0.343411
\(584\) −3.90879 −0.161747
\(585\) 5.11667 0.211548
\(586\) 8.65248 0.357430
\(587\) −27.9203 −1.15239 −0.576197 0.817311i \(-0.695464\pi\)
−0.576197 + 0.817311i \(0.695464\pi\)
\(588\) −3.03476 −0.125151
\(589\) 0 0
\(590\) 9.70820 0.399680
\(591\) 10.3607 0.426181
\(592\) 2.28825 0.0940463
\(593\) 21.5279 0.884043 0.442022 0.897004i \(-0.354261\pi\)
0.442022 + 0.897004i \(0.354261\pi\)
\(594\) −23.4164 −0.960787
\(595\) 20.4667 0.839053
\(596\) 11.2361 0.460247
\(597\) 11.6393 0.476366
\(598\) −7.23607 −0.295905
\(599\) 33.4164 1.36536 0.682679 0.730719i \(-0.260815\pi\)
0.682679 + 0.730719i \(0.260815\pi\)
\(600\) 0.874032 0.0356822
\(601\) −8.81913 −0.359740 −0.179870 0.983690i \(-0.557568\pi\)
−0.179870 + 0.983690i \(0.557568\pi\)
\(602\) −0.667701 −0.0272135
\(603\) −11.7082 −0.476795
\(604\) −13.0618 −0.531476
\(605\) −15.1803 −0.617169
\(606\) 16.5579 0.672619
\(607\) 6.94427 0.281859 0.140930 0.990020i \(-0.454991\pi\)
0.140930 + 0.990020i \(0.454991\pi\)
\(608\) 7.23607 0.293461
\(609\) 7.41641 0.300528
\(610\) −8.94665 −0.362239
\(611\) −26.7912 −1.08386
\(612\) 14.1421 0.571662
\(613\) −26.6637 −1.07694 −0.538469 0.842645i \(-0.680997\pi\)
−0.538469 + 0.842645i \(0.680997\pi\)
\(614\) −24.0000 −0.968561
\(615\) 2.82843 0.114053
\(616\) −16.5579 −0.667137
\(617\) 38.9443 1.56784 0.783919 0.620864i \(-0.213218\pi\)
0.783919 + 0.620864i \(0.213218\pi\)
\(618\) −3.49613 −0.140635
\(619\) −44.9697 −1.80748 −0.903742 0.428077i \(-0.859191\pi\)
−0.903742 + 0.428077i \(0.859191\pi\)
\(620\) 0 0
\(621\) 14.4721 0.580747
\(622\) 7.41641 0.297371
\(623\) 52.5021 2.10345
\(624\) −2.00000 −0.0800641
\(625\) 1.00000 0.0400000
\(626\) −25.4558 −1.01742
\(627\) 32.3607 1.29236
\(628\) 6.94427 0.277107
\(629\) −14.4721 −0.577042
\(630\) −7.23607 −0.288292
\(631\) 9.40802 0.374527 0.187264 0.982310i \(-0.440038\pi\)
0.187264 + 0.982310i \(0.440038\pi\)
\(632\) −3.90879 −0.155483
\(633\) −9.15298 −0.363798
\(634\) −15.7082 −0.623852
\(635\) −3.16228 −0.125491
\(636\) 1.41641 0.0561642
\(637\) 7.94510 0.314796
\(638\) 13.4164 0.531161
\(639\) −20.0000 −0.791188
\(640\) 1.00000 0.0395285
\(641\) 25.3770 1.00233 0.501166 0.865351i \(-0.332905\pi\)
0.501166 + 0.865351i \(0.332905\pi\)
\(642\) 14.8098 0.584498
\(643\) 29.6684 1.17001 0.585003 0.811031i \(-0.301093\pi\)
0.585003 + 0.811031i \(0.301093\pi\)
\(644\) 10.2333 0.403250
\(645\) 0.180340 0.00710088
\(646\) −45.7649 −1.80060
\(647\) −36.5331 −1.43627 −0.718133 0.695906i \(-0.755003\pi\)
−0.718133 + 0.695906i \(0.755003\pi\)
\(648\) −2.70820 −0.106388
\(649\) 49.6737 1.94986
\(650\) −2.28825 −0.0897524
\(651\) 0 0
\(652\) 14.1803 0.555345
\(653\) 40.8328 1.59791 0.798956 0.601390i \(-0.205386\pi\)
0.798956 + 0.601390i \(0.205386\pi\)
\(654\) −15.4775 −0.605220
\(655\) 1.70820 0.0667451
\(656\) 3.23607 0.126347
\(657\) −8.74032 −0.340992
\(658\) 37.8885 1.47705
\(659\) −27.2361 −1.06097 −0.530483 0.847695i \(-0.677990\pi\)
−0.530483 + 0.847695i \(0.677990\pi\)
\(660\) 4.47214 0.174078
\(661\) −14.6525 −0.569915 −0.284958 0.958540i \(-0.591980\pi\)
−0.284958 + 0.958540i \(0.591980\pi\)
\(662\) −22.3423 −0.868357
\(663\) 12.6491 0.491251
\(664\) 12.8554 0.498888
\(665\) 23.4164 0.908049
\(666\) 5.11667 0.198267
\(667\) −8.29180 −0.321060
\(668\) 22.9613 0.888398
\(669\) 3.34752 0.129423
\(670\) 5.23607 0.202287
\(671\) −45.7771 −1.76720
\(672\) 2.82843 0.109109
\(673\) 16.8129 0.648091 0.324046 0.946041i \(-0.394957\pi\)
0.324046 + 0.946041i \(0.394957\pi\)
\(674\) −0.412662 −0.0158951
\(675\) 4.57649 0.176149
\(676\) −7.76393 −0.298613
\(677\) −41.3159 −1.58790 −0.793950 0.607983i \(-0.791979\pi\)
−0.793950 + 0.607983i \(0.791979\pi\)
\(678\) 8.32766 0.319822
\(679\) −36.9443 −1.41779
\(680\) −6.32456 −0.242536
\(681\) 18.8762 0.723339
\(682\) 0 0
\(683\) −2.11146 −0.0807926 −0.0403963 0.999184i \(-0.512862\pi\)
−0.0403963 + 0.999184i \(0.512862\pi\)
\(684\) 16.1803 0.618671
\(685\) −14.1421 −0.540343
\(686\) 11.4164 0.435880
\(687\) 6.87539 0.262312
\(688\) 0.206331 0.00786629
\(689\) −3.70820 −0.141271
\(690\) −2.76393 −0.105221
\(691\) 47.7771 1.81753 0.908763 0.417313i \(-0.137028\pi\)
0.908763 + 0.417313i \(0.137028\pi\)
\(692\) 9.41641 0.357958
\(693\) −37.0246 −1.40645
\(694\) −16.7642 −0.636362
\(695\) 12.1089 0.459318
\(696\) −2.29180 −0.0868703
\(697\) −20.4667 −0.775231
\(698\) 7.23607 0.273889
\(699\) −26.1235 −0.988083
\(700\) 3.23607 0.122312
\(701\) 5.05573 0.190952 0.0954761 0.995432i \(-0.469563\pi\)
0.0954761 + 0.995432i \(0.469563\pi\)
\(702\) −10.4721 −0.395245
\(703\) −16.5579 −0.624493
\(704\) 5.11667 0.192842
\(705\) −10.2333 −0.385410
\(706\) 0.255039 0.00959852
\(707\) 61.3050 2.30561
\(708\) −8.48528 −0.318896
\(709\) −2.20943 −0.0829770 −0.0414885 0.999139i \(-0.513210\pi\)
−0.0414885 + 0.999139i \(0.513210\pi\)
\(710\) 8.94427 0.335673
\(711\) −8.74032 −0.327788
\(712\) −16.2241 −0.608022
\(713\) 0 0
\(714\) −17.8885 −0.669462
\(715\) −11.7082 −0.437862
\(716\) −11.4412 −0.427579
\(717\) 11.4164 0.426354
\(718\) 3.88854 0.145119
\(719\) 30.2874 1.12953 0.564764 0.825252i \(-0.308967\pi\)
0.564764 + 0.825252i \(0.308967\pi\)
\(720\) 2.23607 0.0833333
\(721\) −12.9443 −0.482070
\(722\) −33.3607 −1.24156
\(723\) 19.1246 0.711252
\(724\) 16.7642 0.623038
\(725\) −2.62210 −0.0973822
\(726\) 13.2681 0.492426
\(727\) −1.41641 −0.0525317 −0.0262658 0.999655i \(-0.508362\pi\)
−0.0262658 + 0.999655i \(0.508362\pi\)
\(728\) −7.40492 −0.274445
\(729\) 5.94427 0.220158
\(730\) 3.90879 0.144671
\(731\) −1.30495 −0.0482654
\(732\) 7.81966 0.289023
\(733\) −30.7639 −1.13629 −0.568146 0.822928i \(-0.692339\pi\)
−0.568146 + 0.822928i \(0.692339\pi\)
\(734\) −27.9504 −1.03167
\(735\) 3.03476 0.111939
\(736\) −3.16228 −0.116563
\(737\) 26.7912 0.986868
\(738\) 7.23607 0.266363
\(739\) −11.0286 −0.405692 −0.202846 0.979211i \(-0.565019\pi\)
−0.202846 + 0.979211i \(0.565019\pi\)
\(740\) −2.28825 −0.0841176
\(741\) 14.4721 0.531647
\(742\) 5.24419 0.192520
\(743\) 9.74187 0.357395 0.178697 0.983904i \(-0.442812\pi\)
0.178697 + 0.983904i \(0.442812\pi\)
\(744\) 0 0
\(745\) −11.2361 −0.411658
\(746\) −4.65248 −0.170339
\(747\) 28.7456 1.05175
\(748\) −32.3607 −1.18322
\(749\) 54.8328 2.00355
\(750\) −0.874032 −0.0319151
\(751\) −23.3050 −0.850410 −0.425205 0.905097i \(-0.639798\pi\)
−0.425205 + 0.905097i \(0.639798\pi\)
\(752\) −11.7082 −0.426954
\(753\) 15.1672 0.552723
\(754\) 6.00000 0.218507
\(755\) 13.0618 0.475367
\(756\) 14.8098 0.538629
\(757\) 31.4953 1.14471 0.572357 0.820004i \(-0.306029\pi\)
0.572357 + 0.820004i \(0.306029\pi\)
\(758\) 25.7082 0.933764
\(759\) −14.1421 −0.513327
\(760\) −7.23607 −0.262480
\(761\) −51.5006 −1.86689 −0.933447 0.358715i \(-0.883215\pi\)
−0.933447 + 0.358715i \(0.883215\pi\)
\(762\) 2.76393 0.100127
\(763\) −57.3050 −2.07458
\(764\) 17.4164 0.630104
\(765\) −14.1421 −0.511310
\(766\) −8.81913 −0.318648
\(767\) 22.2148 0.802128
\(768\) −0.874032 −0.0315389
\(769\) −15.3475 −0.553446 −0.276723 0.960950i \(-0.589248\pi\)
−0.276723 + 0.960950i \(0.589248\pi\)
\(770\) 16.5579 0.596705
\(771\) −4.73411 −0.170495
\(772\) 2.94427 0.105967
\(773\) 27.0764 0.973870 0.486935 0.873438i \(-0.338115\pi\)
0.486935 + 0.873438i \(0.338115\pi\)
\(774\) 0.461370 0.0165836
\(775\) 0 0
\(776\) 11.4164 0.409825
\(777\) −6.47214 −0.232187
\(778\) 21.3407 0.765102
\(779\) −23.4164 −0.838980
\(780\) 2.00000 0.0716115
\(781\) 45.7649 1.63760
\(782\) 20.0000 0.715199
\(783\) −12.0000 −0.428845
\(784\) 3.47214 0.124005
\(785\) −6.94427 −0.247852
\(786\) −1.49302 −0.0532544
\(787\) −13.6808 −0.487667 −0.243833 0.969817i \(-0.578405\pi\)
−0.243833 + 0.969817i \(0.578405\pi\)
\(788\) −11.8539 −0.422277
\(789\) 21.2361 0.756024
\(790\) 3.90879 0.139069
\(791\) 30.8328 1.09629
\(792\) 11.4412 0.406546
\(793\) −20.4721 −0.726987
\(794\) −23.1246 −0.820662
\(795\) −1.41641 −0.0502348
\(796\) −13.3168 −0.472002
\(797\) −12.5216 −0.443538 −0.221769 0.975099i \(-0.571183\pi\)
−0.221769 + 0.975099i \(0.571183\pi\)
\(798\) −20.4667 −0.724513
\(799\) 74.0492 2.61967
\(800\) −1.00000 −0.0353553
\(801\) −36.2781 −1.28182
\(802\) −6.40337 −0.226111
\(803\) 20.0000 0.705785
\(804\) −4.57649 −0.161400
\(805\) −10.2333 −0.360678
\(806\) 0 0
\(807\) −12.4033 −0.436615
\(808\) −18.9443 −0.666457
\(809\) −36.9458 −1.29894 −0.649472 0.760385i \(-0.725010\pi\)
−0.649472 + 0.760385i \(0.725010\pi\)
\(810\) 2.70820 0.0951566
\(811\) 56.5410 1.98542 0.992712 0.120512i \(-0.0384536\pi\)
0.992712 + 0.120512i \(0.0384536\pi\)
\(812\) −8.48528 −0.297775
\(813\) 15.7771 0.553327
\(814\) −11.7082 −0.410372
\(815\) −14.1803 −0.496716
\(816\) 5.52786 0.193514
\(817\) −1.49302 −0.0522343
\(818\) −37.1034 −1.29729
\(819\) −16.5579 −0.578580
\(820\) −3.23607 −0.113008
\(821\) 1.79677 0.0627078 0.0313539 0.999508i \(-0.490018\pi\)
0.0313539 + 0.999508i \(0.490018\pi\)
\(822\) 12.3607 0.431128
\(823\) 1.25659 0.0438020 0.0219010 0.999760i \(-0.493028\pi\)
0.0219010 + 0.999760i \(0.493028\pi\)
\(824\) 4.00000 0.139347
\(825\) −4.47214 −0.155700
\(826\) −31.4164 −1.09312
\(827\) −0.874032 −0.0303931 −0.0151965 0.999885i \(-0.504837\pi\)
−0.0151965 + 0.999885i \(0.504837\pi\)
\(828\) −7.07107 −0.245737
\(829\) −37.6436 −1.30742 −0.653708 0.756747i \(-0.726787\pi\)
−0.653708 + 0.756747i \(0.726787\pi\)
\(830\) −12.8554 −0.446219
\(831\) −2.36068 −0.0818911
\(832\) 2.28825 0.0793306
\(833\) −21.9597 −0.760859
\(834\) −10.5836 −0.366480
\(835\) −22.9613 −0.794607
\(836\) −37.0246 −1.28052
\(837\) 0 0
\(838\) 19.2361 0.664499
\(839\) 30.9443 1.06831 0.534157 0.845385i \(-0.320629\pi\)
0.534157 + 0.845385i \(0.320629\pi\)
\(840\) −2.82843 −0.0975900
\(841\) −22.1246 −0.762918
\(842\) 6.65248 0.229259
\(843\) 22.7248 0.782685
\(844\) 10.4721 0.360466
\(845\) 7.76393 0.267087
\(846\) −26.1803 −0.900099
\(847\) 49.1246 1.68794
\(848\) −1.62054 −0.0556497
\(849\) 1.08036 0.0370780
\(850\) 6.32456 0.216930
\(851\) 7.23607 0.248049
\(852\) −7.81758 −0.267826
\(853\) 14.9443 0.511682 0.255841 0.966719i \(-0.417648\pi\)
0.255841 + 0.966719i \(0.417648\pi\)
\(854\) 28.9520 0.990716
\(855\) −16.1803 −0.553356
\(856\) −16.9443 −0.579143
\(857\) −7.52786 −0.257147 −0.128573 0.991700i \(-0.541040\pi\)
−0.128573 + 0.991700i \(0.541040\pi\)
\(858\) 10.2333 0.349361
\(859\) 21.0069 0.716745 0.358373 0.933579i \(-0.383332\pi\)
0.358373 + 0.933579i \(0.383332\pi\)
\(860\) −0.206331 −0.00703583
\(861\) −9.15298 −0.311933
\(862\) −18.0000 −0.613082
\(863\) −0.491473 −0.0167299 −0.00836497 0.999965i \(-0.502663\pi\)
−0.00836497 + 0.999965i \(0.502663\pi\)
\(864\) −4.57649 −0.155695
\(865\) −9.41641 −0.320167
\(866\) −25.2982 −0.859669
\(867\) −20.1027 −0.682725
\(868\) 0 0
\(869\) 20.0000 0.678454
\(870\) 2.29180 0.0776992
\(871\) 11.9814 0.405975
\(872\) 17.7082 0.599675
\(873\) 25.5279 0.863987
\(874\) 22.8825 0.774011
\(875\) −3.23607 −0.109399
\(876\) −3.41641 −0.115430
\(877\) 5.23607 0.176809 0.0884047 0.996085i \(-0.471823\pi\)
0.0884047 + 0.996085i \(0.471823\pi\)
\(878\) −8.47214 −0.285921
\(879\) 7.56254 0.255078
\(880\) −5.11667 −0.172483
\(881\) −36.9458 −1.24473 −0.622367 0.782725i \(-0.713829\pi\)
−0.622367 + 0.782725i \(0.713829\pi\)
\(882\) 7.76393 0.261425
\(883\) 54.0439 1.81872 0.909360 0.416009i \(-0.136572\pi\)
0.909360 + 0.416009i \(0.136572\pi\)
\(884\) −14.4721 −0.486751
\(885\) 8.48528 0.285230
\(886\) −24.0000 −0.806296
\(887\) 37.2361 1.25026 0.625132 0.780519i \(-0.285045\pi\)
0.625132 + 0.780519i \(0.285045\pi\)
\(888\) 2.00000 0.0671156
\(889\) 10.2333 0.343215
\(890\) 16.2241 0.543831
\(891\) 13.8570 0.464227
\(892\) −3.82998 −0.128237
\(893\) 84.7214 2.83509
\(894\) 9.82068 0.328453
\(895\) 11.4412 0.382438
\(896\) −3.23607 −0.108109
\(897\) −6.32456 −0.211171
\(898\) 1.15917 0.0386822
\(899\) 0 0
\(900\) −2.23607 −0.0745356
\(901\) 10.2492 0.341451
\(902\) −16.5579 −0.551318
\(903\) −0.583592 −0.0194207
\(904\) −9.52786 −0.316892
\(905\) −16.7642 −0.557262
\(906\) −11.4164 −0.379285
\(907\) 34.4721 1.14463 0.572314 0.820034i \(-0.306046\pi\)
0.572314 + 0.820034i \(0.306046\pi\)
\(908\) −21.5967 −0.716713
\(909\) −42.3607 −1.40502
\(910\) 7.40492 0.245471
\(911\) −21.9597 −0.727558 −0.363779 0.931485i \(-0.618514\pi\)
−0.363779 + 0.931485i \(0.618514\pi\)
\(912\) 6.32456 0.209427
\(913\) −65.7771 −2.17690
\(914\) 18.9737 0.627593
\(915\) −7.81966 −0.258510
\(916\) −7.86629 −0.259909
\(917\) −5.52786 −0.182546
\(918\) 28.9443 0.955303
\(919\) 11.6393 0.383946 0.191973 0.981400i \(-0.438511\pi\)
0.191973 + 0.981400i \(0.438511\pi\)
\(920\) 3.16228 0.104257
\(921\) −20.9768 −0.691208
\(922\) −13.2681 −0.436962
\(923\) 20.4667 0.673669
\(924\) −14.4721 −0.476098
\(925\) 2.28825 0.0752371
\(926\) −24.5517 −0.806819
\(927\) 8.94427 0.293768
\(928\) 2.62210 0.0860745
\(929\) 14.7310 0.483309 0.241655 0.970362i \(-0.422310\pi\)
0.241655 + 0.970362i \(0.422310\pi\)
\(930\) 0 0
\(931\) −25.1246 −0.823426
\(932\) 29.8885 0.979032
\(933\) 6.48218 0.212217
\(934\) −7.05573 −0.230870
\(935\) 32.3607 1.05831
\(936\) 5.11667 0.167244
\(937\) −55.3050 −1.80673 −0.903367 0.428868i \(-0.858912\pi\)
−0.903367 + 0.428868i \(0.858912\pi\)
\(938\) −16.9443 −0.553250
\(939\) −22.2492 −0.726076
\(940\) 11.7082 0.381880
\(941\) −8.27895 −0.269886 −0.134943 0.990853i \(-0.543085\pi\)
−0.134943 + 0.990853i \(0.543085\pi\)
\(942\) 6.06952 0.197756
\(943\) 10.2333 0.333244
\(944\) 9.70820 0.315975
\(945\) −14.8098 −0.481764
\(946\) −1.05573 −0.0343247
\(947\) 19.5927 0.636676 0.318338 0.947977i \(-0.396875\pi\)
0.318338 + 0.947977i \(0.396875\pi\)
\(948\) −3.41641 −0.110960
\(949\) 8.94427 0.290343
\(950\) 7.23607 0.234769
\(951\) −13.7295 −0.445209
\(952\) 20.4667 0.663329
\(953\) 54.2502 1.75734 0.878668 0.477433i \(-0.158433\pi\)
0.878668 + 0.477433i \(0.158433\pi\)
\(954\) −3.62365 −0.117320
\(955\) −17.4164 −0.563582
\(956\) −13.0618 −0.422448
\(957\) 11.7264 0.379060
\(958\) −25.8885 −0.836421
\(959\) 45.7649 1.47783
\(960\) 0.874032 0.0282093
\(961\) 0 0
\(962\) −5.23607 −0.168818
\(963\) −37.8885 −1.22094
\(964\) −21.8809 −0.704736
\(965\) −2.94427 −0.0947795
\(966\) 8.94427 0.287777
\(967\) −45.4311 −1.46096 −0.730482 0.682932i \(-0.760705\pi\)
−0.730482 + 0.682932i \(0.760705\pi\)
\(968\) −15.1803 −0.487915
\(969\) −40.0000 −1.28499
\(970\) −11.4164 −0.366559
\(971\) −6.83282 −0.219275 −0.109638 0.993972i \(-0.534969\pi\)
−0.109638 + 0.993972i \(0.534969\pi\)
\(972\) −16.0965 −0.516296
\(973\) −39.1853 −1.25622
\(974\) −8.81913 −0.282583
\(975\) −2.00000 −0.0640513
\(976\) −8.94665 −0.286375
\(977\) −17.4164 −0.557200 −0.278600 0.960407i \(-0.589870\pi\)
−0.278600 + 0.960407i \(0.589870\pi\)
\(978\) 12.3941 0.396319
\(979\) 83.0132 2.65311
\(980\) −3.47214 −0.110913
\(981\) 39.5967 1.26423
\(982\) 28.2542 0.901627
\(983\) −41.0122 −1.30809 −0.654043 0.756457i \(-0.726928\pi\)
−0.654043 + 0.756457i \(0.726928\pi\)
\(984\) 2.82843 0.0901670
\(985\) 11.8539 0.377696
\(986\) −16.5836 −0.528129
\(987\) 33.1158 1.05409
\(988\) −16.5579 −0.526777
\(989\) 0.652476 0.0207475
\(990\) −11.4412 −0.363626
\(991\) 55.7432 1.77074 0.885371 0.464885i \(-0.153904\pi\)
0.885371 + 0.464885i \(0.153904\pi\)
\(992\) 0 0
\(993\) −19.5279 −0.619698
\(994\) −28.9443 −0.918057
\(995\) 13.3168 0.422171
\(996\) 11.2361 0.356028
\(997\) 12.2918 0.389285 0.194643 0.980874i \(-0.437645\pi\)
0.194643 + 0.980874i \(0.437645\pi\)
\(998\) −7.53244 −0.238435
\(999\) 10.4721 0.331324
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9610.2.a.be.1.2 4
31.30 odd 2 inner 9610.2.a.be.1.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9610.2.a.be.1.2 4 1.1 even 1 trivial
9610.2.a.be.1.3 yes 4 31.30 odd 2 inner