Properties

Label 9610.2.a.k.1.2
Level $9610$
Weight $2$
Character 9610.1
Self dual yes
Analytic conductor $76.736$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9610,2,Mod(1,9610)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9610, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9610.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9610 = 2 \cdot 5 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9610.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.7362363425\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 310)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 9610.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{5} -1.00000 q^{6} +0.236068 q^{7} -1.00000 q^{8} -2.00000 q^{9} -1.00000 q^{10} +3.00000 q^{11} +1.00000 q^{12} -4.23607 q^{13} -0.236068 q^{14} +1.00000 q^{15} +1.00000 q^{16} -7.85410 q^{17} +2.00000 q^{18} +2.47214 q^{19} +1.00000 q^{20} +0.236068 q^{21} -3.00000 q^{22} +7.85410 q^{23} -1.00000 q^{24} +1.00000 q^{25} +4.23607 q^{26} -5.00000 q^{27} +0.236068 q^{28} -3.00000 q^{29} -1.00000 q^{30} -1.00000 q^{32} +3.00000 q^{33} +7.85410 q^{34} +0.236068 q^{35} -2.00000 q^{36} +9.94427 q^{37} -2.47214 q^{38} -4.23607 q^{39} -1.00000 q^{40} +4.14590 q^{41} -0.236068 q^{42} +3.23607 q^{43} +3.00000 q^{44} -2.00000 q^{45} -7.85410 q^{46} -9.00000 q^{47} +1.00000 q^{48} -6.94427 q^{49} -1.00000 q^{50} -7.85410 q^{51} -4.23607 q^{52} +13.4164 q^{53} +5.00000 q^{54} +3.00000 q^{55} -0.236068 q^{56} +2.47214 q^{57} +3.00000 q^{58} +6.00000 q^{59} +1.00000 q^{60} +0.618034 q^{61} -0.472136 q^{63} +1.00000 q^{64} -4.23607 q^{65} -3.00000 q^{66} -9.79837 q^{67} -7.85410 q^{68} +7.85410 q^{69} -0.236068 q^{70} +4.85410 q^{71} +2.00000 q^{72} -10.1803 q^{73} -9.94427 q^{74} +1.00000 q^{75} +2.47214 q^{76} +0.708204 q^{77} +4.23607 q^{78} +6.61803 q^{79} +1.00000 q^{80} +1.00000 q^{81} -4.14590 q^{82} -12.7082 q^{83} +0.236068 q^{84} -7.85410 q^{85} -3.23607 q^{86} -3.00000 q^{87} -3.00000 q^{88} +12.0000 q^{89} +2.00000 q^{90} -1.00000 q^{91} +7.85410 q^{92} +9.00000 q^{94} +2.47214 q^{95} -1.00000 q^{96} -1.23607 q^{97} +6.94427 q^{98} -6.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{3} + 2 q^{4} + 2 q^{5} - 2 q^{6} - 4 q^{7} - 2 q^{8} - 4 q^{9} - 2 q^{10} + 6 q^{11} + 2 q^{12} - 4 q^{13} + 4 q^{14} + 2 q^{15} + 2 q^{16} - 9 q^{17} + 4 q^{18} - 4 q^{19} + 2 q^{20}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000 0.577350 0.288675 0.957427i \(-0.406785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) −1.00000 −0.408248
\(7\) 0.236068 0.0892253 0.0446127 0.999004i \(-0.485795\pi\)
0.0446127 + 0.999004i \(0.485795\pi\)
\(8\) −1.00000 −0.353553
\(9\) −2.00000 −0.666667
\(10\) −1.00000 −0.316228
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 1.00000 0.288675
\(13\) −4.23607 −1.17487 −0.587437 0.809270i \(-0.699863\pi\)
−0.587437 + 0.809270i \(0.699863\pi\)
\(14\) −0.236068 −0.0630918
\(15\) 1.00000 0.258199
\(16\) 1.00000 0.250000
\(17\) −7.85410 −1.90490 −0.952450 0.304696i \(-0.901445\pi\)
−0.952450 + 0.304696i \(0.901445\pi\)
\(18\) 2.00000 0.471405
\(19\) 2.47214 0.567147 0.283573 0.958951i \(-0.408480\pi\)
0.283573 + 0.958951i \(0.408480\pi\)
\(20\) 1.00000 0.223607
\(21\) 0.236068 0.0515143
\(22\) −3.00000 −0.639602
\(23\) 7.85410 1.63769 0.818847 0.574012i \(-0.194614\pi\)
0.818847 + 0.574012i \(0.194614\pi\)
\(24\) −1.00000 −0.204124
\(25\) 1.00000 0.200000
\(26\) 4.23607 0.830761
\(27\) −5.00000 −0.962250
\(28\) 0.236068 0.0446127
\(29\) −3.00000 −0.557086 −0.278543 0.960424i \(-0.589851\pi\)
−0.278543 + 0.960424i \(0.589851\pi\)
\(30\) −1.00000 −0.182574
\(31\) 0 0
\(32\) −1.00000 −0.176777
\(33\) 3.00000 0.522233
\(34\) 7.85410 1.34697
\(35\) 0.236068 0.0399028
\(36\) −2.00000 −0.333333
\(37\) 9.94427 1.63483 0.817414 0.576050i \(-0.195407\pi\)
0.817414 + 0.576050i \(0.195407\pi\)
\(38\) −2.47214 −0.401033
\(39\) −4.23607 −0.678314
\(40\) −1.00000 −0.158114
\(41\) 4.14590 0.647480 0.323740 0.946146i \(-0.395060\pi\)
0.323740 + 0.946146i \(0.395060\pi\)
\(42\) −0.236068 −0.0364261
\(43\) 3.23607 0.493496 0.246748 0.969080i \(-0.420638\pi\)
0.246748 + 0.969080i \(0.420638\pi\)
\(44\) 3.00000 0.452267
\(45\) −2.00000 −0.298142
\(46\) −7.85410 −1.15802
\(47\) −9.00000 −1.31278 −0.656392 0.754420i \(-0.727918\pi\)
−0.656392 + 0.754420i \(0.727918\pi\)
\(48\) 1.00000 0.144338
\(49\) −6.94427 −0.992039
\(50\) −1.00000 −0.141421
\(51\) −7.85410 −1.09979
\(52\) −4.23607 −0.587437
\(53\) 13.4164 1.84289 0.921443 0.388514i \(-0.127012\pi\)
0.921443 + 0.388514i \(0.127012\pi\)
\(54\) 5.00000 0.680414
\(55\) 3.00000 0.404520
\(56\) −0.236068 −0.0315459
\(57\) 2.47214 0.327442
\(58\) 3.00000 0.393919
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 1.00000 0.129099
\(61\) 0.618034 0.0791311 0.0395656 0.999217i \(-0.487403\pi\)
0.0395656 + 0.999217i \(0.487403\pi\)
\(62\) 0 0
\(63\) −0.472136 −0.0594835
\(64\) 1.00000 0.125000
\(65\) −4.23607 −0.525420
\(66\) −3.00000 −0.369274
\(67\) −9.79837 −1.19706 −0.598531 0.801100i \(-0.704249\pi\)
−0.598531 + 0.801100i \(0.704249\pi\)
\(68\) −7.85410 −0.952450
\(69\) 7.85410 0.945523
\(70\) −0.236068 −0.0282155
\(71\) 4.85410 0.576076 0.288038 0.957619i \(-0.406997\pi\)
0.288038 + 0.957619i \(0.406997\pi\)
\(72\) 2.00000 0.235702
\(73\) −10.1803 −1.19152 −0.595759 0.803163i \(-0.703149\pi\)
−0.595759 + 0.803163i \(0.703149\pi\)
\(74\) −9.94427 −1.15600
\(75\) 1.00000 0.115470
\(76\) 2.47214 0.283573
\(77\) 0.708204 0.0807073
\(78\) 4.23607 0.479640
\(79\) 6.61803 0.744587 0.372293 0.928115i \(-0.378571\pi\)
0.372293 + 0.928115i \(0.378571\pi\)
\(80\) 1.00000 0.111803
\(81\) 1.00000 0.111111
\(82\) −4.14590 −0.457838
\(83\) −12.7082 −1.39491 −0.697453 0.716630i \(-0.745684\pi\)
−0.697453 + 0.716630i \(0.745684\pi\)
\(84\) 0.236068 0.0257571
\(85\) −7.85410 −0.851897
\(86\) −3.23607 −0.348954
\(87\) −3.00000 −0.321634
\(88\) −3.00000 −0.319801
\(89\) 12.0000 1.27200 0.635999 0.771690i \(-0.280588\pi\)
0.635999 + 0.771690i \(0.280588\pi\)
\(90\) 2.00000 0.210819
\(91\) −1.00000 −0.104828
\(92\) 7.85410 0.818847
\(93\) 0 0
\(94\) 9.00000 0.928279
\(95\) 2.47214 0.253636
\(96\) −1.00000 −0.102062
\(97\) −1.23607 −0.125504 −0.0627518 0.998029i \(-0.519988\pi\)
−0.0627518 + 0.998029i \(0.519988\pi\)
\(98\) 6.94427 0.701477
\(99\) −6.00000 −0.603023
\(100\) 1.00000 0.100000
\(101\) −6.70820 −0.667491 −0.333746 0.942663i \(-0.608313\pi\)
−0.333746 + 0.942663i \(0.608313\pi\)
\(102\) 7.85410 0.777672
\(103\) 15.2361 1.50125 0.750627 0.660726i \(-0.229751\pi\)
0.750627 + 0.660726i \(0.229751\pi\)
\(104\) 4.23607 0.415381
\(105\) 0.236068 0.0230379
\(106\) −13.4164 −1.30312
\(107\) −9.70820 −0.938527 −0.469264 0.883058i \(-0.655481\pi\)
−0.469264 + 0.883058i \(0.655481\pi\)
\(108\) −5.00000 −0.481125
\(109\) 17.0902 1.63694 0.818471 0.574548i \(-0.194822\pi\)
0.818471 + 0.574548i \(0.194822\pi\)
\(110\) −3.00000 −0.286039
\(111\) 9.94427 0.943869
\(112\) 0.236068 0.0223063
\(113\) 12.7082 1.19549 0.597744 0.801687i \(-0.296064\pi\)
0.597744 + 0.801687i \(0.296064\pi\)
\(114\) −2.47214 −0.231537
\(115\) 7.85410 0.732399
\(116\) −3.00000 −0.278543
\(117\) 8.47214 0.783249
\(118\) −6.00000 −0.552345
\(119\) −1.85410 −0.169965
\(120\) −1.00000 −0.0912871
\(121\) −2.00000 −0.181818
\(122\) −0.618034 −0.0559542
\(123\) 4.14590 0.373823
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0.472136 0.0420612
\(127\) 4.05573 0.359888 0.179944 0.983677i \(-0.442408\pi\)
0.179944 + 0.983677i \(0.442408\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 3.23607 0.284920
\(130\) 4.23607 0.371528
\(131\) −4.85410 −0.424105 −0.212052 0.977258i \(-0.568015\pi\)
−0.212052 + 0.977258i \(0.568015\pi\)
\(132\) 3.00000 0.261116
\(133\) 0.583592 0.0506039
\(134\) 9.79837 0.846451
\(135\) −5.00000 −0.430331
\(136\) 7.85410 0.673484
\(137\) −15.0000 −1.28154 −0.640768 0.767734i \(-0.721384\pi\)
−0.640768 + 0.767734i \(0.721384\pi\)
\(138\) −7.85410 −0.668586
\(139\) −2.76393 −0.234434 −0.117217 0.993106i \(-0.537397\pi\)
−0.117217 + 0.993106i \(0.537397\pi\)
\(140\) 0.236068 0.0199514
\(141\) −9.00000 −0.757937
\(142\) −4.85410 −0.407347
\(143\) −12.7082 −1.06271
\(144\) −2.00000 −0.166667
\(145\) −3.00000 −0.249136
\(146\) 10.1803 0.842531
\(147\) −6.94427 −0.572754
\(148\) 9.94427 0.817414
\(149\) 1.85410 0.151894 0.0759470 0.997112i \(-0.475802\pi\)
0.0759470 + 0.997112i \(0.475802\pi\)
\(150\) −1.00000 −0.0816497
\(151\) 15.9443 1.29753 0.648763 0.760990i \(-0.275287\pi\)
0.648763 + 0.760990i \(0.275287\pi\)
\(152\) −2.47214 −0.200517
\(153\) 15.7082 1.26993
\(154\) −0.708204 −0.0570687
\(155\) 0 0
\(156\) −4.23607 −0.339157
\(157\) 20.0344 1.59892 0.799461 0.600718i \(-0.205118\pi\)
0.799461 + 0.600718i \(0.205118\pi\)
\(158\) −6.61803 −0.526503
\(159\) 13.4164 1.06399
\(160\) −1.00000 −0.0790569
\(161\) 1.85410 0.146124
\(162\) −1.00000 −0.0785674
\(163\) 0.236068 0.0184903 0.00924514 0.999957i \(-0.497057\pi\)
0.00924514 + 0.999957i \(0.497057\pi\)
\(164\) 4.14590 0.323740
\(165\) 3.00000 0.233550
\(166\) 12.7082 0.986348
\(167\) 13.4164 1.03819 0.519096 0.854716i \(-0.326269\pi\)
0.519096 + 0.854716i \(0.326269\pi\)
\(168\) −0.236068 −0.0182130
\(169\) 4.94427 0.380329
\(170\) 7.85410 0.602382
\(171\) −4.94427 −0.378098
\(172\) 3.23607 0.246748
\(173\) 9.00000 0.684257 0.342129 0.939653i \(-0.388852\pi\)
0.342129 + 0.939653i \(0.388852\pi\)
\(174\) 3.00000 0.227429
\(175\) 0.236068 0.0178451
\(176\) 3.00000 0.226134
\(177\) 6.00000 0.450988
\(178\) −12.0000 −0.899438
\(179\) 24.0000 1.79384 0.896922 0.442189i \(-0.145798\pi\)
0.896922 + 0.442189i \(0.145798\pi\)
\(180\) −2.00000 −0.149071
\(181\) 2.09017 0.155361 0.0776806 0.996978i \(-0.475249\pi\)
0.0776806 + 0.996978i \(0.475249\pi\)
\(182\) 1.00000 0.0741249
\(183\) 0.618034 0.0456864
\(184\) −7.85410 −0.579012
\(185\) 9.94427 0.731117
\(186\) 0 0
\(187\) −23.5623 −1.72305
\(188\) −9.00000 −0.656392
\(189\) −1.18034 −0.0858571
\(190\) −2.47214 −0.179348
\(191\) −6.43769 −0.465815 −0.232908 0.972499i \(-0.574824\pi\)
−0.232908 + 0.972499i \(0.574824\pi\)
\(192\) 1.00000 0.0721688
\(193\) 8.03444 0.578332 0.289166 0.957279i \(-0.406622\pi\)
0.289166 + 0.957279i \(0.406622\pi\)
\(194\) 1.23607 0.0887445
\(195\) −4.23607 −0.303351
\(196\) −6.94427 −0.496019
\(197\) 12.7082 0.905422 0.452711 0.891657i \(-0.350457\pi\)
0.452711 + 0.891657i \(0.350457\pi\)
\(198\) 6.00000 0.426401
\(199\) −10.8885 −0.771868 −0.385934 0.922526i \(-0.626121\pi\)
−0.385934 + 0.922526i \(0.626121\pi\)
\(200\) −1.00000 −0.0707107
\(201\) −9.79837 −0.691124
\(202\) 6.70820 0.471988
\(203\) −0.708204 −0.0497062
\(204\) −7.85410 −0.549897
\(205\) 4.14590 0.289562
\(206\) −15.2361 −1.06155
\(207\) −15.7082 −1.09180
\(208\) −4.23607 −0.293718
\(209\) 7.41641 0.513004
\(210\) −0.236068 −0.0162902
\(211\) 5.09017 0.350422 0.175211 0.984531i \(-0.443939\pi\)
0.175211 + 0.984531i \(0.443939\pi\)
\(212\) 13.4164 0.921443
\(213\) 4.85410 0.332598
\(214\) 9.70820 0.663639
\(215\) 3.23607 0.220698
\(216\) 5.00000 0.340207
\(217\) 0 0
\(218\) −17.0902 −1.15749
\(219\) −10.1803 −0.687924
\(220\) 3.00000 0.202260
\(221\) 33.2705 2.23802
\(222\) −9.94427 −0.667416
\(223\) −9.79837 −0.656148 −0.328074 0.944652i \(-0.606399\pi\)
−0.328074 + 0.944652i \(0.606399\pi\)
\(224\) −0.236068 −0.0157730
\(225\) −2.00000 −0.133333
\(226\) −12.7082 −0.845337
\(227\) 4.14590 0.275173 0.137586 0.990490i \(-0.456066\pi\)
0.137586 + 0.990490i \(0.456066\pi\)
\(228\) 2.47214 0.163721
\(229\) 15.6180 1.03207 0.516034 0.856568i \(-0.327408\pi\)
0.516034 + 0.856568i \(0.327408\pi\)
\(230\) −7.85410 −0.517884
\(231\) 0.708204 0.0465964
\(232\) 3.00000 0.196960
\(233\) −17.5623 −1.15054 −0.575272 0.817962i \(-0.695104\pi\)
−0.575272 + 0.817962i \(0.695104\pi\)
\(234\) −8.47214 −0.553841
\(235\) −9.00000 −0.587095
\(236\) 6.00000 0.390567
\(237\) 6.61803 0.429888
\(238\) 1.85410 0.120184
\(239\) 18.9787 1.22763 0.613815 0.789450i \(-0.289634\pi\)
0.613815 + 0.789450i \(0.289634\pi\)
\(240\) 1.00000 0.0645497
\(241\) −12.1246 −0.781015 −0.390507 0.920600i \(-0.627700\pi\)
−0.390507 + 0.920600i \(0.627700\pi\)
\(242\) 2.00000 0.128565
\(243\) 16.0000 1.02640
\(244\) 0.618034 0.0395656
\(245\) −6.94427 −0.443653
\(246\) −4.14590 −0.264333
\(247\) −10.4721 −0.666326
\(248\) 0 0
\(249\) −12.7082 −0.805350
\(250\) −1.00000 −0.0632456
\(251\) 25.8541 1.63190 0.815948 0.578125i \(-0.196215\pi\)
0.815948 + 0.578125i \(0.196215\pi\)
\(252\) −0.472136 −0.0297418
\(253\) 23.5623 1.48135
\(254\) −4.05573 −0.254479
\(255\) −7.85410 −0.491843
\(256\) 1.00000 0.0625000
\(257\) 5.29180 0.330093 0.165047 0.986286i \(-0.447223\pi\)
0.165047 + 0.986286i \(0.447223\pi\)
\(258\) −3.23607 −0.201469
\(259\) 2.34752 0.145868
\(260\) −4.23607 −0.262710
\(261\) 6.00000 0.371391
\(262\) 4.85410 0.299887
\(263\) −8.56231 −0.527974 −0.263987 0.964526i \(-0.585038\pi\)
−0.263987 + 0.964526i \(0.585038\pi\)
\(264\) −3.00000 −0.184637
\(265\) 13.4164 0.824163
\(266\) −0.583592 −0.0357823
\(267\) 12.0000 0.734388
\(268\) −9.79837 −0.598531
\(269\) 1.14590 0.0698666 0.0349333 0.999390i \(-0.488878\pi\)
0.0349333 + 0.999390i \(0.488878\pi\)
\(270\) 5.00000 0.304290
\(271\) 15.9443 0.968546 0.484273 0.874917i \(-0.339084\pi\)
0.484273 + 0.874917i \(0.339084\pi\)
\(272\) −7.85410 −0.476225
\(273\) −1.00000 −0.0605228
\(274\) 15.0000 0.906183
\(275\) 3.00000 0.180907
\(276\) 7.85410 0.472761
\(277\) −15.5623 −0.935048 −0.467524 0.883980i \(-0.654854\pi\)
−0.467524 + 0.883980i \(0.654854\pi\)
\(278\) 2.76393 0.165770
\(279\) 0 0
\(280\) −0.236068 −0.0141078
\(281\) 7.85410 0.468536 0.234268 0.972172i \(-0.424731\pi\)
0.234268 + 0.972172i \(0.424731\pi\)
\(282\) 9.00000 0.535942
\(283\) −7.18034 −0.426827 −0.213413 0.976962i \(-0.568458\pi\)
−0.213413 + 0.976962i \(0.568458\pi\)
\(284\) 4.85410 0.288038
\(285\) 2.47214 0.146437
\(286\) 12.7082 0.751452
\(287\) 0.978714 0.0577716
\(288\) 2.00000 0.117851
\(289\) 44.6869 2.62864
\(290\) 3.00000 0.176166
\(291\) −1.23607 −0.0724596
\(292\) −10.1803 −0.595759
\(293\) 0.708204 0.0413737 0.0206869 0.999786i \(-0.493415\pi\)
0.0206869 + 0.999786i \(0.493415\pi\)
\(294\) 6.94427 0.404998
\(295\) 6.00000 0.349334
\(296\) −9.94427 −0.577999
\(297\) −15.0000 −0.870388
\(298\) −1.85410 −0.107405
\(299\) −33.2705 −1.92408
\(300\) 1.00000 0.0577350
\(301\) 0.763932 0.0440323
\(302\) −15.9443 −0.917490
\(303\) −6.70820 −0.385376
\(304\) 2.47214 0.141787
\(305\) 0.618034 0.0353885
\(306\) −15.7082 −0.897978
\(307\) −2.65248 −0.151385 −0.0756924 0.997131i \(-0.524117\pi\)
−0.0756924 + 0.997131i \(0.524117\pi\)
\(308\) 0.708204 0.0403537
\(309\) 15.2361 0.866750
\(310\) 0 0
\(311\) 15.7082 0.890731 0.445365 0.895349i \(-0.353074\pi\)
0.445365 + 0.895349i \(0.353074\pi\)
\(312\) 4.23607 0.239820
\(313\) 29.7984 1.68430 0.842152 0.539240i \(-0.181289\pi\)
0.842152 + 0.539240i \(0.181289\pi\)
\(314\) −20.0344 −1.13061
\(315\) −0.472136 −0.0266018
\(316\) 6.61803 0.372293
\(317\) 7.41641 0.416547 0.208273 0.978071i \(-0.433216\pi\)
0.208273 + 0.978071i \(0.433216\pi\)
\(318\) −13.4164 −0.752355
\(319\) −9.00000 −0.503903
\(320\) 1.00000 0.0559017
\(321\) −9.70820 −0.541859
\(322\) −1.85410 −0.103325
\(323\) −19.4164 −1.08036
\(324\) 1.00000 0.0555556
\(325\) −4.23607 −0.234975
\(326\) −0.236068 −0.0130746
\(327\) 17.0902 0.945089
\(328\) −4.14590 −0.228919
\(329\) −2.12461 −0.117134
\(330\) −3.00000 −0.165145
\(331\) −15.5623 −0.855382 −0.427691 0.903925i \(-0.640673\pi\)
−0.427691 + 0.903925i \(0.640673\pi\)
\(332\) −12.7082 −0.697453
\(333\) −19.8885 −1.08989
\(334\) −13.4164 −0.734113
\(335\) −9.79837 −0.535342
\(336\) 0.236068 0.0128786
\(337\) 12.8885 0.702084 0.351042 0.936360i \(-0.385827\pi\)
0.351042 + 0.936360i \(0.385827\pi\)
\(338\) −4.94427 −0.268933
\(339\) 12.7082 0.690215
\(340\) −7.85410 −0.425948
\(341\) 0 0
\(342\) 4.94427 0.267356
\(343\) −3.29180 −0.177740
\(344\) −3.23607 −0.174477
\(345\) 7.85410 0.422851
\(346\) −9.00000 −0.483843
\(347\) 12.2705 0.658715 0.329358 0.944205i \(-0.393168\pi\)
0.329358 + 0.944205i \(0.393168\pi\)
\(348\) −3.00000 −0.160817
\(349\) 5.52786 0.295900 0.147950 0.988995i \(-0.452733\pi\)
0.147950 + 0.988995i \(0.452733\pi\)
\(350\) −0.236068 −0.0126184
\(351\) 21.1803 1.13052
\(352\) −3.00000 −0.159901
\(353\) 10.4164 0.554409 0.277205 0.960811i \(-0.410592\pi\)
0.277205 + 0.960811i \(0.410592\pi\)
\(354\) −6.00000 −0.318896
\(355\) 4.85410 0.257629
\(356\) 12.0000 0.635999
\(357\) −1.85410 −0.0981295
\(358\) −24.0000 −1.26844
\(359\) −33.2705 −1.75595 −0.877975 0.478706i \(-0.841106\pi\)
−0.877975 + 0.478706i \(0.841106\pi\)
\(360\) 2.00000 0.105409
\(361\) −12.8885 −0.678344
\(362\) −2.09017 −0.109857
\(363\) −2.00000 −0.104973
\(364\) −1.00000 −0.0524142
\(365\) −10.1803 −0.532863
\(366\) −0.618034 −0.0323052
\(367\) −28.0000 −1.46159 −0.730794 0.682598i \(-0.760850\pi\)
−0.730794 + 0.682598i \(0.760850\pi\)
\(368\) 7.85410 0.409423
\(369\) −8.29180 −0.431654
\(370\) −9.94427 −0.516978
\(371\) 3.16718 0.164432
\(372\) 0 0
\(373\) −17.6525 −0.914011 −0.457005 0.889464i \(-0.651078\pi\)
−0.457005 + 0.889464i \(0.651078\pi\)
\(374\) 23.5623 1.21838
\(375\) 1.00000 0.0516398
\(376\) 9.00000 0.464140
\(377\) 12.7082 0.654506
\(378\) 1.18034 0.0607101
\(379\) −7.50658 −0.385587 −0.192794 0.981239i \(-0.561755\pi\)
−0.192794 + 0.981239i \(0.561755\pi\)
\(380\) 2.47214 0.126818
\(381\) 4.05573 0.207781
\(382\) 6.43769 0.329381
\(383\) 9.00000 0.459879 0.229939 0.973205i \(-0.426147\pi\)
0.229939 + 0.973205i \(0.426147\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0.708204 0.0360934
\(386\) −8.03444 −0.408942
\(387\) −6.47214 −0.328997
\(388\) −1.23607 −0.0627518
\(389\) 11.2918 0.572517 0.286258 0.958152i \(-0.407588\pi\)
0.286258 + 0.958152i \(0.407588\pi\)
\(390\) 4.23607 0.214502
\(391\) −61.6869 −3.11964
\(392\) 6.94427 0.350739
\(393\) −4.85410 −0.244857
\(394\) −12.7082 −0.640230
\(395\) 6.61803 0.332989
\(396\) −6.00000 −0.301511
\(397\) 11.9098 0.597737 0.298869 0.954294i \(-0.403391\pi\)
0.298869 + 0.954294i \(0.403391\pi\)
\(398\) 10.8885 0.545793
\(399\) 0.583592 0.0292161
\(400\) 1.00000 0.0500000
\(401\) 30.0000 1.49813 0.749064 0.662497i \(-0.230503\pi\)
0.749064 + 0.662497i \(0.230503\pi\)
\(402\) 9.79837 0.488698
\(403\) 0 0
\(404\) −6.70820 −0.333746
\(405\) 1.00000 0.0496904
\(406\) 0.708204 0.0351476
\(407\) 29.8328 1.47876
\(408\) 7.85410 0.388836
\(409\) 19.5623 0.967294 0.483647 0.875263i \(-0.339312\pi\)
0.483647 + 0.875263i \(0.339312\pi\)
\(410\) −4.14590 −0.204751
\(411\) −15.0000 −0.739895
\(412\) 15.2361 0.750627
\(413\) 1.41641 0.0696969
\(414\) 15.7082 0.772016
\(415\) −12.7082 −0.623821
\(416\) 4.23607 0.207690
\(417\) −2.76393 −0.135350
\(418\) −7.41641 −0.362748
\(419\) −15.7082 −0.767396 −0.383698 0.923459i \(-0.625350\pi\)
−0.383698 + 0.923459i \(0.625350\pi\)
\(420\) 0.236068 0.0115189
\(421\) 14.5279 0.708045 0.354022 0.935237i \(-0.384814\pi\)
0.354022 + 0.935237i \(0.384814\pi\)
\(422\) −5.09017 −0.247786
\(423\) 18.0000 0.875190
\(424\) −13.4164 −0.651558
\(425\) −7.85410 −0.380980
\(426\) −4.85410 −0.235182
\(427\) 0.145898 0.00706050
\(428\) −9.70820 −0.469264
\(429\) −12.7082 −0.613558
\(430\) −3.23607 −0.156057
\(431\) 31.1459 1.50025 0.750123 0.661299i \(-0.229994\pi\)
0.750123 + 0.661299i \(0.229994\pi\)
\(432\) −5.00000 −0.240563
\(433\) 1.11146 0.0534132 0.0267066 0.999643i \(-0.491498\pi\)
0.0267066 + 0.999643i \(0.491498\pi\)
\(434\) 0 0
\(435\) −3.00000 −0.143839
\(436\) 17.0902 0.818471
\(437\) 19.4164 0.928813
\(438\) 10.1803 0.486435
\(439\) −19.6180 −0.936318 −0.468159 0.883644i \(-0.655082\pi\)
−0.468159 + 0.883644i \(0.655082\pi\)
\(440\) −3.00000 −0.143019
\(441\) 13.8885 0.661359
\(442\) −33.2705 −1.58252
\(443\) −15.2705 −0.725524 −0.362762 0.931882i \(-0.618166\pi\)
−0.362762 + 0.931882i \(0.618166\pi\)
\(444\) 9.94427 0.471934
\(445\) 12.0000 0.568855
\(446\) 9.79837 0.463966
\(447\) 1.85410 0.0876960
\(448\) 0.236068 0.0111532
\(449\) 34.8541 1.64487 0.822433 0.568861i \(-0.192616\pi\)
0.822433 + 0.568861i \(0.192616\pi\)
\(450\) 2.00000 0.0942809
\(451\) 12.4377 0.585668
\(452\) 12.7082 0.597744
\(453\) 15.9443 0.749127
\(454\) −4.14590 −0.194577
\(455\) −1.00000 −0.0468807
\(456\) −2.47214 −0.115768
\(457\) 4.56231 0.213416 0.106708 0.994290i \(-0.465969\pi\)
0.106708 + 0.994290i \(0.465969\pi\)
\(458\) −15.6180 −0.729783
\(459\) 39.2705 1.83299
\(460\) 7.85410 0.366199
\(461\) 11.8328 0.551109 0.275555 0.961285i \(-0.411139\pi\)
0.275555 + 0.961285i \(0.411139\pi\)
\(462\) −0.708204 −0.0329486
\(463\) −0.527864 −0.0245319 −0.0122660 0.999925i \(-0.503904\pi\)
−0.0122660 + 0.999925i \(0.503904\pi\)
\(464\) −3.00000 −0.139272
\(465\) 0 0
\(466\) 17.5623 0.813558
\(467\) −25.8541 −1.19639 −0.598193 0.801352i \(-0.704114\pi\)
−0.598193 + 0.801352i \(0.704114\pi\)
\(468\) 8.47214 0.391625
\(469\) −2.31308 −0.106808
\(470\) 9.00000 0.415139
\(471\) 20.0344 0.923138
\(472\) −6.00000 −0.276172
\(473\) 9.70820 0.446384
\(474\) −6.61803 −0.303976
\(475\) 2.47214 0.113429
\(476\) −1.85410 −0.0849826
\(477\) −26.8328 −1.22859
\(478\) −18.9787 −0.868066
\(479\) −27.9787 −1.27838 −0.639190 0.769049i \(-0.720730\pi\)
−0.639190 + 0.769049i \(0.720730\pi\)
\(480\) −1.00000 −0.0456435
\(481\) −42.1246 −1.92072
\(482\) 12.1246 0.552261
\(483\) 1.85410 0.0843646
\(484\) −2.00000 −0.0909091
\(485\) −1.23607 −0.0561270
\(486\) −16.0000 −0.725775
\(487\) 14.7984 0.670578 0.335289 0.942115i \(-0.391166\pi\)
0.335289 + 0.942115i \(0.391166\pi\)
\(488\) −0.618034 −0.0279771
\(489\) 0.236068 0.0106754
\(490\) 6.94427 0.313710
\(491\) −22.4164 −1.01164 −0.505819 0.862640i \(-0.668810\pi\)
−0.505819 + 0.862640i \(0.668810\pi\)
\(492\) 4.14590 0.186912
\(493\) 23.5623 1.06119
\(494\) 10.4721 0.471164
\(495\) −6.00000 −0.269680
\(496\) 0 0
\(497\) 1.14590 0.0514006
\(498\) 12.7082 0.569468
\(499\) 2.03444 0.0910741 0.0455371 0.998963i \(-0.485500\pi\)
0.0455371 + 0.998963i \(0.485500\pi\)
\(500\) 1.00000 0.0447214
\(501\) 13.4164 0.599401
\(502\) −25.8541 −1.15393
\(503\) 44.5623 1.98694 0.993468 0.114115i \(-0.0364033\pi\)
0.993468 + 0.114115i \(0.0364033\pi\)
\(504\) 0.472136 0.0210306
\(505\) −6.70820 −0.298511
\(506\) −23.5623 −1.04747
\(507\) 4.94427 0.219583
\(508\) 4.05573 0.179944
\(509\) 0.875388 0.0388009 0.0194004 0.999812i \(-0.493824\pi\)
0.0194004 + 0.999812i \(0.493824\pi\)
\(510\) 7.85410 0.347785
\(511\) −2.40325 −0.106314
\(512\) −1.00000 −0.0441942
\(513\) −12.3607 −0.545737
\(514\) −5.29180 −0.233411
\(515\) 15.2361 0.671381
\(516\) 3.23607 0.142460
\(517\) −27.0000 −1.18746
\(518\) −2.34752 −0.103144
\(519\) 9.00000 0.395056
\(520\) 4.23607 0.185764
\(521\) −16.4164 −0.719216 −0.359608 0.933103i \(-0.617090\pi\)
−0.359608 + 0.933103i \(0.617090\pi\)
\(522\) −6.00000 −0.262613
\(523\) −0.472136 −0.0206451 −0.0103225 0.999947i \(-0.503286\pi\)
−0.0103225 + 0.999947i \(0.503286\pi\)
\(524\) −4.85410 −0.212052
\(525\) 0.236068 0.0103029
\(526\) 8.56231 0.373334
\(527\) 0 0
\(528\) 3.00000 0.130558
\(529\) 38.6869 1.68204
\(530\) −13.4164 −0.582772
\(531\) −12.0000 −0.520756
\(532\) 0.583592 0.0253019
\(533\) −17.5623 −0.760708
\(534\) −12.0000 −0.519291
\(535\) −9.70820 −0.419722
\(536\) 9.79837 0.423225
\(537\) 24.0000 1.03568
\(538\) −1.14590 −0.0494032
\(539\) −20.8328 −0.897333
\(540\) −5.00000 −0.215166
\(541\) −28.2361 −1.21396 −0.606982 0.794716i \(-0.707620\pi\)
−0.606982 + 0.794716i \(0.707620\pi\)
\(542\) −15.9443 −0.684865
\(543\) 2.09017 0.0896978
\(544\) 7.85410 0.336742
\(545\) 17.0902 0.732062
\(546\) 1.00000 0.0427960
\(547\) 16.3262 0.698060 0.349030 0.937112i \(-0.386511\pi\)
0.349030 + 0.937112i \(0.386511\pi\)
\(548\) −15.0000 −0.640768
\(549\) −1.23607 −0.0527541
\(550\) −3.00000 −0.127920
\(551\) −7.41641 −0.315950
\(552\) −7.85410 −0.334293
\(553\) 1.56231 0.0664360
\(554\) 15.5623 0.661179
\(555\) 9.94427 0.422111
\(556\) −2.76393 −0.117217
\(557\) −26.2918 −1.11402 −0.557010 0.830506i \(-0.688051\pi\)
−0.557010 + 0.830506i \(0.688051\pi\)
\(558\) 0 0
\(559\) −13.7082 −0.579795
\(560\) 0.236068 0.00997569
\(561\) −23.5623 −0.994801
\(562\) −7.85410 −0.331305
\(563\) 7.41641 0.312564 0.156282 0.987712i \(-0.450049\pi\)
0.156282 + 0.987712i \(0.450049\pi\)
\(564\) −9.00000 −0.378968
\(565\) 12.7082 0.534638
\(566\) 7.18034 0.301812
\(567\) 0.236068 0.00991392
\(568\) −4.85410 −0.203674
\(569\) −9.70820 −0.406989 −0.203495 0.979076i \(-0.565230\pi\)
−0.203495 + 0.979076i \(0.565230\pi\)
\(570\) −2.47214 −0.103546
\(571\) −22.0000 −0.920671 −0.460336 0.887745i \(-0.652271\pi\)
−0.460336 + 0.887745i \(0.652271\pi\)
\(572\) −12.7082 −0.531357
\(573\) −6.43769 −0.268939
\(574\) −0.978714 −0.0408507
\(575\) 7.85410 0.327539
\(576\) −2.00000 −0.0833333
\(577\) 11.7984 0.491173 0.245586 0.969375i \(-0.421020\pi\)
0.245586 + 0.969375i \(0.421020\pi\)
\(578\) −44.6869 −1.85873
\(579\) 8.03444 0.333900
\(580\) −3.00000 −0.124568
\(581\) −3.00000 −0.124461
\(582\) 1.23607 0.0512367
\(583\) 40.2492 1.66695
\(584\) 10.1803 0.421265
\(585\) 8.47214 0.350280
\(586\) −0.708204 −0.0292556
\(587\) 47.8328 1.97427 0.987136 0.159884i \(-0.0511120\pi\)
0.987136 + 0.159884i \(0.0511120\pi\)
\(588\) −6.94427 −0.286377
\(589\) 0 0
\(590\) −6.00000 −0.247016
\(591\) 12.7082 0.522746
\(592\) 9.94427 0.408707
\(593\) −24.2705 −0.996670 −0.498335 0.866984i \(-0.666055\pi\)
−0.498335 + 0.866984i \(0.666055\pi\)
\(594\) 15.0000 0.615457
\(595\) −1.85410 −0.0760108
\(596\) 1.85410 0.0759470
\(597\) −10.8885 −0.445638
\(598\) 33.2705 1.36053
\(599\) −35.1246 −1.43515 −0.717576 0.696480i \(-0.754749\pi\)
−0.717576 + 0.696480i \(0.754749\pi\)
\(600\) −1.00000 −0.0408248
\(601\) 3.94427 0.160890 0.0804451 0.996759i \(-0.474366\pi\)
0.0804451 + 0.996759i \(0.474366\pi\)
\(602\) −0.763932 −0.0311355
\(603\) 19.5967 0.798041
\(604\) 15.9443 0.648763
\(605\) −2.00000 −0.0813116
\(606\) 6.70820 0.272502
\(607\) 30.6180 1.24275 0.621374 0.783514i \(-0.286575\pi\)
0.621374 + 0.783514i \(0.286575\pi\)
\(608\) −2.47214 −0.100258
\(609\) −0.708204 −0.0286979
\(610\) −0.618034 −0.0250235
\(611\) 38.1246 1.54236
\(612\) 15.7082 0.634967
\(613\) 21.4508 0.866392 0.433196 0.901300i \(-0.357386\pi\)
0.433196 + 0.901300i \(0.357386\pi\)
\(614\) 2.65248 0.107045
\(615\) 4.14590 0.167179
\(616\) −0.708204 −0.0285343
\(617\) −7.14590 −0.287683 −0.143842 0.989601i \(-0.545946\pi\)
−0.143842 + 0.989601i \(0.545946\pi\)
\(618\) −15.2361 −0.612885
\(619\) 9.88854 0.397454 0.198727 0.980055i \(-0.436319\pi\)
0.198727 + 0.980055i \(0.436319\pi\)
\(620\) 0 0
\(621\) −39.2705 −1.57587
\(622\) −15.7082 −0.629842
\(623\) 2.83282 0.113494
\(624\) −4.23607 −0.169578
\(625\) 1.00000 0.0400000
\(626\) −29.7984 −1.19098
\(627\) 7.41641 0.296183
\(628\) 20.0344 0.799461
\(629\) −78.1033 −3.11418
\(630\) 0.472136 0.0188103
\(631\) −19.0689 −0.759120 −0.379560 0.925167i \(-0.623925\pi\)
−0.379560 + 0.925167i \(0.623925\pi\)
\(632\) −6.61803 −0.263251
\(633\) 5.09017 0.202316
\(634\) −7.41641 −0.294543
\(635\) 4.05573 0.160947
\(636\) 13.4164 0.531995
\(637\) 29.4164 1.16552
\(638\) 9.00000 0.356313
\(639\) −9.70820 −0.384051
\(640\) −1.00000 −0.0395285
\(641\) −11.8328 −0.467368 −0.233684 0.972313i \(-0.575078\pi\)
−0.233684 + 0.972313i \(0.575078\pi\)
\(642\) 9.70820 0.383152
\(643\) −35.9230 −1.41666 −0.708332 0.705879i \(-0.750552\pi\)
−0.708332 + 0.705879i \(0.750552\pi\)
\(644\) 1.85410 0.0730619
\(645\) 3.23607 0.127420
\(646\) 19.4164 0.763928
\(647\) −38.5623 −1.51604 −0.758020 0.652231i \(-0.773833\pi\)
−0.758020 + 0.652231i \(0.773833\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 18.0000 0.706562
\(650\) 4.23607 0.166152
\(651\) 0 0
\(652\) 0.236068 0.00924514
\(653\) 33.2705 1.30198 0.650988 0.759088i \(-0.274355\pi\)
0.650988 + 0.759088i \(0.274355\pi\)
\(654\) −17.0902 −0.668279
\(655\) −4.85410 −0.189665
\(656\) 4.14590 0.161870
\(657\) 20.3607 0.794346
\(658\) 2.12461 0.0828260
\(659\) −27.0000 −1.05177 −0.525885 0.850555i \(-0.676266\pi\)
−0.525885 + 0.850555i \(0.676266\pi\)
\(660\) 3.00000 0.116775
\(661\) −8.76393 −0.340877 −0.170439 0.985368i \(-0.554518\pi\)
−0.170439 + 0.985368i \(0.554518\pi\)
\(662\) 15.5623 0.604846
\(663\) 33.2705 1.29212
\(664\) 12.7082 0.493174
\(665\) 0.583592 0.0226307
\(666\) 19.8885 0.770665
\(667\) −23.5623 −0.912336
\(668\) 13.4164 0.519096
\(669\) −9.79837 −0.378827
\(670\) 9.79837 0.378544
\(671\) 1.85410 0.0715768
\(672\) −0.236068 −0.00910652
\(673\) 22.2148 0.856317 0.428158 0.903704i \(-0.359163\pi\)
0.428158 + 0.903704i \(0.359163\pi\)
\(674\) −12.8885 −0.496448
\(675\) −5.00000 −0.192450
\(676\) 4.94427 0.190164
\(677\) −20.5623 −0.790274 −0.395137 0.918622i \(-0.629303\pi\)
−0.395137 + 0.918622i \(0.629303\pi\)
\(678\) −12.7082 −0.488056
\(679\) −0.291796 −0.0111981
\(680\) 7.85410 0.301191
\(681\) 4.14590 0.158871
\(682\) 0 0
\(683\) −33.5410 −1.28341 −0.641706 0.766951i \(-0.721773\pi\)
−0.641706 + 0.766951i \(0.721773\pi\)
\(684\) −4.94427 −0.189049
\(685\) −15.0000 −0.573121
\(686\) 3.29180 0.125681
\(687\) 15.6180 0.595865
\(688\) 3.23607 0.123374
\(689\) −56.8328 −2.16516
\(690\) −7.85410 −0.299001
\(691\) −23.2148 −0.883132 −0.441566 0.897229i \(-0.645577\pi\)
−0.441566 + 0.897229i \(0.645577\pi\)
\(692\) 9.00000 0.342129
\(693\) −1.41641 −0.0538049
\(694\) −12.2705 −0.465782
\(695\) −2.76393 −0.104842
\(696\) 3.00000 0.113715
\(697\) −32.5623 −1.23339
\(698\) −5.52786 −0.209233
\(699\) −17.5623 −0.664267
\(700\) 0.236068 0.00892253
\(701\) 29.8328 1.12677 0.563385 0.826195i \(-0.309499\pi\)
0.563385 + 0.826195i \(0.309499\pi\)
\(702\) −21.1803 −0.799400
\(703\) 24.5836 0.927188
\(704\) 3.00000 0.113067
\(705\) −9.00000 −0.338960
\(706\) −10.4164 −0.392027
\(707\) −1.58359 −0.0595571
\(708\) 6.00000 0.225494
\(709\) 2.43769 0.0915495 0.0457748 0.998952i \(-0.485424\pi\)
0.0457748 + 0.998952i \(0.485424\pi\)
\(710\) −4.85410 −0.182171
\(711\) −13.2361 −0.496391
\(712\) −12.0000 −0.449719
\(713\) 0 0
\(714\) 1.85410 0.0693880
\(715\) −12.7082 −0.475260
\(716\) 24.0000 0.896922
\(717\) 18.9787 0.708773
\(718\) 33.2705 1.24164
\(719\) 32.5623 1.21437 0.607185 0.794561i \(-0.292299\pi\)
0.607185 + 0.794561i \(0.292299\pi\)
\(720\) −2.00000 −0.0745356
\(721\) 3.59675 0.133950
\(722\) 12.8885 0.479662
\(723\) −12.1246 −0.450919
\(724\) 2.09017 0.0776806
\(725\) −3.00000 −0.111417
\(726\) 2.00000 0.0742270
\(727\) 1.12461 0.0417095 0.0208548 0.999783i \(-0.493361\pi\)
0.0208548 + 0.999783i \(0.493361\pi\)
\(728\) 1.00000 0.0370625
\(729\) 13.0000 0.481481
\(730\) 10.1803 0.376791
\(731\) −25.4164 −0.940060
\(732\) 0.618034 0.0228432
\(733\) −53.2492 −1.96680 −0.983402 0.181438i \(-0.941925\pi\)
−0.983402 + 0.181438i \(0.941925\pi\)
\(734\) 28.0000 1.03350
\(735\) −6.94427 −0.256143
\(736\) −7.85410 −0.289506
\(737\) −29.3951 −1.08278
\(738\) 8.29180 0.305225
\(739\) 51.1803 1.88270 0.941350 0.337433i \(-0.109559\pi\)
0.941350 + 0.337433i \(0.109559\pi\)
\(740\) 9.94427 0.365559
\(741\) −10.4721 −0.384704
\(742\) −3.16718 −0.116271
\(743\) 36.9787 1.35662 0.678309 0.734777i \(-0.262713\pi\)
0.678309 + 0.734777i \(0.262713\pi\)
\(744\) 0 0
\(745\) 1.85410 0.0679290
\(746\) 17.6525 0.646303
\(747\) 25.4164 0.929938
\(748\) −23.5623 −0.861523
\(749\) −2.29180 −0.0837404
\(750\) −1.00000 −0.0365148
\(751\) −4.00000 −0.145962 −0.0729810 0.997333i \(-0.523251\pi\)
−0.0729810 + 0.997333i \(0.523251\pi\)
\(752\) −9.00000 −0.328196
\(753\) 25.8541 0.942176
\(754\) −12.7082 −0.462805
\(755\) 15.9443 0.580271
\(756\) −1.18034 −0.0429285
\(757\) −17.6525 −0.641590 −0.320795 0.947149i \(-0.603950\pi\)
−0.320795 + 0.947149i \(0.603950\pi\)
\(758\) 7.50658 0.272651
\(759\) 23.5623 0.855258
\(760\) −2.47214 −0.0896738
\(761\) 4.85410 0.175961 0.0879805 0.996122i \(-0.471959\pi\)
0.0879805 + 0.996122i \(0.471959\pi\)
\(762\) −4.05573 −0.146924
\(763\) 4.03444 0.146057
\(764\) −6.43769 −0.232908
\(765\) 15.7082 0.567931
\(766\) −9.00000 −0.325183
\(767\) −25.4164 −0.917733
\(768\) 1.00000 0.0360844
\(769\) 22.8197 0.822898 0.411449 0.911433i \(-0.365023\pi\)
0.411449 + 0.911433i \(0.365023\pi\)
\(770\) −0.708204 −0.0255219
\(771\) 5.29180 0.190579
\(772\) 8.03444 0.289166
\(773\) 4.85410 0.174590 0.0872950 0.996183i \(-0.472178\pi\)
0.0872950 + 0.996183i \(0.472178\pi\)
\(774\) 6.47214 0.232636
\(775\) 0 0
\(776\) 1.23607 0.0443723
\(777\) 2.34752 0.0842170
\(778\) −11.2918 −0.404831
\(779\) 10.2492 0.367217
\(780\) −4.23607 −0.151676
\(781\) 14.5623 0.521080
\(782\) 61.6869 2.20592
\(783\) 15.0000 0.536056
\(784\) −6.94427 −0.248010
\(785\) 20.0344 0.715060
\(786\) 4.85410 0.173140
\(787\) 30.6869 1.09387 0.546935 0.837175i \(-0.315794\pi\)
0.546935 + 0.837175i \(0.315794\pi\)
\(788\) 12.7082 0.452711
\(789\) −8.56231 −0.304826
\(790\) −6.61803 −0.235459
\(791\) 3.00000 0.106668
\(792\) 6.00000 0.213201
\(793\) −2.61803 −0.0929691
\(794\) −11.9098 −0.422664
\(795\) 13.4164 0.475831
\(796\) −10.8885 −0.385934
\(797\) −8.83282 −0.312874 −0.156437 0.987688i \(-0.550001\pi\)
−0.156437 + 0.987688i \(0.550001\pi\)
\(798\) −0.583592 −0.0206589
\(799\) 70.6869 2.50072
\(800\) −1.00000 −0.0353553
\(801\) −24.0000 −0.847998
\(802\) −30.0000 −1.05934
\(803\) −30.5410 −1.07777
\(804\) −9.79837 −0.345562
\(805\) 1.85410 0.0653485
\(806\) 0 0
\(807\) 1.14590 0.0403375
\(808\) 6.70820 0.235994
\(809\) 22.1459 0.778608 0.389304 0.921109i \(-0.372716\pi\)
0.389304 + 0.921109i \(0.372716\pi\)
\(810\) −1.00000 −0.0351364
\(811\) 47.0000 1.65039 0.825197 0.564846i \(-0.191064\pi\)
0.825197 + 0.564846i \(0.191064\pi\)
\(812\) −0.708204 −0.0248531
\(813\) 15.9443 0.559190
\(814\) −29.8328 −1.04564
\(815\) 0.236068 0.00826910
\(816\) −7.85410 −0.274949
\(817\) 8.00000 0.279885
\(818\) −19.5623 −0.683980
\(819\) 2.00000 0.0698857
\(820\) 4.14590 0.144781
\(821\) −18.2705 −0.637645 −0.318823 0.947814i \(-0.603287\pi\)
−0.318823 + 0.947814i \(0.603287\pi\)
\(822\) 15.0000 0.523185
\(823\) 10.3820 0.361893 0.180946 0.983493i \(-0.442084\pi\)
0.180946 + 0.983493i \(0.442084\pi\)
\(824\) −15.2361 −0.530774
\(825\) 3.00000 0.104447
\(826\) −1.41641 −0.0492831
\(827\) 18.4377 0.641141 0.320571 0.947225i \(-0.396125\pi\)
0.320571 + 0.947225i \(0.396125\pi\)
\(828\) −15.7082 −0.545898
\(829\) 31.7639 1.10321 0.551603 0.834106i \(-0.314016\pi\)
0.551603 + 0.834106i \(0.314016\pi\)
\(830\) 12.7082 0.441108
\(831\) −15.5623 −0.539850
\(832\) −4.23607 −0.146859
\(833\) 54.5410 1.88973
\(834\) 2.76393 0.0957071
\(835\) 13.4164 0.464294
\(836\) 7.41641 0.256502
\(837\) 0 0
\(838\) 15.7082 0.542631
\(839\) 8.12461 0.280493 0.140246 0.990117i \(-0.455211\pi\)
0.140246 + 0.990117i \(0.455211\pi\)
\(840\) −0.236068 −0.00814512
\(841\) −20.0000 −0.689655
\(842\) −14.5279 −0.500663
\(843\) 7.85410 0.270510
\(844\) 5.09017 0.175211
\(845\) 4.94427 0.170088
\(846\) −18.0000 −0.618853
\(847\) −0.472136 −0.0162228
\(848\) 13.4164 0.460721
\(849\) −7.18034 −0.246429
\(850\) 7.85410 0.269393
\(851\) 78.1033 2.67735
\(852\) 4.85410 0.166299
\(853\) −55.0000 −1.88316 −0.941582 0.336784i \(-0.890661\pi\)
−0.941582 + 0.336784i \(0.890661\pi\)
\(854\) −0.145898 −0.00499253
\(855\) −4.94427 −0.169091
\(856\) 9.70820 0.331820
\(857\) −2.12461 −0.0725754 −0.0362877 0.999341i \(-0.511553\pi\)
−0.0362877 + 0.999341i \(0.511553\pi\)
\(858\) 12.7082 0.433851
\(859\) −52.0132 −1.77467 −0.887333 0.461129i \(-0.847444\pi\)
−0.887333 + 0.461129i \(0.847444\pi\)
\(860\) 3.23607 0.110349
\(861\) 0.978714 0.0333545
\(862\) −31.1459 −1.06083
\(863\) −42.1033 −1.43321 −0.716607 0.697477i \(-0.754306\pi\)
−0.716607 + 0.697477i \(0.754306\pi\)
\(864\) 5.00000 0.170103
\(865\) 9.00000 0.306009
\(866\) −1.11146 −0.0377688
\(867\) 44.6869 1.51765
\(868\) 0 0
\(869\) 19.8541 0.673504
\(870\) 3.00000 0.101710
\(871\) 41.5066 1.40640
\(872\) −17.0902 −0.578746
\(873\) 2.47214 0.0836691
\(874\) −19.4164 −0.656770
\(875\) 0.236068 0.00798055
\(876\) −10.1803 −0.343962
\(877\) −13.0000 −0.438979 −0.219489 0.975615i \(-0.570439\pi\)
−0.219489 + 0.975615i \(0.570439\pi\)
\(878\) 19.6180 0.662077
\(879\) 0.708204 0.0238871
\(880\) 3.00000 0.101130
\(881\) 51.5410 1.73646 0.868231 0.496161i \(-0.165257\pi\)
0.868231 + 0.496161i \(0.165257\pi\)
\(882\) −13.8885 −0.467652
\(883\) −27.4721 −0.924511 −0.462255 0.886747i \(-0.652960\pi\)
−0.462255 + 0.886747i \(0.652960\pi\)
\(884\) 33.2705 1.11901
\(885\) 6.00000 0.201688
\(886\) 15.2705 0.513023
\(887\) 12.9787 0.435783 0.217891 0.975973i \(-0.430082\pi\)
0.217891 + 0.975973i \(0.430082\pi\)
\(888\) −9.94427 −0.333708
\(889\) 0.957428 0.0321111
\(890\) −12.0000 −0.402241
\(891\) 3.00000 0.100504
\(892\) −9.79837 −0.328074
\(893\) −22.2492 −0.744542
\(894\) −1.85410 −0.0620104
\(895\) 24.0000 0.802232
\(896\) −0.236068 −0.00788648
\(897\) −33.2705 −1.11087
\(898\) −34.8541 −1.16310
\(899\) 0 0
\(900\) −2.00000 −0.0666667
\(901\) −105.374 −3.51051
\(902\) −12.4377 −0.414130
\(903\) 0.763932 0.0254221
\(904\) −12.7082 −0.422669
\(905\) 2.09017 0.0694796
\(906\) −15.9443 −0.529713
\(907\) −43.9443 −1.45915 −0.729573 0.683903i \(-0.760281\pi\)
−0.729573 + 0.683903i \(0.760281\pi\)
\(908\) 4.14590 0.137586
\(909\) 13.4164 0.444994
\(910\) 1.00000 0.0331497
\(911\) 43.4164 1.43845 0.719225 0.694777i \(-0.244497\pi\)
0.719225 + 0.694777i \(0.244497\pi\)
\(912\) 2.47214 0.0818606
\(913\) −38.1246 −1.26174
\(914\) −4.56231 −0.150908
\(915\) 0.618034 0.0204316
\(916\) 15.6180 0.516034
\(917\) −1.14590 −0.0378409
\(918\) −39.2705 −1.29612
\(919\) 19.5967 0.646437 0.323219 0.946324i \(-0.395235\pi\)
0.323219 + 0.946324i \(0.395235\pi\)
\(920\) −7.85410 −0.258942
\(921\) −2.65248 −0.0874021
\(922\) −11.8328 −0.389693
\(923\) −20.5623 −0.676817
\(924\) 0.708204 0.0232982
\(925\) 9.94427 0.326966
\(926\) 0.527864 0.0173467
\(927\) −30.4721 −1.00084
\(928\) 3.00000 0.0984798
\(929\) 5.56231 0.182493 0.0912467 0.995828i \(-0.470915\pi\)
0.0912467 + 0.995828i \(0.470915\pi\)
\(930\) 0 0
\(931\) −17.1672 −0.562632
\(932\) −17.5623 −0.575272
\(933\) 15.7082 0.514264
\(934\) 25.8541 0.845972
\(935\) −23.5623 −0.770570
\(936\) −8.47214 −0.276920
\(937\) −38.7639 −1.26636 −0.633181 0.774004i \(-0.718251\pi\)
−0.633181 + 0.774004i \(0.718251\pi\)
\(938\) 2.31308 0.0755248
\(939\) 29.7984 0.972433
\(940\) −9.00000 −0.293548
\(941\) −8.72949 −0.284573 −0.142287 0.989825i \(-0.545445\pi\)
−0.142287 + 0.989825i \(0.545445\pi\)
\(942\) −20.0344 −0.652757
\(943\) 32.5623 1.06037
\(944\) 6.00000 0.195283
\(945\) −1.18034 −0.0383965
\(946\) −9.70820 −0.315641
\(947\) 18.0000 0.584921 0.292461 0.956278i \(-0.405526\pi\)
0.292461 + 0.956278i \(0.405526\pi\)
\(948\) 6.61803 0.214944
\(949\) 43.1246 1.39988
\(950\) −2.47214 −0.0802067
\(951\) 7.41641 0.240494
\(952\) 1.85410 0.0600918
\(953\) 18.7082 0.606018 0.303009 0.952988i \(-0.402009\pi\)
0.303009 + 0.952988i \(0.402009\pi\)
\(954\) 26.8328 0.868744
\(955\) −6.43769 −0.208319
\(956\) 18.9787 0.613815
\(957\) −9.00000 −0.290929
\(958\) 27.9787 0.903951
\(959\) −3.54102 −0.114345
\(960\) 1.00000 0.0322749
\(961\) 0 0
\(962\) 42.1246 1.35815
\(963\) 19.4164 0.625685
\(964\) −12.1246 −0.390507
\(965\) 8.03444 0.258638
\(966\) −1.85410 −0.0596548
\(967\) −4.88854 −0.157205 −0.0786025 0.996906i \(-0.525046\pi\)
−0.0786025 + 0.996906i \(0.525046\pi\)
\(968\) 2.00000 0.0642824
\(969\) −19.4164 −0.623745
\(970\) 1.23607 0.0396878
\(971\) −20.8328 −0.668557 −0.334278 0.942474i \(-0.608493\pi\)
−0.334278 + 0.942474i \(0.608493\pi\)
\(972\) 16.0000 0.513200
\(973\) −0.652476 −0.0209174
\(974\) −14.7984 −0.474170
\(975\) −4.23607 −0.135663
\(976\) 0.618034 0.0197828
\(977\) −50.8328 −1.62629 −0.813143 0.582064i \(-0.802245\pi\)
−0.813143 + 0.582064i \(0.802245\pi\)
\(978\) −0.236068 −0.00754862
\(979\) 36.0000 1.15056
\(980\) −6.94427 −0.221827
\(981\) −34.1803 −1.09129
\(982\) 22.4164 0.715336
\(983\) 12.8754 0.410661 0.205331 0.978693i \(-0.434173\pi\)
0.205331 + 0.978693i \(0.434173\pi\)
\(984\) −4.14590 −0.132166
\(985\) 12.7082 0.404917
\(986\) −23.5623 −0.750377
\(987\) −2.12461 −0.0676271
\(988\) −10.4721 −0.333163
\(989\) 25.4164 0.808195
\(990\) 6.00000 0.190693
\(991\) 9.34752 0.296934 0.148467 0.988917i \(-0.452566\pi\)
0.148467 + 0.988917i \(0.452566\pi\)
\(992\) 0 0
\(993\) −15.5623 −0.493855
\(994\) −1.14590 −0.0363457
\(995\) −10.8885 −0.345190
\(996\) −12.7082 −0.402675
\(997\) −35.5967 −1.12736 −0.563680 0.825993i \(-0.690615\pi\)
−0.563680 + 0.825993i \(0.690615\pi\)
\(998\) −2.03444 −0.0643991
\(999\) −49.7214 −1.57311
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9610.2.a.k.1.2 2
31.4 even 5 310.2.h.a.171.1 4
31.8 even 5 310.2.h.a.281.1 yes 4
31.30 odd 2 9610.2.a.c.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
310.2.h.a.171.1 4 31.4 even 5
310.2.h.a.281.1 yes 4 31.8 even 5
9610.2.a.c.1.2 2 31.30 odd 2
9610.2.a.k.1.2 2 1.1 even 1 trivial