Properties

Label 968.2.k.a.403.1
Level $968$
Weight $2$
Character 968.403
Analytic conductor $7.730$
Analytic rank $0$
Dimension $8$
CM discriminant -8
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [968,2,Mod(403,968)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(968, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 5, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("968.403");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 968 = 2^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 968.k (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.72951891566\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: 8.0.64000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{6} + 4x^{4} - 8x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{U}(1)[D_{10}]$

Embedding invariants

Embedding label 403.1
Root \(-1.34500 - 0.437016i\) of defining polynomial
Character \(\chi\) \(=\) 968.403
Dual form 968.2.k.a.723.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.831254 + 1.14412i) q^{2} +(0.618034 - 1.90211i) q^{3} +(-0.618034 - 1.90211i) q^{4} +(1.66251 + 2.28825i) q^{6} +(2.68999 + 0.874032i) q^{8} +(-0.809017 - 0.587785i) q^{9} -4.00000 q^{12} +(-3.23607 + 2.35114i) q^{16} +(3.32502 + 4.57649i) q^{17} +(1.34500 - 0.437016i) q^{18} +(8.06998 + 2.62210i) q^{19} +(3.32502 - 4.57649i) q^{24} +(1.54508 - 4.75528i) q^{25} +(3.23607 - 2.35114i) q^{27} -5.65685i q^{32} -8.00000 q^{34} +(-0.618034 + 1.90211i) q^{36} +(-9.70820 + 7.05342i) q^{38} +(-10.7600 - 3.49613i) q^{41} -8.48528i q^{43} +(2.47214 + 7.60845i) q^{48} +(5.66312 - 4.11450i) q^{49} +(4.15627 + 5.72061i) q^{50} +(10.7600 - 3.49613i) q^{51} +5.65685i q^{54} +(9.97505 - 13.7295i) q^{57} +(-1.85410 - 5.70634i) q^{59} +(6.47214 + 4.70228i) q^{64} +14.0000 q^{67} +(6.65003 - 9.15298i) q^{68} +(-1.66251 - 2.28825i) q^{72} +(-16.1400 + 5.24419i) q^{73} +(-8.09017 - 5.87785i) q^{75} -16.9706i q^{76} +(-3.39919 - 10.4616i) q^{81} +(12.9443 - 9.40456i) q^{82} +(1.66251 + 2.28825i) q^{83} +(9.70820 + 7.05342i) q^{86} +18.0000 q^{89} +(-10.7600 - 3.49613i) q^{96} +(-8.09017 - 5.87785i) q^{97} +9.89949i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} + 4 q^{4} - 2 q^{9} - 32 q^{12} - 8 q^{16} - 10 q^{25} + 8 q^{27} - 64 q^{34} + 4 q^{36} - 24 q^{38} - 16 q^{48} + 14 q^{49} + 12 q^{59} + 16 q^{64} + 112 q^{67} - 20 q^{75} + 22 q^{81} + 32 q^{82}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/968\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(849\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.831254 + 1.14412i −0.587785 + 0.809017i
\(3\) 0.618034 1.90211i 0.356822 1.09819i −0.598123 0.801404i \(-0.704087\pi\)
0.954945 0.296781i \(-0.0959133\pi\)
\(4\) −0.618034 1.90211i −0.309017 0.951057i
\(5\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(6\) 1.66251 + 2.28825i 0.678716 + 0.934172i
\(7\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(8\) 2.68999 + 0.874032i 0.951057 + 0.309017i
\(9\) −0.809017 0.587785i −0.269672 0.195928i
\(10\) 0 0
\(11\) 0 0
\(12\) −4.00000 −1.15470
\(13\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −3.23607 + 2.35114i −0.809017 + 0.587785i
\(17\) 3.32502 + 4.57649i 0.806435 + 1.10996i 0.991864 + 0.127304i \(0.0406325\pi\)
−0.185429 + 0.982658i \(0.559367\pi\)
\(18\) 1.34500 0.437016i 0.317019 0.103006i
\(19\) 8.06998 + 2.62210i 1.85138 + 0.601550i 0.996584 + 0.0825877i \(0.0263185\pi\)
0.854797 + 0.518962i \(0.173682\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 3.32502 4.57649i 0.678716 0.934172i
\(25\) 1.54508 4.75528i 0.309017 0.951057i
\(26\) 0 0
\(27\) 3.23607 2.35114i 0.622782 0.452477i
\(28\) 0 0
\(29\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(30\) 0 0
\(31\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(32\) 5.65685i 1.00000i
\(33\) 0 0
\(34\) −8.00000 −1.37199
\(35\) 0 0
\(36\) −0.618034 + 1.90211i −0.103006 + 0.317019i
\(37\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(38\) −9.70820 + 7.05342i −1.57488 + 1.14422i
\(39\) 0 0
\(40\) 0 0
\(41\) −10.7600 3.49613i −1.68043 0.546003i −0.695432 0.718592i \(-0.744787\pi\)
−0.984994 + 0.172588i \(0.944787\pi\)
\(42\) 0 0
\(43\) 8.48528i 1.29399i −0.762493 0.646997i \(-0.776025\pi\)
0.762493 0.646997i \(-0.223975\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(48\) 2.47214 + 7.60845i 0.356822 + 1.09819i
\(49\) 5.66312 4.11450i 0.809017 0.587785i
\(50\) 4.15627 + 5.72061i 0.587785 + 0.809017i
\(51\) 10.7600 3.49613i 1.50670 0.489556i
\(52\) 0 0
\(53\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(54\) 5.65685i 0.769800i
\(55\) 0 0
\(56\) 0 0
\(57\) 9.97505 13.7295i 1.32123 1.81851i
\(58\) 0 0
\(59\) −1.85410 5.70634i −0.241384 0.742902i −0.996210 0.0869778i \(-0.972279\pi\)
0.754827 0.655924i \(-0.227721\pi\)
\(60\) 0 0
\(61\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 6.47214 + 4.70228i 0.809017 + 0.587785i
\(65\) 0 0
\(66\) 0 0
\(67\) 14.0000 1.71037 0.855186 0.518321i \(-0.173443\pi\)
0.855186 + 0.518321i \(0.173443\pi\)
\(68\) 6.65003 9.15298i 0.806435 1.10996i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(72\) −1.66251 2.28825i −0.195928 0.269672i
\(73\) −16.1400 + 5.24419i −1.88904 + 0.613786i −0.908352 + 0.418206i \(0.862659\pi\)
−0.980688 + 0.195580i \(0.937341\pi\)
\(74\) 0 0
\(75\) −8.09017 5.87785i −0.934172 0.678716i
\(76\) 16.9706i 1.94666i
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(80\) 0 0
\(81\) −3.39919 10.4616i −0.377687 1.16240i
\(82\) 12.9443 9.40456i 1.42946 1.03856i
\(83\) 1.66251 + 2.28825i 0.182484 + 0.251168i 0.890452 0.455077i \(-0.150388\pi\)
−0.707968 + 0.706244i \(0.750388\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 9.70820 + 7.05342i 1.04686 + 0.760590i
\(87\) 0 0
\(88\) 0 0
\(89\) 18.0000 1.90800 0.953998 0.299813i \(-0.0969242\pi\)
0.953998 + 0.299813i \(0.0969242\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) −10.7600 3.49613i −1.09819 0.356822i
\(97\) −8.09017 5.87785i −0.821432 0.596806i 0.0956901 0.995411i \(-0.469494\pi\)
−0.917122 + 0.398606i \(0.869494\pi\)
\(98\) 9.89949i 1.00000i
\(99\) 0 0
\(100\) −10.0000 −1.00000
\(101\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(102\) −4.94427 + 15.2169i −0.489556 + 1.50670i
\(103\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 18.8300 + 6.11822i 1.82036 + 0.591471i 0.999802 + 0.0199092i \(0.00633772\pi\)
0.820559 + 0.571562i \(0.193662\pi\)
\(108\) −6.47214 4.70228i −0.622782 0.452477i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −5.56231 + 17.1190i −0.523258 + 1.61042i 0.244478 + 0.969655i \(0.421383\pi\)
−0.767736 + 0.640767i \(0.778617\pi\)
\(114\) 7.41641 + 22.8254i 0.694610 + 2.13779i
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 8.06998 + 2.62210i 0.742902 + 0.241384i
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −13.3001 + 18.3060i −1.19923 + 1.65059i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(128\) −10.7600 + 3.49613i −0.951057 + 0.309017i
\(129\) −16.1400 5.24419i −1.42104 0.461725i
\(130\) 0 0
\(131\) 14.1421i 1.23560i 0.786334 + 0.617802i \(0.211977\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −11.6376 + 16.0177i −1.00533 + 1.38372i
\(135\) 0 0
\(136\) 4.94427 + 15.2169i 0.423968 + 1.30484i
\(137\) −4.85410 + 3.52671i −0.414714 + 0.301307i −0.775507 0.631338i \(-0.782506\pi\)
0.360794 + 0.932646i \(0.382506\pi\)
\(138\) 0 0
\(139\) 8.06998 2.62210i 0.684487 0.222403i 0.0539282 0.998545i \(-0.482826\pi\)
0.630559 + 0.776142i \(0.282826\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 4.00000 0.333333
\(145\) 0 0
\(146\) 7.41641 22.8254i 0.613786 1.88904i
\(147\) −4.32624 13.3148i −0.356822 1.09819i
\(148\) 0 0
\(149\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(150\) 13.4500 4.37016i 1.09819 0.356822i
\(151\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(152\) 19.4164 + 14.1068i 1.57488 + 1.14422i
\(153\) 5.65685i 0.457330i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 14.7950 + 4.80718i 1.16240 + 0.377687i
\(163\) 1.61803 + 1.17557i 0.126734 + 0.0920778i 0.649347 0.760493i \(-0.275042\pi\)
−0.522612 + 0.852570i \(0.675042\pi\)
\(164\) 22.6274i 1.76690i
\(165\) 0 0
\(166\) −4.00000 −0.310460
\(167\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(168\) 0 0
\(169\) −4.01722 12.3637i −0.309017 0.951057i
\(170\) 0 0
\(171\) −4.98752 6.86474i −0.381405 0.524960i
\(172\) −16.1400 + 5.24419i −1.23066 + 0.399866i
\(173\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −12.0000 −0.901975
\(178\) −14.9626 + 20.5942i −1.12149 + 1.54360i
\(179\) −5.56231 + 17.1190i −0.415746 + 1.27954i 0.495835 + 0.868416i \(0.334862\pi\)
−0.911582 + 0.411119i \(0.865138\pi\)
\(180\) 0 0
\(181\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(192\) 12.9443 9.40456i 0.934172 0.678716i
\(193\) −9.97505 13.7295i −0.718020 0.988269i −0.999587 0.0287278i \(-0.990854\pi\)
0.281568 0.959541i \(-0.409146\pi\)
\(194\) 13.4500 4.37016i 0.965652 0.313759i
\(195\) 0 0
\(196\) −11.3262 8.22899i −0.809017 0.587785i
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 8.31254 11.4412i 0.587785 0.809017i
\(201\) 8.65248 26.6296i 0.610299 1.87831i
\(202\) 0 0
\(203\) 0 0
\(204\) −13.3001 18.3060i −0.931191 1.28167i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −14.9626 + 20.5942i −1.03007 + 1.41776i −0.125168 + 0.992136i \(0.539947\pi\)
−0.904898 + 0.425628i \(0.860053\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −22.6525 + 16.4580i −1.54849 + 1.12504i
\(215\) 0 0
\(216\) 10.7600 3.49613i 0.732124 0.237881i
\(217\) 0 0
\(218\) 0 0
\(219\) 33.9411i 2.29353i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(224\) 0 0
\(225\) −4.04508 + 2.93893i −0.269672 + 0.195928i
\(226\) −14.9626 20.5942i −0.995295 1.36991i
\(227\) −2.68999 + 0.874032i −0.178541 + 0.0580115i −0.396923 0.917852i \(-0.629922\pi\)
0.218382 + 0.975863i \(0.429922\pi\)
\(228\) −32.2799 10.4884i −2.13779 0.694610i
\(229\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.32502 4.57649i 0.217829 0.299816i −0.686092 0.727514i \(-0.740675\pi\)
0.903921 + 0.427698i \(0.140675\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −9.70820 + 7.05342i −0.631950 + 0.459139i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(240\) 0 0
\(241\) 16.9706i 1.09317i −0.837404 0.546585i \(-0.815928\pi\)
0.837404 0.546585i \(-0.184072\pi\)
\(242\) 0 0
\(243\) −10.0000 −0.641500
\(244\) 0 0
\(245\) 0 0
\(246\) −9.88854 30.4338i −0.630471 1.94039i
\(247\) 0 0
\(248\) 0 0
\(249\) 5.37999 1.74806i 0.340943 0.110779i
\(250\) 0 0
\(251\) −4.85410 3.52671i −0.306388 0.222604i 0.423957 0.905682i \(-0.360641\pi\)
−0.730345 + 0.683078i \(0.760641\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 4.94427 15.2169i 0.309017 0.951057i
\(257\) 9.27051 + 28.5317i 0.578279 + 1.77976i 0.624734 + 0.780838i \(0.285208\pi\)
−0.0464552 + 0.998920i \(0.514792\pi\)
\(258\) 19.4164 14.1068i 1.20881 0.878254i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −16.1803 11.7557i −0.999625 0.726270i
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 11.1246 34.2380i 0.680815 2.09533i
\(268\) −8.65248 26.6296i −0.528534 1.62666i
\(269\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(270\) 0 0
\(271\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(272\) −21.5200 6.99226i −1.30484 0.423968i
\(273\) 0 0
\(274\) 8.48528i 0.512615i
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(278\) −3.70820 + 11.4127i −0.222403 + 0.684487i
\(279\) 0 0
\(280\) 0 0
\(281\) −16.6251 22.8825i −0.991769 1.36505i −0.930242 0.366947i \(-0.880403\pi\)
−0.0615273 0.998105i \(-0.519597\pi\)
\(282\) 0 0
\(283\) −24.2099 7.86629i −1.43913 0.467602i −0.517505 0.855680i \(-0.673139\pi\)
−0.921627 + 0.388078i \(0.873139\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −3.32502 + 4.57649i −0.195928 + 0.269672i
\(289\) −4.63525 + 14.2658i −0.272662 + 0.839168i
\(290\) 0 0
\(291\) −16.1803 + 11.7557i −0.948508 + 0.689132i
\(292\) 19.9501 + 27.4589i 1.16749 + 1.60691i
\(293\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(294\) 18.8300 + 6.11822i 1.09819 + 0.356822i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) −6.18034 + 19.0211i −0.356822 + 1.09819i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −32.2799 + 10.4884i −1.85138 + 0.601550i
\(305\) 0 0
\(306\) 6.47214 + 4.70228i 0.369987 + 0.268812i
\(307\) 8.48528i 0.484281i −0.970241 0.242140i \(-0.922151\pi\)
0.970241 0.242140i \(-0.0778494\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(312\) 0 0
\(313\) 8.09017 5.87785i 0.457283 0.332236i −0.335181 0.942154i \(-0.608798\pi\)
0.792465 + 0.609918i \(0.208798\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 23.2751 32.0354i 1.29909 1.78804i
\(322\) 0 0
\(323\) 14.8328 + 45.6507i 0.825320 + 2.54007i
\(324\) −17.7984 + 12.9313i −0.988799 + 0.718404i
\(325\) 0 0
\(326\) −2.68999 + 0.874032i −0.148985 + 0.0484082i
\(327\) 0 0
\(328\) −25.8885 18.8091i −1.42946 1.03856i
\(329\) 0 0
\(330\) 0 0
\(331\) −26.0000 −1.42909 −0.714545 0.699590i \(-0.753366\pi\)
−0.714545 + 0.699590i \(0.753366\pi\)
\(332\) 3.32502 4.57649i 0.182484 0.251168i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −32.2799 + 10.4884i −1.75840 + 0.571339i −0.997032 0.0769821i \(-0.975472\pi\)
−0.761367 + 0.648321i \(0.775472\pi\)
\(338\) 17.4850 + 5.68121i 0.951057 + 0.309017i
\(339\) 29.1246 + 21.1603i 1.58183 + 1.14927i
\(340\) 0 0
\(341\) 0 0
\(342\) 12.0000 0.648886
\(343\) 0 0
\(344\) 7.41641 22.8254i 0.399866 1.23066i
\(345\) 0 0
\(346\) 0 0
\(347\) 21.6126 + 29.7472i 1.16023 + 1.59691i 0.710404 + 0.703795i \(0.248512\pi\)
0.449822 + 0.893118i \(0.351488\pi\)
\(348\) 0 0
\(349\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −30.0000 −1.59674 −0.798369 0.602168i \(-0.794304\pi\)
−0.798369 + 0.602168i \(0.794304\pi\)
\(354\) 9.97505 13.7295i 0.530168 0.729713i
\(355\) 0 0
\(356\) −11.1246 34.2380i −0.589603 1.81461i
\(357\) 0 0
\(358\) −14.9626 20.5942i −0.790796 1.08844i
\(359\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(360\) 0 0
\(361\) 42.8779 + 31.1526i 2.25673 + 1.63961i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(368\) 0 0
\(369\) 6.65003 + 9.15298i 0.346187 + 0.476485i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 30.7426 22.3358i 1.57914 1.14732i 0.661476 0.749966i \(-0.269930\pi\)
0.917668 0.397349i \(-0.130070\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(384\) 22.6274i 1.15470i
\(385\) 0 0
\(386\) 24.0000 1.22157
\(387\) −4.98752 + 6.86474i −0.253530 + 0.348954i
\(388\) −6.18034 + 19.0211i −0.313759 + 0.965652i
\(389\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 18.8300 6.11822i 0.951057 0.309017i
\(393\) 26.8999 + 8.74032i 1.35692 + 0.440891i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 6.18034 + 19.0211i 0.309017 + 0.951057i
\(401\) −4.85410 + 3.52671i −0.242402 + 0.176116i −0.702353 0.711829i \(-0.747867\pi\)
0.459951 + 0.887945i \(0.347867\pi\)
\(402\) 23.2751 + 32.0354i 1.16086 + 1.59778i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 32.0000 1.58424
\(409\) −19.9501 + 27.4589i −0.986469 + 1.35776i −0.0531978 + 0.998584i \(0.516941\pi\)
−0.933271 + 0.359174i \(0.883059\pi\)
\(410\) 0 0
\(411\) 3.70820 + 11.4127i 0.182912 + 0.562946i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 16.9706i 0.831052i
\(418\) 0 0
\(419\) 18.0000 0.879358 0.439679 0.898155i \(-0.355092\pi\)
0.439679 + 0.898155i \(0.355092\pi\)
\(420\) 0 0
\(421\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(422\) −11.1246 34.2380i −0.541538 1.66668i
\(423\) 0 0
\(424\) 0 0
\(425\) 26.8999 8.74032i 1.30484 0.423968i
\(426\) 0 0
\(427\) 0 0
\(428\) 39.5980i 1.91404i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(432\) −4.94427 + 15.2169i −0.237881 + 0.732124i
\(433\) 11.7426 + 36.1401i 0.564316 + 1.73678i 0.669976 + 0.742382i \(0.266304\pi\)
−0.105661 + 0.994402i \(0.533696\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) −38.8328 28.2137i −1.85550 1.34810i
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −7.00000 −0.333333
\(442\) 0 0
\(443\) −12.9787 + 39.9444i −0.616637 + 1.89781i −0.244416 + 0.969670i \(0.578596\pi\)
−0.372221 + 0.928144i \(0.621404\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −33.9787 24.6870i −1.60355 1.16505i −0.880236 0.474536i \(-0.842616\pi\)
−0.723319 0.690514i \(-0.757384\pi\)
\(450\) 7.07107i 0.333333i
\(451\) 0 0
\(452\) 36.0000 1.69330
\(453\) 0 0
\(454\) 1.23607 3.80423i 0.0580115 0.178541i
\(455\) 0 0
\(456\) 38.8328 28.2137i 1.81851 1.32123i
\(457\) 19.9501 + 27.4589i 0.933226 + 1.28448i 0.958588 + 0.284797i \(0.0919262\pi\)
−0.0253618 + 0.999678i \(0.508074\pi\)
\(458\) 0 0
\(459\) 21.5200 + 6.99226i 1.00447 + 0.326371i
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 2.47214 + 7.60845i 0.114519 + 0.352455i
\(467\) −24.2705 + 17.6336i −1.12311 + 0.815984i −0.984677 0.174389i \(-0.944205\pi\)
−0.138428 + 0.990372i \(0.544205\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 16.9706i 0.781133i
\(473\) 0 0
\(474\) 0 0
\(475\) 24.9376 34.3237i 1.14422 1.57488i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 19.4164 + 14.1068i 0.884393 + 0.642549i
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 8.31254 11.4412i 0.377064 0.518985i
\(487\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(488\) 0 0
\(489\) 3.23607 2.35114i 0.146340 0.106322i
\(490\) 0 0
\(491\) 13.4500 4.37016i 0.606989 0.197223i 0.0106338 0.999943i \(-0.496615\pi\)
0.596355 + 0.802721i \(0.296615\pi\)
\(492\) 43.0399 + 13.9845i 1.94039 + 0.630471i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) −2.47214 + 7.60845i −0.110779 + 0.340943i
\(499\) −4.32624 13.3148i −0.193669 0.596052i −0.999990 0.00457310i \(-0.998544\pi\)
0.806321 0.591479i \(-0.201456\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 8.06998 2.62210i 0.360181 0.117030i
\(503\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −26.0000 −1.15470
\(508\) 0 0
\(509\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 13.3001 + 18.3060i 0.587785 + 0.809017i
\(513\) 32.2799 10.4884i 1.42519 0.463073i
\(514\) −40.3499 13.1105i −1.77976 0.578279i
\(515\) 0 0
\(516\) 33.9411i 1.49417i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1.85410 5.70634i −0.0812297 0.249999i 0.902191 0.431336i \(-0.141958\pi\)
−0.983421 + 0.181337i \(0.941958\pi\)
\(522\) 0 0
\(523\) −14.9626 20.5942i −0.654267 0.900522i 0.345007 0.938600i \(-0.387876\pi\)
−0.999275 + 0.0380781i \(0.987876\pi\)
\(524\) 26.8999 8.74032i 1.17513 0.381823i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) −1.85410 + 5.70634i −0.0804612 + 0.247634i
\(532\) 0 0
\(533\) 0 0
\(534\) 29.9251 + 41.1884i 1.29499 + 1.78240i
\(535\) 0 0
\(536\) 37.6599 + 12.2364i 1.62666 + 0.528534i
\(537\) 29.1246 + 21.1603i 1.25682 + 0.913133i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 25.8885 18.8091i 1.10996 0.806435i
\(545\) 0 0
\(546\) 0 0
\(547\) 8.06998 + 2.62210i 0.345048 + 0.112113i 0.476414 0.879221i \(-0.341936\pi\)
−0.131366 + 0.991334i \(0.541936\pi\)
\(548\) 9.70820 + 7.05342i 0.414714 + 0.301307i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −9.97505 13.7295i −0.423036 0.582259i
\(557\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 40.0000 1.68730
\(563\) 21.6126 29.7472i 0.910863 1.25369i −0.0560088 0.998430i \(-0.517837\pi\)
0.966871 0.255264i \(-0.0821625\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 29.1246 21.1603i 1.22420 0.889432i
\(567\) 0 0
\(568\) 0 0
\(569\) −21.5200 6.99226i −0.902163 0.293131i −0.179034 0.983843i \(-0.557297\pi\)
−0.723130 + 0.690712i \(0.757297\pi\)
\(570\) 0 0
\(571\) 42.4264i 1.77549i −0.460336 0.887745i \(-0.652271\pi\)
0.460336 0.887745i \(-0.347729\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −2.47214 7.60845i −0.103006 0.317019i
\(577\) −27.5066 + 19.9847i −1.14511 + 0.831974i −0.987824 0.155579i \(-0.950276\pi\)
−0.157290 + 0.987552i \(0.550276\pi\)
\(578\) −12.4688 17.1618i −0.518634 0.713839i
\(579\) −32.2799 + 10.4884i −1.34151 + 0.435882i
\(580\) 0 0
\(581\) 0 0
\(582\) 28.2843i 1.17242i
\(583\) 0 0
\(584\) −48.0000 −1.98625
\(585\) 0 0
\(586\) 0 0
\(587\) −1.85410 5.70634i −0.0765270 0.235526i 0.905474 0.424402i \(-0.139516\pi\)
−0.982001 + 0.188876i \(0.939516\pi\)
\(588\) −22.6525 + 16.4580i −0.934172 + 0.678716i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 45.2548i 1.85839i 0.369586 + 0.929197i \(0.379500\pi\)
−0.369586 + 0.929197i \(0.620500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(600\) −16.6251 22.8825i −0.678716 0.934172i
\(601\) −16.1400 + 5.24419i −0.658363 + 0.213915i −0.619098 0.785314i \(-0.712502\pi\)
−0.0392649 + 0.999229i \(0.512502\pi\)
\(602\) 0 0
\(603\) −11.3262 8.22899i −0.461240 0.335111i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(608\) 14.8328 45.6507i 0.601550 1.85138i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −10.7600 + 3.49613i −0.434946 + 0.141323i
\(613\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(614\) 9.70820 + 7.05342i 0.391791 + 0.284653i
\(615\) 0 0
\(616\) 0 0
\(617\) −30.0000 −1.20775 −0.603877 0.797077i \(-0.706378\pi\)
−0.603877 + 0.797077i \(0.706378\pi\)
\(618\) 0 0
\(619\) 8.03444 24.7275i 0.322931 0.993881i −0.649434 0.760418i \(-0.724994\pi\)
0.972366 0.233463i \(-0.0750058\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −20.2254 14.6946i −0.809017 0.587785i
\(626\) 14.1421i 0.565233i
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(632\) 0 0
\(633\) 29.9251 + 41.1884i 1.18942 + 1.63709i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −12.9787 + 39.9444i −0.512628 + 1.57771i 0.274928 + 0.961465i \(0.411346\pi\)
−0.787556 + 0.616243i \(0.788654\pi\)
\(642\) 17.3050 + 53.2592i 0.682972 + 2.10197i
\(643\) −40.4508 + 29.3893i −1.59523 + 1.15900i −0.699269 + 0.714859i \(0.746491\pi\)
−0.895957 + 0.444140i \(0.853509\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −64.5599 20.9768i −2.54007 0.825320i
\(647\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(648\) 31.1127i 1.22222i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 1.23607 3.80423i 0.0484082 0.148985i
\(653\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 43.0399 13.9845i 1.68043 0.546003i
\(657\) 16.1400 + 5.24419i 0.629680 + 0.204595i
\(658\) 0 0
\(659\) 48.0833i 1.87306i −0.350590 0.936529i \(-0.614019\pi\)
0.350590 0.936529i \(-0.385981\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 21.6126 29.7472i 0.839998 1.15616i
\(663\) 0 0
\(664\) 2.47214 + 7.60845i 0.0959375 + 0.295265i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −29.9251 + 41.1884i −1.15353 + 1.58770i −0.420838 + 0.907136i \(0.638264\pi\)
−0.732691 + 0.680561i \(0.761736\pi\)
\(674\) 14.8328 45.6507i 0.571339 1.75840i
\(675\) −6.18034 19.0211i −0.237881 0.732124i
\(676\) −21.0344 + 15.2824i −0.809017 + 0.587785i
\(677\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(678\) −48.4199 + 15.7326i −1.85955 + 0.604206i
\(679\) 0 0
\(680\) 0 0
\(681\) 5.65685i 0.216771i
\(682\) 0 0
\(683\) −42.0000 −1.60709 −0.803543 0.595247i \(-0.797054\pi\)
−0.803543 + 0.595247i \(0.797054\pi\)
\(684\) −9.97505 + 13.7295i −0.381405 + 0.524960i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 19.9501 + 27.4589i 0.760590 + 1.04686i
\(689\) 0 0
\(690\) 0 0
\(691\) 37.2148 + 27.0381i 1.41572 + 1.02858i 0.992460 + 0.122569i \(0.0391133\pi\)
0.423257 + 0.906010i \(0.360887\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −52.0000 −1.97389
\(695\) 0 0
\(696\) 0 0
\(697\) −19.7771 60.8676i −0.749111 2.30553i
\(698\) 0 0
\(699\) −6.65003 9.15298i −0.251527 0.346198i
\(700\) 0 0
\(701\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 24.9376 34.3237i 0.938540 1.29179i
\(707\) 0 0
\(708\) 7.41641 + 22.8254i 0.278726 + 0.857829i
\(709\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 48.4199 + 15.7326i 1.81461 + 0.589603i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 36.0000 1.34538
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −71.2848 + 23.1618i −2.65295 + 0.861995i
\(723\) −32.2799 10.4884i −1.20050 0.390067i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 4.01722 12.3637i 0.148786 0.457916i
\(730\) 0 0
\(731\) 38.8328 28.2137i 1.43628 1.04352i
\(732\) 0 0
\(733\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −16.0000 −0.588968
\(739\) 24.9376 34.3237i 0.917345 1.26262i −0.0472504 0.998883i \(-0.515046\pi\)
0.964595 0.263734i \(-0.0849541\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 2.82843i 0.103487i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(752\) 0 0
\(753\) −9.70820 + 7.05342i −0.353787 + 0.257041i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(758\) 53.7401i 1.95193i
\(759\) 0 0
\(760\) 0 0
\(761\) 6.65003 9.15298i 0.241063 0.331795i −0.671293 0.741192i \(-0.734261\pi\)
0.912356 + 0.409397i \(0.134261\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −25.8885 18.8091i −0.934172 0.678716i
\(769\) 50.9117i 1.83592i 0.396670 + 0.917961i \(0.370166\pi\)
−0.396670 + 0.917961i \(0.629834\pi\)
\(770\) 0 0
\(771\) 60.0000 2.16085
\(772\) −19.9501 + 27.4589i −0.718020 + 0.988269i
\(773\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(774\) −3.70820 11.4127i −0.133289 0.410220i
\(775\) 0 0
\(776\) −16.6251 22.8825i −0.596806 0.821432i
\(777\) 0 0
\(778\) 0 0
\(779\) −77.6656 56.4274i −2.78266 2.02172i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −8.65248 + 26.6296i −0.309017 + 0.951057i
\(785\) 0 0
\(786\) −32.3607 + 23.5114i −1.15427 + 0.838624i
\(787\) −14.9626 20.5942i −0.533358 0.734104i 0.454280 0.890859i \(-0.349897\pi\)
−0.987638 + 0.156755i \(0.949897\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −26.8999 8.74032i −0.951057 0.309017i
\(801\) −14.5623 10.5801i −0.514534 0.373831i
\(802\) 8.48528i 0.299626i
\(803\) 0 0
\(804\) −56.0000 −1.97497
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −33.2502 45.7649i −1.16901 1.60901i −0.669837 0.742508i \(-0.733636\pi\)
−0.499176 0.866501i \(-0.666364\pi\)
\(810\) 0 0
\(811\) −40.3499 13.1105i −1.41688 0.460371i −0.502268 0.864712i \(-0.667501\pi\)
−0.914609 + 0.404340i \(0.867501\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) −26.6001 + 36.6119i −0.931191 + 1.28167i
\(817\) 22.2492 68.4761i 0.778402 2.39567i
\(818\) −14.8328 45.6507i −0.518617 1.59614i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(822\) −16.1400 5.24419i −0.562946 0.182912i
\(823\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −11.6376 + 16.0177i −0.404677 + 0.556991i −0.961910 0.273366i \(-0.911863\pi\)
0.557233 + 0.830356i \(0.311863\pi\)
\(828\) 0 0
\(829\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 37.6599 + 12.2364i 1.30484 + 0.423968i
\(834\) 19.4164 + 14.1068i 0.672335 + 0.488480i
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) −14.9626 + 20.5942i −0.516873 + 0.711415i
\(839\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(840\) 0 0
\(841\) 23.4615 17.0458i 0.809017 0.587785i
\(842\) 0 0
\(843\) −53.7999 + 17.4806i −1.85297 + 0.602065i
\(844\) 48.4199 + 15.7326i 1.66668 + 0.541538i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −29.9251 + 41.1884i −1.02703 + 1.41358i
\(850\) −12.3607 + 38.0423i −0.423968 + 1.30484i
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 45.3050 + 32.9160i 1.54849 + 1.12504i
\(857\) 22.6274i 0.772938i 0.922302 + 0.386469i \(0.126305\pi\)
−0.922302 + 0.386469i \(0.873695\pi\)
\(858\) 0 0
\(859\) 58.0000 1.97893 0.989467 0.144757i \(-0.0462401\pi\)
0.989467 + 0.144757i \(0.0462401\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(864\) −13.3001 18.3060i −0.452477 0.622782i
\(865\) 0 0
\(866\) −51.1099 16.6066i −1.73678 0.564316i
\(867\) 24.2705 + 17.6336i 0.824270 + 0.598867i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 3.09017 + 9.51057i 0.104586 + 0.321884i
\(874\) 0 0
\(875\) 0 0
\(876\) 64.5599 20.9768i 2.18128 0.708739i
\(877\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) 5.81878 8.00886i 0.195928 0.269672i
\(883\) 0.618034 1.90211i 0.0207985 0.0640112i −0.940119 0.340848i \(-0.889286\pi\)
0.960917 + 0.276836i \(0.0892860\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −34.9127 48.0532i −1.17291 1.61438i
\(887\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 56.4899 18.3547i 1.88509 0.612503i
\(899\) 0 0
\(900\) 8.09017 + 5.87785i 0.269672 + 0.195928i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −29.9251 + 41.1884i −0.995295 + 1.36991i
\(905\) 0 0
\(906\) 0 0
\(907\) 8.09017 5.87785i 0.268630 0.195171i −0.445313 0.895375i \(-0.646908\pi\)
0.713943 + 0.700204i \(0.246908\pi\)
\(908\) 3.32502 + 4.57649i 0.110345 + 0.151876i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(912\) 67.8823i 2.24781i
\(913\) 0 0
\(914\) −48.0000 −1.58770
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) −25.8885 + 18.8091i −0.854449 + 0.620794i
\(919\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(920\) 0 0
\(921\) −16.1400 5.24419i −0.531830 0.172802i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 43.6869 31.7404i 1.43332 1.04137i 0.443935 0.896059i \(-0.353582\pi\)
0.989386 0.145310i \(-0.0464179\pi\)
\(930\) 0 0
\(931\) 56.4899 18.3547i 1.85138 0.601550i
\(932\) −10.7600 3.49613i −0.352455 0.114519i
\(933\) 0 0
\(934\) 42.4264i 1.38823i
\(935\) 0 0
\(936\) 0 0
\(937\) −29.9251 + 41.1884i −0.977612 + 1.34557i −0.0395055 + 0.999219i \(0.512578\pi\)
−0.938106 + 0.346348i \(0.887422\pi\)
\(938\) 0 0
\(939\) −6.18034 19.0211i −0.201688 0.620731i
\(940\) 0 0
\(941\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 19.4164 + 14.1068i 0.631950 + 0.459139i
\(945\) 0 0
\(946\) 0 0
\(947\) −30.0000 −0.974869 −0.487435 0.873160i \(-0.662067\pi\)
−0.487435 + 0.873160i \(0.662067\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 18.5410 + 57.0634i 0.601550 + 1.85138i
\(951\) 0 0
\(952\) 0 0
\(953\) 43.0399 13.9845i 1.39420 0.453003i 0.486889 0.873464i \(-0.338132\pi\)
0.907311 + 0.420461i \(0.138132\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 9.57953 + 29.4828i 0.309017 + 0.951057i
\(962\) 0 0
\(963\) −11.6376 16.0177i −0.375015 0.516164i
\(964\) −32.2799 + 10.4884i −1.03967 + 0.337808i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) 96.0000 3.08396
\(970\) 0 0
\(971\) 16.6869 51.3571i 0.535509 1.64813i −0.207039 0.978333i \(-0.566383\pi\)
0.742547 0.669793i \(-0.233617\pi\)
\(972\) 6.18034 + 19.0211i 0.198234 + 0.610103i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −4.85410 3.52671i −0.155296 0.112829i 0.507423 0.861697i \(-0.330598\pi\)
−0.662720 + 0.748867i \(0.730598\pi\)
\(978\) 5.65685i 0.180886i
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) −6.18034 + 19.0211i −0.197223 + 0.606989i
\(983\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(984\) −51.7771 + 37.6183i −1.65059 + 1.19923i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) −16.0689 + 49.4549i −0.509931 + 1.56941i
\(994\) 0 0
\(995\) 0 0
\(996\) −6.65003 9.15298i −0.210714 0.290023i
\(997\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(998\) 18.8300 + 6.11822i 0.596052 + 0.193669i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 968.2.k.a.403.1 8
8.3 odd 2 CM 968.2.k.a.403.1 8
11.2 odd 10 inner 968.2.k.a.699.1 8
11.3 even 5 inner 968.2.k.a.723.2 8
11.4 even 5 inner 968.2.k.a.475.1 8
11.5 even 5 88.2.g.a.43.1 2
11.6 odd 10 88.2.g.a.43.2 yes 2
11.7 odd 10 inner 968.2.k.a.475.2 8
11.8 odd 10 inner 968.2.k.a.723.1 8
11.9 even 5 inner 968.2.k.a.699.2 8
11.10 odd 2 inner 968.2.k.a.403.2 8
33.5 odd 10 792.2.h.b.307.2 2
33.17 even 10 792.2.h.b.307.1 2
44.27 odd 10 352.2.g.a.175.1 2
44.39 even 10 352.2.g.a.175.2 2
88.3 odd 10 inner 968.2.k.a.723.2 8
88.5 even 10 352.2.g.a.175.1 2
88.19 even 10 inner 968.2.k.a.723.1 8
88.27 odd 10 88.2.g.a.43.1 2
88.35 even 10 inner 968.2.k.a.699.1 8
88.43 even 2 inner 968.2.k.a.403.2 8
88.51 even 10 inner 968.2.k.a.475.2 8
88.59 odd 10 inner 968.2.k.a.475.1 8
88.61 odd 10 352.2.g.a.175.2 2
88.75 odd 10 inner 968.2.k.a.699.2 8
88.83 even 10 88.2.g.a.43.2 yes 2
132.71 even 10 3168.2.h.b.2287.2 2
132.83 odd 10 3168.2.h.b.2287.1 2
176.5 even 20 2816.2.e.d.2815.1 4
176.27 odd 20 2816.2.e.d.2815.4 4
176.61 odd 20 2816.2.e.d.2815.3 4
176.83 even 20 2816.2.e.d.2815.2 4
176.93 even 20 2816.2.e.d.2815.4 4
176.115 odd 20 2816.2.e.d.2815.1 4
176.149 odd 20 2816.2.e.d.2815.2 4
176.171 even 20 2816.2.e.d.2815.3 4
264.5 odd 10 3168.2.h.b.2287.2 2
264.83 odd 10 792.2.h.b.307.1 2
264.149 even 10 3168.2.h.b.2287.1 2
264.203 even 10 792.2.h.b.307.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.g.a.43.1 2 11.5 even 5
88.2.g.a.43.1 2 88.27 odd 10
88.2.g.a.43.2 yes 2 11.6 odd 10
88.2.g.a.43.2 yes 2 88.83 even 10
352.2.g.a.175.1 2 44.27 odd 10
352.2.g.a.175.1 2 88.5 even 10
352.2.g.a.175.2 2 44.39 even 10
352.2.g.a.175.2 2 88.61 odd 10
792.2.h.b.307.1 2 33.17 even 10
792.2.h.b.307.1 2 264.83 odd 10
792.2.h.b.307.2 2 33.5 odd 10
792.2.h.b.307.2 2 264.203 even 10
968.2.k.a.403.1 8 1.1 even 1 trivial
968.2.k.a.403.1 8 8.3 odd 2 CM
968.2.k.a.403.2 8 11.10 odd 2 inner
968.2.k.a.403.2 8 88.43 even 2 inner
968.2.k.a.475.1 8 11.4 even 5 inner
968.2.k.a.475.1 8 88.59 odd 10 inner
968.2.k.a.475.2 8 11.7 odd 10 inner
968.2.k.a.475.2 8 88.51 even 10 inner
968.2.k.a.699.1 8 11.2 odd 10 inner
968.2.k.a.699.1 8 88.35 even 10 inner
968.2.k.a.699.2 8 11.9 even 5 inner
968.2.k.a.699.2 8 88.75 odd 10 inner
968.2.k.a.723.1 8 11.8 odd 10 inner
968.2.k.a.723.1 8 88.19 even 10 inner
968.2.k.a.723.2 8 11.3 even 5 inner
968.2.k.a.723.2 8 88.3 odd 10 inner
2816.2.e.d.2815.1 4 176.5 even 20
2816.2.e.d.2815.1 4 176.115 odd 20
2816.2.e.d.2815.2 4 176.83 even 20
2816.2.e.d.2815.2 4 176.149 odd 20
2816.2.e.d.2815.3 4 176.61 odd 20
2816.2.e.d.2815.3 4 176.171 even 20
2816.2.e.d.2815.4 4 176.27 odd 20
2816.2.e.d.2815.4 4 176.93 even 20
3168.2.h.b.2287.1 2 132.83 odd 10
3168.2.h.b.2287.1 2 264.149 even 10
3168.2.h.b.2287.2 2 132.71 even 10
3168.2.h.b.2287.2 2 264.5 odd 10