Properties

Label 968.2.k.a.475.1
Level $968$
Weight $2$
Character 968.475
Analytic conductor $7.730$
Analytic rank $0$
Dimension $8$
CM discriminant -8
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [968,2,Mod(403,968)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(968, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 5, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("968.403");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 968 = 2^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 968.k (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.72951891566\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: 8.0.64000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{6} + 4x^{4} - 8x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{U}(1)[D_{10}]$

Embedding invariants

Embedding label 475.1
Root \(0.831254 + 1.14412i\) of defining polynomial
Character \(\chi\) \(=\) 968.475
Dual form 968.2.k.a.699.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.34500 - 0.437016i) q^{2} +(-1.61803 + 1.17557i) q^{3} +(1.61803 + 1.17557i) q^{4} +(2.68999 - 0.874032i) q^{6} +(-1.66251 - 2.28825i) q^{8} +(0.309017 - 0.951057i) q^{9} -4.00000 q^{12} +(1.23607 + 3.80423i) q^{16} +(5.37999 - 1.74806i) q^{17} +(-0.831254 + 1.14412i) q^{18} +(-4.98752 - 6.86474i) q^{19} +(5.37999 + 1.74806i) q^{24} +(-4.04508 + 2.93893i) q^{25} +(-1.23607 - 3.80423i) q^{27} -5.65685i q^{32} -8.00000 q^{34} +(1.61803 - 1.17557i) q^{36} +(3.70820 + 11.4127i) q^{38} +(6.65003 + 9.15298i) q^{41} -8.48528i q^{43} +(-6.47214 - 4.70228i) q^{48} +(-2.16312 - 6.65740i) q^{49} +(6.72499 - 2.18508i) q^{50} +(-6.65003 + 9.15298i) q^{51} +5.65685i q^{54} +(16.1400 + 5.24419i) q^{57} +(4.85410 + 3.52671i) q^{59} +(-2.47214 + 7.60845i) q^{64} +14.0000 q^{67} +(10.7600 + 3.49613i) q^{68} +(-2.68999 + 0.874032i) q^{72} +(9.97505 - 13.7295i) q^{73} +(3.09017 - 9.51057i) q^{75} -16.9706i q^{76} +(8.89919 + 6.46564i) q^{81} +(-4.94427 - 15.2169i) q^{82} +(2.68999 - 0.874032i) q^{83} +(-3.70820 + 11.4127i) q^{86} +18.0000 q^{89} +(6.65003 + 9.15298i) q^{96} +(3.09017 - 9.51057i) q^{97} +9.89949i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} + 4 q^{4} - 2 q^{9} - 32 q^{12} - 8 q^{16} - 10 q^{25} + 8 q^{27} - 64 q^{34} + 4 q^{36} - 24 q^{38} - 16 q^{48} + 14 q^{49} + 12 q^{59} + 16 q^{64} + 112 q^{67} - 20 q^{75} + 22 q^{81} + 32 q^{82}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/968\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(849\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.34500 0.437016i −0.951057 0.309017i
\(3\) −1.61803 + 1.17557i −0.934172 + 0.678716i −0.947011 0.321202i \(-0.895913\pi\)
0.0128385 + 0.999918i \(0.495913\pi\)
\(4\) 1.61803 + 1.17557i 0.809017 + 0.587785i
\(5\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(6\) 2.68999 0.874032i 1.09819 0.356822i
\(7\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(8\) −1.66251 2.28825i −0.587785 0.809017i
\(9\) 0.309017 0.951057i 0.103006 0.317019i
\(10\) 0 0
\(11\) 0 0
\(12\) −4.00000 −1.15470
\(13\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.23607 + 3.80423i 0.309017 + 0.951057i
\(17\) 5.37999 1.74806i 1.30484 0.423968i 0.427576 0.903979i \(-0.359367\pi\)
0.877262 + 0.480011i \(0.159367\pi\)
\(18\) −0.831254 + 1.14412i −0.195928 + 0.269672i
\(19\) −4.98752 6.86474i −1.14422 1.57488i −0.757709 0.652592i \(-0.773682\pi\)
−0.386507 0.922287i \(-0.626318\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 5.37999 + 1.74806i 1.09819 + 0.356822i
\(25\) −4.04508 + 2.93893i −0.809017 + 0.587785i
\(26\) 0 0
\(27\) −1.23607 3.80423i −0.237881 0.732124i
\(28\) 0 0
\(29\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(30\) 0 0
\(31\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(32\) 5.65685i 1.00000i
\(33\) 0 0
\(34\) −8.00000 −1.37199
\(35\) 0 0
\(36\) 1.61803 1.17557i 0.269672 0.195928i
\(37\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(38\) 3.70820 + 11.4127i 0.601550 + 1.85138i
\(39\) 0 0
\(40\) 0 0
\(41\) 6.65003 + 9.15298i 1.03856 + 1.42946i 0.898322 + 0.439338i \(0.144787\pi\)
0.140238 + 0.990118i \(0.455213\pi\)
\(42\) 0 0
\(43\) 8.48528i 1.29399i −0.762493 0.646997i \(-0.776025\pi\)
0.762493 0.646997i \(-0.223975\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(48\) −6.47214 4.70228i −0.934172 0.678716i
\(49\) −2.16312 6.65740i −0.309017 0.951057i
\(50\) 6.72499 2.18508i 0.951057 0.309017i
\(51\) −6.65003 + 9.15298i −0.931191 + 1.28167i
\(52\) 0 0
\(53\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(54\) 5.65685i 0.769800i
\(55\) 0 0
\(56\) 0 0
\(57\) 16.1400 + 5.24419i 2.13779 + 0.694610i
\(58\) 0 0
\(59\) 4.85410 + 3.52671i 0.631950 + 0.459139i 0.857075 0.515191i \(-0.172279\pi\)
−0.225125 + 0.974330i \(0.572279\pi\)
\(60\) 0 0
\(61\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −2.47214 + 7.60845i −0.309017 + 0.951057i
\(65\) 0 0
\(66\) 0 0
\(67\) 14.0000 1.71037 0.855186 0.518321i \(-0.173443\pi\)
0.855186 + 0.518321i \(0.173443\pi\)
\(68\) 10.7600 + 3.49613i 1.30484 + 0.423968i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(72\) −2.68999 + 0.874032i −0.317019 + 0.103006i
\(73\) 9.97505 13.7295i 1.16749 1.60691i 0.489057 0.872252i \(-0.337341\pi\)
0.678434 0.734662i \(-0.262659\pi\)
\(74\) 0 0
\(75\) 3.09017 9.51057i 0.356822 1.09819i
\(76\) 16.9706i 1.94666i
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(80\) 0 0
\(81\) 8.89919 + 6.46564i 0.988799 + 0.718404i
\(82\) −4.94427 15.2169i −0.546003 1.68043i
\(83\) 2.68999 0.874032i 0.295265 0.0959375i −0.157639 0.987497i \(-0.550388\pi\)
0.452904 + 0.891559i \(0.350388\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −3.70820 + 11.4127i −0.399866 + 1.23066i
\(87\) 0 0
\(88\) 0 0
\(89\) 18.0000 1.90800 0.953998 0.299813i \(-0.0969242\pi\)
0.953998 + 0.299813i \(0.0969242\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 6.65003 + 9.15298i 0.678716 + 0.934172i
\(97\) 3.09017 9.51057i 0.313759 0.965652i −0.662503 0.749059i \(-0.730506\pi\)
0.976262 0.216592i \(-0.0694942\pi\)
\(98\) 9.89949i 1.00000i
\(99\) 0 0
\(100\) −10.0000 −1.00000
\(101\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(102\) 12.9443 9.40456i 1.28167 0.931191i
\(103\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −11.6376 16.0177i −1.12504 1.54849i −0.797154 0.603776i \(-0.793662\pi\)
−0.327891 0.944716i \(-0.606338\pi\)
\(108\) 2.47214 7.60845i 0.237881 0.732124i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 14.5623 10.5801i 1.36991 0.995295i 0.372162 0.928168i \(-0.378617\pi\)
0.997744 0.0671276i \(-0.0213835\pi\)
\(114\) −19.4164 14.1068i −1.81851 1.32123i
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −4.98752 6.86474i −0.459139 0.631950i
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −21.5200 6.99226i −1.94039 0.630471i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(128\) 6.65003 9.15298i 0.587785 0.809017i
\(129\) 9.97505 + 13.7295i 0.878254 + 1.20881i
\(130\) 0 0
\(131\) 14.1421i 1.23560i 0.786334 + 0.617802i \(0.211977\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −18.8300 6.11822i −1.62666 0.528534i
\(135\) 0 0
\(136\) −12.9443 9.40456i −1.10996 0.806435i
\(137\) 1.85410 + 5.70634i 0.158407 + 0.487525i 0.998490 0.0549317i \(-0.0174941\pi\)
−0.840083 + 0.542457i \(0.817494\pi\)
\(138\) 0 0
\(139\) −4.98752 + 6.86474i −0.423036 + 0.582259i −0.966337 0.257279i \(-0.917174\pi\)
0.543301 + 0.839538i \(0.317174\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 4.00000 0.333333
\(145\) 0 0
\(146\) −19.4164 + 14.1068i −1.60691 + 1.16749i
\(147\) 11.3262 + 8.22899i 0.934172 + 0.678716i
\(148\) 0 0
\(149\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(150\) −8.31254 + 11.4412i −0.678716 + 0.934172i
\(151\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(152\) −7.41641 + 22.8254i −0.601550 + 1.85138i
\(153\) 5.65685i 0.457330i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −9.14379 12.5854i −0.718404 0.988799i
\(163\) −0.618034 + 1.90211i −0.0484082 + 0.148985i −0.972339 0.233575i \(-0.924958\pi\)
0.923931 + 0.382560i \(0.124958\pi\)
\(164\) 22.6274i 1.76690i
\(165\) 0 0
\(166\) −4.00000 −0.310460
\(167\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(168\) 0 0
\(169\) 10.5172 + 7.64121i 0.809017 + 0.587785i
\(170\) 0 0
\(171\) −8.06998 + 2.62210i −0.617127 + 0.200517i
\(172\) 9.97505 13.7295i 0.760590 1.04686i
\(173\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −12.0000 −0.901975
\(178\) −24.2099 7.86629i −1.81461 0.589603i
\(179\) 14.5623 10.5801i 1.08844 0.790796i 0.109303 0.994008i \(-0.465138\pi\)
0.979135 + 0.203212i \(0.0651381\pi\)
\(180\) 0 0
\(181\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(192\) −4.94427 15.2169i −0.356822 1.09819i
\(193\) −16.1400 + 5.24419i −1.16178 + 0.377485i −0.825569 0.564301i \(-0.809146\pi\)
−0.336211 + 0.941787i \(0.609146\pi\)
\(194\) −8.31254 + 11.4412i −0.596806 + 0.821432i
\(195\) 0 0
\(196\) 4.32624 13.3148i 0.309017 0.951057i
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 13.4500 + 4.37016i 0.951057 + 0.309017i
\(201\) −22.6525 + 16.4580i −1.59778 + 1.16086i
\(202\) 0 0
\(203\) 0 0
\(204\) −21.5200 + 6.99226i −1.50670 + 0.489556i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −24.2099 7.86629i −1.66668 0.541538i −0.684425 0.729083i \(-0.739947\pi\)
−0.982256 + 0.187545i \(0.939947\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 8.65248 + 26.6296i 0.591471 + 1.82036i
\(215\) 0 0
\(216\) −6.65003 + 9.15298i −0.452477 + 0.622782i
\(217\) 0 0
\(218\) 0 0
\(219\) 33.9411i 2.29353i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(224\) 0 0
\(225\) 1.54508 + 4.75528i 0.103006 + 0.317019i
\(226\) −24.2099 + 7.86629i −1.61042 + 0.523258i
\(227\) 1.66251 2.28825i 0.110345 0.151876i −0.750273 0.661128i \(-0.770078\pi\)
0.860617 + 0.509252i \(0.170078\pi\)
\(228\) 19.9501 + 27.4589i 1.32123 + 1.81851i
\(229\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5.37999 + 1.74806i 0.352455 + 0.114519i 0.479893 0.877327i \(-0.340675\pi\)
−0.127438 + 0.991847i \(0.540675\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 3.70820 + 11.4127i 0.241384 + 0.742902i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(240\) 0 0
\(241\) 16.9706i 1.09317i −0.837404 0.546585i \(-0.815928\pi\)
0.837404 0.546585i \(-0.184072\pi\)
\(242\) 0 0
\(243\) −10.0000 −0.641500
\(244\) 0 0
\(245\) 0 0
\(246\) 25.8885 + 18.8091i 1.65059 + 1.19923i
\(247\) 0 0
\(248\) 0 0
\(249\) −3.32502 + 4.57649i −0.210714 + 0.290023i
\(250\) 0 0
\(251\) 1.85410 5.70634i 0.117030 0.360181i −0.875335 0.483517i \(-0.839359\pi\)
0.992365 + 0.123336i \(0.0393592\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −12.9443 + 9.40456i −0.809017 + 0.587785i
\(257\) −24.2705 17.6336i −1.51395 1.09995i −0.964385 0.264502i \(-0.914792\pi\)
−0.549568 0.835449i \(-0.685208\pi\)
\(258\) −7.41641 22.8254i −0.461725 1.42104i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 6.18034 19.0211i 0.381823 1.17513i
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −29.1246 + 21.1603i −1.78240 + 1.29499i
\(268\) 22.6525 + 16.4580i 1.38372 + 1.00533i
\(269\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(270\) 0 0
\(271\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(272\) 13.3001 + 18.3060i 0.806435 + 1.10996i
\(273\) 0 0
\(274\) 8.48528i 0.512615i
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(278\) 9.70820 7.05342i 0.582259 0.423036i
\(279\) 0 0
\(280\) 0 0
\(281\) −26.8999 + 8.74032i −1.60472 + 0.521404i −0.968268 0.249916i \(-0.919597\pi\)
−0.636448 + 0.771319i \(0.719597\pi\)
\(282\) 0 0
\(283\) 14.9626 + 20.5942i 0.889432 + 1.22420i 0.973718 + 0.227757i \(0.0731392\pi\)
−0.0842855 + 0.996442i \(0.526861\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −5.37999 1.74806i −0.317019 0.103006i
\(289\) 12.1353 8.81678i 0.713839 0.518634i
\(290\) 0 0
\(291\) 6.18034 + 19.0211i 0.362298 + 1.11504i
\(292\) 32.2799 10.4884i 1.88904 0.613786i
\(293\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(294\) −11.6376 16.0177i −0.678716 0.934172i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 16.1803 11.7557i 0.934172 0.678716i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 19.9501 27.4589i 1.14422 1.57488i
\(305\) 0 0
\(306\) −2.47214 + 7.60845i −0.141323 + 0.434946i
\(307\) 8.48528i 0.484281i −0.970241 0.242140i \(-0.922151\pi\)
0.970241 0.242140i \(-0.0778494\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(312\) 0 0
\(313\) −3.09017 9.51057i −0.174667 0.537569i 0.824951 0.565204i \(-0.191202\pi\)
−0.999618 + 0.0276348i \(0.991202\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 37.6599 + 12.2364i 2.10197 + 0.682972i
\(322\) 0 0
\(323\) −38.8328 28.2137i −2.16072 1.56985i
\(324\) 6.79837 + 20.9232i 0.377687 + 1.16240i
\(325\) 0 0
\(326\) 1.66251 2.28825i 0.0920778 0.126734i
\(327\) 0 0
\(328\) 9.88854 30.4338i 0.546003 1.68043i
\(329\) 0 0
\(330\) 0 0
\(331\) −26.0000 −1.42909 −0.714545 0.699590i \(-0.753366\pi\)
−0.714545 + 0.699590i \(0.753366\pi\)
\(332\) 5.37999 + 1.74806i 0.295265 + 0.0959375i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 19.9501 27.4589i 1.08675 1.49578i 0.234886 0.972023i \(-0.424528\pi\)
0.851865 0.523761i \(-0.175472\pi\)
\(338\) −10.8063 14.8736i −0.587785 0.809017i
\(339\) −11.1246 + 34.2380i −0.604206 + 1.85955i
\(340\) 0 0
\(341\) 0 0
\(342\) 12.0000 0.648886
\(343\) 0 0
\(344\) −19.4164 + 14.1068i −1.04686 + 0.760590i
\(345\) 0 0
\(346\) 0 0
\(347\) 34.9699 11.3624i 1.87728 0.609966i 0.888875 0.458149i \(-0.151488\pi\)
0.988409 0.151817i \(-0.0485125\pi\)
\(348\) 0 0
\(349\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −30.0000 −1.59674 −0.798369 0.602168i \(-0.794304\pi\)
−0.798369 + 0.602168i \(0.794304\pi\)
\(354\) 16.1400 + 5.24419i 0.857829 + 0.278726i
\(355\) 0 0
\(356\) 29.1246 + 21.1603i 1.54360 + 1.12149i
\(357\) 0 0
\(358\) −24.2099 + 7.86629i −1.27954 + 0.415746i
\(359\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(360\) 0 0
\(361\) −16.3779 + 50.4060i −0.861995 + 2.65295i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(368\) 0 0
\(369\) 10.7600 3.49613i 0.560142 0.182001i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −11.7426 36.1401i −0.603179 1.85639i −0.508853 0.860853i \(-0.669930\pi\)
−0.0943260 0.995541i \(-0.530070\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(384\) 22.6274i 1.15470i
\(385\) 0 0
\(386\) 24.0000 1.22157
\(387\) −8.06998 2.62210i −0.410220 0.133289i
\(388\) 16.1803 11.7557i 0.821432 0.596806i
\(389\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −11.6376 + 16.0177i −0.587785 + 0.809017i
\(393\) −16.6251 22.8825i −0.838624 1.15427i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −16.1803 11.7557i −0.809017 0.587785i
\(401\) 1.85410 + 5.70634i 0.0925894 + 0.284961i 0.986618 0.163049i \(-0.0521329\pi\)
−0.894029 + 0.448010i \(0.852133\pi\)
\(402\) 37.6599 12.2364i 1.87831 0.610299i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 32.0000 1.58424
\(409\) −32.2799 10.4884i −1.59614 0.518617i −0.629991 0.776603i \(-0.716941\pi\)
−0.966149 + 0.257985i \(0.916941\pi\)
\(410\) 0 0
\(411\) −9.70820 7.05342i −0.478870 0.347920i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 16.9706i 0.831052i
\(418\) 0 0
\(419\) 18.0000 0.879358 0.439679 0.898155i \(-0.355092\pi\)
0.439679 + 0.898155i \(0.355092\pi\)
\(420\) 0 0
\(421\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(422\) 29.1246 + 21.1603i 1.41776 + 1.03007i
\(423\) 0 0
\(424\) 0 0
\(425\) −16.6251 + 22.8825i −0.806435 + 1.10996i
\(426\) 0 0
\(427\) 0 0
\(428\) 39.5980i 1.91404i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(432\) 12.9443 9.40456i 0.622782 0.452477i
\(433\) −30.7426 22.3358i −1.47740 1.07339i −0.978384 0.206798i \(-0.933696\pi\)
−0.499014 0.866594i \(-0.666304\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 14.8328 45.6507i 0.708739 2.18128i
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −7.00000 −0.333333
\(442\) 0 0
\(443\) 33.9787 24.6870i 1.61438 1.17291i 0.767695 0.640816i \(-0.221404\pi\)
0.846683 0.532098i \(-0.178596\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 12.9787 39.9444i 0.612503 1.88509i 0.179303 0.983794i \(-0.442616\pi\)
0.433200 0.901298i \(-0.357384\pi\)
\(450\) 7.07107i 0.333333i
\(451\) 0 0
\(452\) 36.0000 1.69330
\(453\) 0 0
\(454\) −3.23607 + 2.35114i −0.151876 + 0.110345i
\(455\) 0 0
\(456\) −14.8328 45.6507i −0.694610 2.13779i
\(457\) 32.2799 10.4884i 1.50999 0.490626i 0.567078 0.823664i \(-0.308074\pi\)
0.942913 + 0.333038i \(0.108074\pi\)
\(458\) 0 0
\(459\) −13.3001 18.3060i −0.620794 0.854449i
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −6.47214 4.70228i −0.299816 0.217829i
\(467\) 9.27051 + 28.5317i 0.428988 + 1.32029i 0.899123 + 0.437695i \(0.144205\pi\)
−0.470135 + 0.882594i \(0.655795\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 16.9706i 0.781133i
\(473\) 0 0
\(474\) 0 0
\(475\) 40.3499 + 13.1105i 1.85138 + 0.601550i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −7.41641 + 22.8254i −0.337808 + 1.03967i
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 13.4500 + 4.37016i 0.610103 + 0.198234i
\(487\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(488\) 0 0
\(489\) −1.23607 3.80423i −0.0558969 0.172033i
\(490\) 0 0
\(491\) −8.31254 + 11.4412i −0.375140 + 0.516335i −0.954289 0.298886i \(-0.903385\pi\)
0.579149 + 0.815222i \(0.303385\pi\)
\(492\) −26.6001 36.6119i −1.19923 1.65059i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 6.47214 4.70228i 0.290023 0.210714i
\(499\) 11.3262 + 8.22899i 0.507032 + 0.368380i 0.811697 0.584079i \(-0.198544\pi\)
−0.304664 + 0.952460i \(0.598544\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −4.98752 + 6.86474i −0.222604 + 0.306388i
\(503\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −26.0000 −1.15470
\(508\) 0 0
\(509\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 21.5200 6.99226i 0.951057 0.309017i
\(513\) −19.9501 + 27.4589i −0.880818 + 1.21234i
\(514\) 24.9376 + 34.3237i 1.09995 + 1.51395i
\(515\) 0 0
\(516\) 33.9411i 1.49417i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 4.85410 + 3.52671i 0.212662 + 0.154508i 0.689017 0.724745i \(-0.258042\pi\)
−0.476355 + 0.879253i \(0.658042\pi\)
\(522\) 0 0
\(523\) −24.2099 + 7.86629i −1.05863 + 0.343969i −0.786049 0.618165i \(-0.787876\pi\)
−0.272578 + 0.962134i \(0.587876\pi\)
\(524\) −16.6251 + 22.8825i −0.726270 + 0.999625i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) 4.85410 3.52671i 0.210650 0.153046i
\(532\) 0 0
\(533\) 0 0
\(534\) 48.4199 15.7326i 2.09533 0.680815i
\(535\) 0 0
\(536\) −23.2751 32.0354i −1.00533 1.38372i
\(537\) −11.1246 + 34.2380i −0.480062 + 1.47748i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −9.88854 30.4338i −0.423968 1.30484i
\(545\) 0 0
\(546\) 0 0
\(547\) −4.98752 6.86474i −0.213251 0.293515i 0.688969 0.724791i \(-0.258064\pi\)
−0.902220 + 0.431276i \(0.858064\pi\)
\(548\) −3.70820 + 11.4127i −0.158407 + 0.487525i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −16.1400 + 5.24419i −0.684487 + 0.222403i
\(557\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 40.0000 1.68730
\(563\) 34.9699 + 11.3624i 1.47381 + 0.478869i 0.932256 0.361799i \(-0.117837\pi\)
0.541551 + 0.840668i \(0.317837\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −11.1246 34.2380i −0.467602 1.43913i
\(567\) 0 0
\(568\) 0 0
\(569\) 13.3001 + 18.3060i 0.557568 + 0.767426i 0.991015 0.133753i \(-0.0427029\pi\)
−0.433447 + 0.901179i \(0.642703\pi\)
\(570\) 0 0
\(571\) 42.4264i 1.77549i −0.460336 0.887745i \(-0.652271\pi\)
0.460336 0.887745i \(-0.347729\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 6.47214 + 4.70228i 0.269672 + 0.195928i
\(577\) 10.5066 + 32.3359i 0.437395 + 1.34616i 0.890613 + 0.454762i \(0.150276\pi\)
−0.453218 + 0.891400i \(0.649724\pi\)
\(578\) −20.1750 + 6.55524i −0.839168 + 0.272662i
\(579\) 19.9501 27.4589i 0.829098 1.14115i
\(580\) 0 0
\(581\) 0 0
\(582\) 28.2843i 1.17242i
\(583\) 0 0
\(584\) −48.0000 −1.98625
\(585\) 0 0
\(586\) 0 0
\(587\) 4.85410 + 3.52671i 0.200350 + 0.145563i 0.683437 0.730010i \(-0.260484\pi\)
−0.483087 + 0.875573i \(0.660484\pi\)
\(588\) 8.65248 + 26.6296i 0.356822 + 1.09819i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 45.2548i 1.85839i 0.369586 + 0.929197i \(0.379500\pi\)
−0.369586 + 0.929197i \(0.620500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(600\) −26.8999 + 8.74032i −1.09819 + 0.356822i
\(601\) 9.97505 13.7295i 0.406891 0.560037i −0.555566 0.831472i \(-0.687498\pi\)
0.962457 + 0.271436i \(0.0874984\pi\)
\(602\) 0 0
\(603\) 4.32624 13.3148i 0.176178 0.542220i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(608\) −38.8328 + 28.2137i −1.57488 + 1.14422i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 6.65003 9.15298i 0.268812 0.369987i
\(613\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(614\) −3.70820 + 11.4127i −0.149651 + 0.460578i
\(615\) 0 0
\(616\) 0 0
\(617\) −30.0000 −1.20775 −0.603877 0.797077i \(-0.706378\pi\)
−0.603877 + 0.797077i \(0.706378\pi\)
\(618\) 0 0
\(619\) −21.0344 + 15.2824i −0.845446 + 0.614252i −0.923887 0.382667i \(-0.875006\pi\)
0.0784409 + 0.996919i \(0.475006\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 7.72542 23.7764i 0.309017 0.951057i
\(626\) 14.1421i 0.565233i
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(632\) 0 0
\(633\) 48.4199 15.7326i 1.92452 0.625314i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 33.9787 24.6870i 1.34208 0.975077i 0.342714 0.939440i \(-0.388654\pi\)
0.999365 0.0356372i \(-0.0113461\pi\)
\(642\) −45.3050 32.9160i −1.78804 1.29909i
\(643\) 15.4508 + 47.5528i 0.609322 + 1.87530i 0.463786 + 0.885948i \(0.346491\pi\)
0.145537 + 0.989353i \(0.453509\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 39.9002 + 54.9179i 1.56985 + 2.16072i
\(647\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(648\) 31.1127i 1.22222i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −3.23607 + 2.35114i −0.126734 + 0.0920778i
\(653\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −26.6001 + 36.6119i −1.03856 + 1.42946i
\(657\) −9.97505 13.7295i −0.389164 0.535638i
\(658\) 0 0
\(659\) 48.0833i 1.87306i −0.350590 0.936529i \(-0.614019\pi\)
0.350590 0.936529i \(-0.385981\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 34.9699 + 11.3624i 1.35914 + 0.441613i
\(663\) 0 0
\(664\) −6.47214 4.70228i −0.251168 0.182484i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −48.4199 15.7326i −1.86645 0.606446i −0.992784 0.119920i \(-0.961736\pi\)
−0.873666 0.486526i \(-0.838264\pi\)
\(674\) −38.8328 + 28.2137i −1.49578 + 1.08675i
\(675\) 16.1803 + 11.7557i 0.622782 + 0.452477i
\(676\) 8.03444 + 24.7275i 0.309017 + 0.951057i
\(677\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(678\) 29.9251 41.1884i 1.14927 1.58183i
\(679\) 0 0
\(680\) 0 0
\(681\) 5.65685i 0.216771i
\(682\) 0 0
\(683\) −42.0000 −1.60709 −0.803543 0.595247i \(-0.797054\pi\)
−0.803543 + 0.595247i \(0.797054\pi\)
\(684\) −16.1400 5.24419i −0.617127 0.200517i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 32.2799 10.4884i 1.23066 0.399866i
\(689\) 0 0
\(690\) 0 0
\(691\) −14.2148 + 43.7486i −0.540756 + 1.66428i 0.190117 + 0.981761i \(0.439113\pi\)
−0.730873 + 0.682514i \(0.760887\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −52.0000 −1.97389
\(695\) 0 0
\(696\) 0 0
\(697\) 51.7771 + 37.6183i 1.96120 + 1.42489i
\(698\) 0 0
\(699\) −10.7600 + 3.49613i −0.406980 + 0.132236i
\(700\) 0 0
\(701\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 40.3499 + 13.1105i 1.51859 + 0.493419i
\(707\) 0 0
\(708\) −19.4164 14.1068i −0.729713 0.530168i
\(709\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −29.9251 41.1884i −1.12149 1.54360i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 36.0000 1.34538
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 44.0565 60.6385i 1.63961 2.25673i
\(723\) 19.9501 + 27.4589i 0.741952 + 1.02121i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) −10.5172 + 7.64121i −0.389527 + 0.283008i
\(730\) 0 0
\(731\) −14.8328 45.6507i −0.548612 1.68845i
\(732\) 0 0
\(733\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −16.0000 −0.588968
\(739\) 40.3499 + 13.1105i 1.48430 + 0.482277i 0.935393 0.353610i \(-0.115046\pi\)
0.548902 + 0.835886i \(0.315046\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 2.82843i 0.103487i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(752\) 0 0
\(753\) 3.70820 + 11.4127i 0.135134 + 0.415901i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(758\) 53.7401i 1.95193i
\(759\) 0 0
\(760\) 0 0
\(761\) 10.7600 + 3.49613i 0.390049 + 0.126735i 0.497475 0.867479i \(-0.334261\pi\)
−0.107426 + 0.994213i \(0.534261\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 9.88854 30.4338i 0.356822 1.09819i
\(769\) 50.9117i 1.83592i 0.396670 + 0.917961i \(0.370166\pi\)
−0.396670 + 0.917961i \(0.629834\pi\)
\(770\) 0 0
\(771\) 60.0000 2.16085
\(772\) −32.2799 10.4884i −1.16178 0.377485i
\(773\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(774\) 9.70820 + 7.05342i 0.348954 + 0.253530i
\(775\) 0 0
\(776\) −26.8999 + 8.74032i −0.965652 + 0.313759i
\(777\) 0 0
\(778\) 0 0
\(779\) 29.6656 91.3014i 1.06288 3.27121i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 22.6525 16.4580i 0.809017 0.587785i
\(785\) 0 0
\(786\) 12.3607 + 38.0423i 0.440891 + 1.35692i
\(787\) −24.2099 + 7.86629i −0.862991 + 0.280403i −0.706877 0.707336i \(-0.749897\pi\)
−0.156114 + 0.987739i \(0.549897\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 16.6251 + 22.8825i 0.587785 + 0.809017i
\(801\) 5.56231 17.1190i 0.196534 0.604871i
\(802\) 8.48528i 0.299626i
\(803\) 0 0
\(804\) −56.0000 −1.97497
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −53.7999 + 17.4806i −1.89150 + 0.614587i −0.913158 + 0.407605i \(0.866364\pi\)
−0.978345 + 0.206981i \(0.933636\pi\)
\(810\) 0 0
\(811\) 24.9376 + 34.3237i 0.875678 + 1.20527i 0.977599 + 0.210475i \(0.0675011\pi\)
−0.101921 + 0.994792i \(0.532499\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) −43.0399 13.9845i −1.50670 0.489556i
\(817\) −58.2492 + 42.3205i −2.03788 + 1.48061i
\(818\) 38.8328 + 28.2137i 1.35776 + 0.986469i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(822\) 9.97505 + 13.7295i 0.347920 + 0.478870i
\(823\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −18.8300 6.11822i −0.654782 0.212752i −0.0372604 0.999306i \(-0.511863\pi\)
−0.617521 + 0.786554i \(0.711863\pi\)
\(828\) 0 0
\(829\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −23.2751 32.0354i −0.806435 1.10996i
\(834\) −7.41641 + 22.8254i −0.256809 + 0.790377i
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) −24.2099 7.86629i −0.836319 0.271736i
\(839\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(840\) 0 0
\(841\) −8.96149 27.5806i −0.309017 0.951057i
\(842\) 0 0
\(843\) 33.2502 45.7649i 1.14520 1.57623i
\(844\) −29.9251 41.1884i −1.03007 1.41776i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −48.4199 15.7326i −1.66177 0.539941i
\(850\) 32.3607 23.5114i 1.10996 0.806435i
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −17.3050 + 53.2592i −0.591471 + 1.82036i
\(857\) 22.6274i 0.772938i 0.922302 + 0.386469i \(0.126305\pi\)
−0.922302 + 0.386469i \(0.873695\pi\)
\(858\) 0 0
\(859\) 58.0000 1.97893 0.989467 0.144757i \(-0.0462401\pi\)
0.989467 + 0.144757i \(0.0462401\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(864\) −21.5200 + 6.99226i −0.732124 + 0.237881i
\(865\) 0 0
\(866\) 31.5876 + 43.4767i 1.07339 + 1.47740i
\(867\) −9.27051 + 28.5317i −0.314843 + 0.968987i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −8.09017 5.87785i −0.273811 0.198935i
\(874\) 0 0
\(875\) 0 0
\(876\) −39.9002 + 54.9179i −1.34810 + 1.85550i
\(877\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) 9.41498 + 3.05911i 0.317019 + 0.103006i
\(883\) −1.61803 + 1.17557i −0.0544512 + 0.0395611i −0.614678 0.788778i \(-0.710714\pi\)
0.560227 + 0.828339i \(0.310714\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −56.4899 + 18.3547i −1.89781 + 0.616637i
\(887\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −34.9127 + 48.0532i −1.16505 + 1.60355i
\(899\) 0 0
\(900\) −3.09017 + 9.51057i −0.103006 + 0.317019i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −48.4199 15.7326i −1.61042 0.523258i
\(905\) 0 0
\(906\) 0 0
\(907\) −3.09017 9.51057i −0.102607 0.315793i 0.886554 0.462625i \(-0.153092\pi\)
−0.989161 + 0.146832i \(0.953092\pi\)
\(908\) 5.37999 1.74806i 0.178541 0.0580115i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(912\) 67.8823i 2.24781i
\(913\) 0 0
\(914\) −48.0000 −1.58770
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 9.88854 + 30.4338i 0.326371 + 1.00447i
\(919\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(920\) 0 0
\(921\) 9.97505 + 13.7295i 0.328689 + 0.452402i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −16.6869 51.3571i −0.547480 1.68497i −0.715019 0.699105i \(-0.753582\pi\)
0.167539 0.985865i \(-0.446418\pi\)
\(930\) 0 0
\(931\) −34.9127 + 48.0532i −1.14422 + 1.57488i
\(932\) 6.65003 + 9.15298i 0.217829 + 0.299816i
\(933\) 0 0
\(934\) 42.4264i 1.38823i
\(935\) 0 0
\(936\) 0 0
\(937\) −48.4199 15.7326i −1.58181 0.513961i −0.619287 0.785165i \(-0.712578\pi\)
−0.962522 + 0.271204i \(0.912578\pi\)
\(938\) 0 0
\(939\) 16.1803 + 11.7557i 0.528025 + 0.383633i
\(940\) 0 0
\(941\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −7.41641 + 22.8254i −0.241384 + 0.742902i
\(945\) 0 0
\(946\) 0 0
\(947\) −30.0000 −0.974869 −0.487435 0.873160i \(-0.662067\pi\)
−0.487435 + 0.873160i \(0.662067\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −48.5410 35.2671i −1.57488 1.14422i
\(951\) 0 0
\(952\) 0 0
\(953\) −26.6001 + 36.6119i −0.861663 + 1.18598i 0.119508 + 0.992833i \(0.461868\pi\)
−0.981171 + 0.193143i \(0.938132\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −25.0795 18.2213i −0.809017 0.587785i
\(962\) 0 0
\(963\) −18.8300 + 6.11822i −0.606787 + 0.197157i
\(964\) 19.9501 27.4589i 0.642549 0.884393i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) 96.0000 3.08396
\(970\) 0 0
\(971\) −43.6869 + 31.7404i −1.40198 + 1.01860i −0.407552 + 0.913182i \(0.633617\pi\)
−0.994428 + 0.105416i \(0.966383\pi\)
\(972\) −16.1803 11.7557i −0.518985 0.377064i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.85410 5.70634i 0.0593180 0.182562i −0.917007 0.398871i \(-0.869402\pi\)
0.976325 + 0.216309i \(0.0694020\pi\)
\(978\) 5.65685i 0.180886i
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 16.1803 11.7557i 0.516335 0.375140i
\(983\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(984\) 19.7771 + 60.8676i 0.630471 + 1.94039i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 42.0689 30.5648i 1.33502 0.969946i
\(994\) 0 0
\(995\) 0 0
\(996\) −10.7600 + 3.49613i −0.340943 + 0.110779i
\(997\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(998\) −11.6376 16.0177i −0.368380 0.507032i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 968.2.k.a.475.1 8
8.3 odd 2 CM 968.2.k.a.475.1 8
11.2 odd 10 inner 968.2.k.a.723.1 8
11.3 even 5 inner 968.2.k.a.403.1 8
11.4 even 5 88.2.g.a.43.1 2
11.5 even 5 inner 968.2.k.a.699.2 8
11.6 odd 10 inner 968.2.k.a.699.1 8
11.7 odd 10 88.2.g.a.43.2 yes 2
11.8 odd 10 inner 968.2.k.a.403.2 8
11.9 even 5 inner 968.2.k.a.723.2 8
11.10 odd 2 inner 968.2.k.a.475.2 8
33.26 odd 10 792.2.h.b.307.2 2
33.29 even 10 792.2.h.b.307.1 2
44.7 even 10 352.2.g.a.175.2 2
44.15 odd 10 352.2.g.a.175.1 2
88.3 odd 10 inner 968.2.k.a.403.1 8
88.19 even 10 inner 968.2.k.a.403.2 8
88.27 odd 10 inner 968.2.k.a.699.2 8
88.29 odd 10 352.2.g.a.175.2 2
88.35 even 10 inner 968.2.k.a.723.1 8
88.37 even 10 352.2.g.a.175.1 2
88.43 even 2 inner 968.2.k.a.475.2 8
88.51 even 10 88.2.g.a.43.2 yes 2
88.59 odd 10 88.2.g.a.43.1 2
88.75 odd 10 inner 968.2.k.a.723.2 8
88.83 even 10 inner 968.2.k.a.699.1 8
132.59 even 10 3168.2.h.b.2287.2 2
132.95 odd 10 3168.2.h.b.2287.1 2
176.29 odd 20 2816.2.e.d.2815.3 4
176.37 even 20 2816.2.e.d.2815.1 4
176.51 even 20 2816.2.e.d.2815.2 4
176.59 odd 20 2816.2.e.d.2815.4 4
176.117 odd 20 2816.2.e.d.2815.2 4
176.125 even 20 2816.2.e.d.2815.4 4
176.139 even 20 2816.2.e.d.2815.3 4
176.147 odd 20 2816.2.e.d.2815.1 4
264.29 even 10 3168.2.h.b.2287.1 2
264.59 even 10 792.2.h.b.307.2 2
264.125 odd 10 3168.2.h.b.2287.2 2
264.227 odd 10 792.2.h.b.307.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.g.a.43.1 2 11.4 even 5
88.2.g.a.43.1 2 88.59 odd 10
88.2.g.a.43.2 yes 2 11.7 odd 10
88.2.g.a.43.2 yes 2 88.51 even 10
352.2.g.a.175.1 2 44.15 odd 10
352.2.g.a.175.1 2 88.37 even 10
352.2.g.a.175.2 2 44.7 even 10
352.2.g.a.175.2 2 88.29 odd 10
792.2.h.b.307.1 2 33.29 even 10
792.2.h.b.307.1 2 264.227 odd 10
792.2.h.b.307.2 2 33.26 odd 10
792.2.h.b.307.2 2 264.59 even 10
968.2.k.a.403.1 8 11.3 even 5 inner
968.2.k.a.403.1 8 88.3 odd 10 inner
968.2.k.a.403.2 8 11.8 odd 10 inner
968.2.k.a.403.2 8 88.19 even 10 inner
968.2.k.a.475.1 8 1.1 even 1 trivial
968.2.k.a.475.1 8 8.3 odd 2 CM
968.2.k.a.475.2 8 11.10 odd 2 inner
968.2.k.a.475.2 8 88.43 even 2 inner
968.2.k.a.699.1 8 11.6 odd 10 inner
968.2.k.a.699.1 8 88.83 even 10 inner
968.2.k.a.699.2 8 11.5 even 5 inner
968.2.k.a.699.2 8 88.27 odd 10 inner
968.2.k.a.723.1 8 11.2 odd 10 inner
968.2.k.a.723.1 8 88.35 even 10 inner
968.2.k.a.723.2 8 11.9 even 5 inner
968.2.k.a.723.2 8 88.75 odd 10 inner
2816.2.e.d.2815.1 4 176.37 even 20
2816.2.e.d.2815.1 4 176.147 odd 20
2816.2.e.d.2815.2 4 176.51 even 20
2816.2.e.d.2815.2 4 176.117 odd 20
2816.2.e.d.2815.3 4 176.29 odd 20
2816.2.e.d.2815.3 4 176.139 even 20
2816.2.e.d.2815.4 4 176.59 odd 20
2816.2.e.d.2815.4 4 176.125 even 20
3168.2.h.b.2287.1 2 132.95 odd 10
3168.2.h.b.2287.1 2 264.29 even 10
3168.2.h.b.2287.2 2 132.59 even 10
3168.2.h.b.2287.2 2 264.125 odd 10