Properties

Label 968.6.a.q.1.2
Level $968$
Weight $6$
Character 968.1
Self dual yes
Analytic conductor $155.252$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [968,6,Mod(1,968)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(968, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("968.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 968 = 2^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 968.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(155.251537579\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} - 2635 x^{14} + 10644 x^{13} + 2721739 x^{12} - 11107836 x^{11} + \cdots + 53\!\cdots\!20 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{26}\cdot 11^{8} \)
Twist minimal: no (minimal twist has level 88)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-23.8164\) of defining polynomial
Character \(\chi\) \(=\) 968.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-24.4344 q^{3} -57.4032 q^{5} -156.812 q^{7} +354.040 q^{9} +1107.14 q^{13} +1402.61 q^{15} -1734.64 q^{17} -726.877 q^{19} +3831.61 q^{21} +4796.66 q^{23} +170.132 q^{25} -2713.20 q^{27} -4674.99 q^{29} -2000.06 q^{31} +9001.52 q^{35} -10313.3 q^{37} -27052.3 q^{39} -2626.79 q^{41} -9573.28 q^{43} -20323.0 q^{45} +3281.20 q^{47} +7783.01 q^{49} +42384.9 q^{51} -25960.9 q^{53} +17760.8 q^{57} -4423.25 q^{59} -15468.1 q^{61} -55517.7 q^{63} -63553.5 q^{65} -18768.3 q^{67} -117204. q^{69} -30765.2 q^{71} -62882.9 q^{73} -4157.08 q^{75} +65539.3 q^{79} -19736.4 q^{81} +8408.81 q^{83} +99573.9 q^{85} +114230. q^{87} +774.583 q^{89} -173613. q^{91} +48870.2 q^{93} +41725.1 q^{95} -134159. q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 12 q^{3} + 81 q^{5} + 47 q^{7} + 1416 q^{9} - 859 q^{13} - 738 q^{15} - 1226 q^{17} - 616 q^{19} - 1141 q^{21} + 2258 q^{23} + 10307 q^{25} + 564 q^{27} - 1613 q^{29} + 18511 q^{31} + 23544 q^{35}+ \cdots + 171314 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −24.4344 −1.56747 −0.783734 0.621097i \(-0.786687\pi\)
−0.783734 + 0.621097i \(0.786687\pi\)
\(4\) 0 0
\(5\) −57.4032 −1.02686 −0.513430 0.858131i \(-0.671625\pi\)
−0.513430 + 0.858131i \(0.671625\pi\)
\(6\) 0 0
\(7\) −156.812 −1.20958 −0.604790 0.796385i \(-0.706743\pi\)
−0.604790 + 0.796385i \(0.706743\pi\)
\(8\) 0 0
\(9\) 354.040 1.45695
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 1107.14 1.81696 0.908478 0.417933i \(-0.137245\pi\)
0.908478 + 0.417933i \(0.137245\pi\)
\(14\) 0 0
\(15\) 1402.61 1.60957
\(16\) 0 0
\(17\) −1734.64 −1.45575 −0.727875 0.685710i \(-0.759492\pi\)
−0.727875 + 0.685710i \(0.759492\pi\)
\(18\) 0 0
\(19\) −726.877 −0.461931 −0.230966 0.972962i \(-0.574188\pi\)
−0.230966 + 0.972962i \(0.574188\pi\)
\(20\) 0 0
\(21\) 3831.61 1.89598
\(22\) 0 0
\(23\) 4796.66 1.89069 0.945343 0.326078i \(-0.105727\pi\)
0.945343 + 0.326078i \(0.105727\pi\)
\(24\) 0 0
\(25\) 170.132 0.0544424
\(26\) 0 0
\(27\) −2713.20 −0.716262
\(28\) 0 0
\(29\) −4674.99 −1.03225 −0.516125 0.856513i \(-0.672626\pi\)
−0.516125 + 0.856513i \(0.672626\pi\)
\(30\) 0 0
\(31\) −2000.06 −0.373799 −0.186899 0.982379i \(-0.559844\pi\)
−0.186899 + 0.982379i \(0.559844\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 9001.52 1.24207
\(36\) 0 0
\(37\) −10313.3 −1.23850 −0.619248 0.785195i \(-0.712563\pi\)
−0.619248 + 0.785195i \(0.712563\pi\)
\(38\) 0 0
\(39\) −27052.3 −2.84802
\(40\) 0 0
\(41\) −2626.79 −0.244042 −0.122021 0.992527i \(-0.538938\pi\)
−0.122021 + 0.992527i \(0.538938\pi\)
\(42\) 0 0
\(43\) −9573.28 −0.789569 −0.394784 0.918774i \(-0.629181\pi\)
−0.394784 + 0.918774i \(0.629181\pi\)
\(44\) 0 0
\(45\) −20323.0 −1.49609
\(46\) 0 0
\(47\) 3281.20 0.216665 0.108332 0.994115i \(-0.465449\pi\)
0.108332 + 0.994115i \(0.465449\pi\)
\(48\) 0 0
\(49\) 7783.01 0.463082
\(50\) 0 0
\(51\) 42384.9 2.28184
\(52\) 0 0
\(53\) −25960.9 −1.26949 −0.634747 0.772720i \(-0.718896\pi\)
−0.634747 + 0.772720i \(0.718896\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 17760.8 0.724062
\(58\) 0 0
\(59\) −4423.25 −0.165429 −0.0827145 0.996573i \(-0.526359\pi\)
−0.0827145 + 0.996573i \(0.526359\pi\)
\(60\) 0 0
\(61\) −15468.1 −0.532245 −0.266122 0.963939i \(-0.585743\pi\)
−0.266122 + 0.963939i \(0.585743\pi\)
\(62\) 0 0
\(63\) −55517.7 −1.76230
\(64\) 0 0
\(65\) −63553.5 −1.86576
\(66\) 0 0
\(67\) −18768.3 −0.510786 −0.255393 0.966837i \(-0.582205\pi\)
−0.255393 + 0.966837i \(0.582205\pi\)
\(68\) 0 0
\(69\) −117204. −2.96359
\(70\) 0 0
\(71\) −30765.2 −0.724291 −0.362146 0.932122i \(-0.617956\pi\)
−0.362146 + 0.932122i \(0.617956\pi\)
\(72\) 0 0
\(73\) −62882.9 −1.38110 −0.690550 0.723284i \(-0.742632\pi\)
−0.690550 + 0.723284i \(0.742632\pi\)
\(74\) 0 0
\(75\) −4157.08 −0.0853367
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 65539.3 1.18150 0.590750 0.806854i \(-0.298832\pi\)
0.590750 + 0.806854i \(0.298832\pi\)
\(80\) 0 0
\(81\) −19736.4 −0.334237
\(82\) 0 0
\(83\) 8408.81 0.133980 0.0669899 0.997754i \(-0.478660\pi\)
0.0669899 + 0.997754i \(0.478660\pi\)
\(84\) 0 0
\(85\) 99573.9 1.49485
\(86\) 0 0
\(87\) 114230. 1.61802
\(88\) 0 0
\(89\) 774.583 0.0103656 0.00518278 0.999987i \(-0.498350\pi\)
0.00518278 + 0.999987i \(0.498350\pi\)
\(90\) 0 0
\(91\) −173613. −2.19775
\(92\) 0 0
\(93\) 48870.2 0.585918
\(94\) 0 0
\(95\) 41725.1 0.474339
\(96\) 0 0
\(97\) −134159. −1.44774 −0.723871 0.689935i \(-0.757639\pi\)
−0.723871 + 0.689935i \(0.757639\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 25403.6 0.247794 0.123897 0.992295i \(-0.460461\pi\)
0.123897 + 0.992295i \(0.460461\pi\)
\(102\) 0 0
\(103\) −35684.3 −0.331424 −0.165712 0.986174i \(-0.552992\pi\)
−0.165712 + 0.986174i \(0.552992\pi\)
\(104\) 0 0
\(105\) −219947. −1.94690
\(106\) 0 0
\(107\) 89865.2 0.758808 0.379404 0.925231i \(-0.376129\pi\)
0.379404 + 0.925231i \(0.376129\pi\)
\(108\) 0 0
\(109\) −12869.0 −0.103747 −0.0518737 0.998654i \(-0.516519\pi\)
−0.0518737 + 0.998654i \(0.516519\pi\)
\(110\) 0 0
\(111\) 252000. 1.94130
\(112\) 0 0
\(113\) −90276.2 −0.665085 −0.332542 0.943088i \(-0.607906\pi\)
−0.332542 + 0.943088i \(0.607906\pi\)
\(114\) 0 0
\(115\) −275344. −1.94147
\(116\) 0 0
\(117\) 391972. 2.64722
\(118\) 0 0
\(119\) 272012. 1.76085
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 64184.0 0.382529
\(124\) 0 0
\(125\) 169619. 0.970956
\(126\) 0 0
\(127\) 30566.5 0.168165 0.0840826 0.996459i \(-0.473204\pi\)
0.0840826 + 0.996459i \(0.473204\pi\)
\(128\) 0 0
\(129\) 233917. 1.23762
\(130\) 0 0
\(131\) −323898. −1.64904 −0.824518 0.565836i \(-0.808553\pi\)
−0.824518 + 0.565836i \(0.808553\pi\)
\(132\) 0 0
\(133\) 113983. 0.558742
\(134\) 0 0
\(135\) 155746. 0.735501
\(136\) 0 0
\(137\) −184607. −0.840326 −0.420163 0.907449i \(-0.638027\pi\)
−0.420163 + 0.907449i \(0.638027\pi\)
\(138\) 0 0
\(139\) 274059. 1.20312 0.601558 0.798829i \(-0.294547\pi\)
0.601558 + 0.798829i \(0.294547\pi\)
\(140\) 0 0
\(141\) −80174.2 −0.339615
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 268359. 1.05998
\(146\) 0 0
\(147\) −190173. −0.725866
\(148\) 0 0
\(149\) −215947. −0.796859 −0.398430 0.917199i \(-0.630445\pi\)
−0.398430 + 0.917199i \(0.630445\pi\)
\(150\) 0 0
\(151\) −401718. −1.43377 −0.716883 0.697193i \(-0.754432\pi\)
−0.716883 + 0.697193i \(0.754432\pi\)
\(152\) 0 0
\(153\) −614132. −2.12096
\(154\) 0 0
\(155\) 114810. 0.383839
\(156\) 0 0
\(157\) 326553. 1.05732 0.528658 0.848835i \(-0.322696\pi\)
0.528658 + 0.848835i \(0.322696\pi\)
\(158\) 0 0
\(159\) 634340. 1.98989
\(160\) 0 0
\(161\) −752174. −2.28693
\(162\) 0 0
\(163\) −76329.8 −0.225022 −0.112511 0.993650i \(-0.535889\pi\)
−0.112511 + 0.993650i \(0.535889\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −617643. −1.71375 −0.856873 0.515527i \(-0.827596\pi\)
−0.856873 + 0.515527i \(0.827596\pi\)
\(168\) 0 0
\(169\) 854467. 2.30133
\(170\) 0 0
\(171\) −257344. −0.673013
\(172\) 0 0
\(173\) −302852. −0.769335 −0.384668 0.923055i \(-0.625684\pi\)
−0.384668 + 0.923055i \(0.625684\pi\)
\(174\) 0 0
\(175\) −26678.8 −0.0658524
\(176\) 0 0
\(177\) 108080. 0.259305
\(178\) 0 0
\(179\) −846750. −1.97525 −0.987626 0.156826i \(-0.949874\pi\)
−0.987626 + 0.156826i \(0.949874\pi\)
\(180\) 0 0
\(181\) 512903. 1.16369 0.581847 0.813298i \(-0.302330\pi\)
0.581847 + 0.813298i \(0.302330\pi\)
\(182\) 0 0
\(183\) 377953. 0.834276
\(184\) 0 0
\(185\) 592019. 1.27176
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 425462. 0.866376
\(190\) 0 0
\(191\) 332097. 0.658690 0.329345 0.944210i \(-0.393172\pi\)
0.329345 + 0.944210i \(0.393172\pi\)
\(192\) 0 0
\(193\) −109663. −0.211918 −0.105959 0.994371i \(-0.533791\pi\)
−0.105959 + 0.994371i \(0.533791\pi\)
\(194\) 0 0
\(195\) 1.55289e6 2.92452
\(196\) 0 0
\(197\) 199830. 0.366855 0.183428 0.983033i \(-0.441281\pi\)
0.183428 + 0.983033i \(0.441281\pi\)
\(198\) 0 0
\(199\) −814887. −1.45870 −0.729348 0.684143i \(-0.760176\pi\)
−0.729348 + 0.684143i \(0.760176\pi\)
\(200\) 0 0
\(201\) 458593. 0.800640
\(202\) 0 0
\(203\) 733094. 1.24859
\(204\) 0 0
\(205\) 150786. 0.250597
\(206\) 0 0
\(207\) 1.69821e6 2.75464
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −366055. −0.566030 −0.283015 0.959115i \(-0.591335\pi\)
−0.283015 + 0.959115i \(0.591335\pi\)
\(212\) 0 0
\(213\) 751728. 1.13530
\(214\) 0 0
\(215\) 549538. 0.810777
\(216\) 0 0
\(217\) 313633. 0.452139
\(218\) 0 0
\(219\) 1.53651e6 2.16483
\(220\) 0 0
\(221\) −1.92049e6 −2.64503
\(222\) 0 0
\(223\) 1.08456e6 1.46047 0.730233 0.683199i \(-0.239412\pi\)
0.730233 + 0.683199i \(0.239412\pi\)
\(224\) 0 0
\(225\) 60233.7 0.0793201
\(226\) 0 0
\(227\) 490127. 0.631312 0.315656 0.948874i \(-0.397775\pi\)
0.315656 + 0.948874i \(0.397775\pi\)
\(228\) 0 0
\(229\) −212187. −0.267380 −0.133690 0.991023i \(-0.542683\pi\)
−0.133690 + 0.991023i \(0.542683\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −542640. −0.654820 −0.327410 0.944882i \(-0.606176\pi\)
−0.327410 + 0.944882i \(0.606176\pi\)
\(234\) 0 0
\(235\) −188352. −0.222485
\(236\) 0 0
\(237\) −1.60141e6 −1.85196
\(238\) 0 0
\(239\) 337506. 0.382197 0.191098 0.981571i \(-0.438795\pi\)
0.191098 + 0.981571i \(0.438795\pi\)
\(240\) 0 0
\(241\) −540867. −0.599857 −0.299929 0.953962i \(-0.596963\pi\)
−0.299929 + 0.953962i \(0.596963\pi\)
\(242\) 0 0
\(243\) 1.14155e6 1.24017
\(244\) 0 0
\(245\) −446770. −0.475520
\(246\) 0 0
\(247\) −804756. −0.839308
\(248\) 0 0
\(249\) −205464. −0.210009
\(250\) 0 0
\(251\) 363862. 0.364546 0.182273 0.983248i \(-0.441655\pi\)
0.182273 + 0.983248i \(0.441655\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −2.43303e6 −2.34313
\(256\) 0 0
\(257\) −1.95166e6 −1.84320 −0.921598 0.388145i \(-0.873116\pi\)
−0.921598 + 0.388145i \(0.873116\pi\)
\(258\) 0 0
\(259\) 1.61725e6 1.49806
\(260\) 0 0
\(261\) −1.65513e6 −1.50394
\(262\) 0 0
\(263\) 878155. 0.782856 0.391428 0.920209i \(-0.371981\pi\)
0.391428 + 0.920209i \(0.371981\pi\)
\(264\) 0 0
\(265\) 1.49024e6 1.30359
\(266\) 0 0
\(267\) −18926.5 −0.0162477
\(268\) 0 0
\(269\) 1.88478e6 1.58810 0.794052 0.607849i \(-0.207968\pi\)
0.794052 + 0.607849i \(0.207968\pi\)
\(270\) 0 0
\(271\) 1.59141e6 1.31631 0.658155 0.752883i \(-0.271337\pi\)
0.658155 + 0.752883i \(0.271337\pi\)
\(272\) 0 0
\(273\) 4.24213e6 3.44491
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −1.79542e6 −1.40594 −0.702969 0.711220i \(-0.748143\pi\)
−0.702969 + 0.711220i \(0.748143\pi\)
\(278\) 0 0
\(279\) −708100. −0.544608
\(280\) 0 0
\(281\) −1.46354e6 −1.10570 −0.552851 0.833280i \(-0.686460\pi\)
−0.552851 + 0.833280i \(0.686460\pi\)
\(282\) 0 0
\(283\) 171872. 0.127567 0.0637836 0.997964i \(-0.479683\pi\)
0.0637836 + 0.997964i \(0.479683\pi\)
\(284\) 0 0
\(285\) −1.01953e6 −0.743511
\(286\) 0 0
\(287\) 411912. 0.295189
\(288\) 0 0
\(289\) 1.58912e6 1.11921
\(290\) 0 0
\(291\) 3.27810e6 2.26929
\(292\) 0 0
\(293\) −110511. −0.0752031 −0.0376015 0.999293i \(-0.511972\pi\)
−0.0376015 + 0.999293i \(0.511972\pi\)
\(294\) 0 0
\(295\) 253909. 0.169873
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5.31058e6 3.43529
\(300\) 0 0
\(301\) 1.50121e6 0.955046
\(302\) 0 0
\(303\) −620721. −0.388410
\(304\) 0 0
\(305\) 887917. 0.546541
\(306\) 0 0
\(307\) −79497.8 −0.0481404 −0.0240702 0.999710i \(-0.507663\pi\)
−0.0240702 + 0.999710i \(0.507663\pi\)
\(308\) 0 0
\(309\) 871925. 0.519497
\(310\) 0 0
\(311\) 366690. 0.214980 0.107490 0.994206i \(-0.465719\pi\)
0.107490 + 0.994206i \(0.465719\pi\)
\(312\) 0 0
\(313\) 2.52426e6 1.45638 0.728188 0.685377i \(-0.240363\pi\)
0.728188 + 0.685377i \(0.240363\pi\)
\(314\) 0 0
\(315\) 3.18690e6 1.80964
\(316\) 0 0
\(317\) 2.41151e6 1.34785 0.673924 0.738801i \(-0.264608\pi\)
0.673924 + 0.738801i \(0.264608\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −2.19580e6 −1.18941
\(322\) 0 0
\(323\) 1.26087e6 0.672456
\(324\) 0 0
\(325\) 188361. 0.0989194
\(326\) 0 0
\(327\) 314445. 0.162621
\(328\) 0 0
\(329\) −514532. −0.262073
\(330\) 0 0
\(331\) −779307. −0.390966 −0.195483 0.980707i \(-0.562627\pi\)
−0.195483 + 0.980707i \(0.562627\pi\)
\(332\) 0 0
\(333\) −3.65133e6 −1.80443
\(334\) 0 0
\(335\) 1.07736e6 0.524506
\(336\) 0 0
\(337\) 287133. 0.137724 0.0688619 0.997626i \(-0.478063\pi\)
0.0688619 + 0.997626i \(0.478063\pi\)
\(338\) 0 0
\(339\) 2.20584e6 1.04250
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 1.41507e6 0.649445
\(344\) 0 0
\(345\) 6.72786e6 3.04319
\(346\) 0 0
\(347\) −1.49615e6 −0.667038 −0.333519 0.942743i \(-0.608236\pi\)
−0.333519 + 0.942743i \(0.608236\pi\)
\(348\) 0 0
\(349\) −395477. −0.173803 −0.0869016 0.996217i \(-0.527697\pi\)
−0.0869016 + 0.996217i \(0.527697\pi\)
\(350\) 0 0
\(351\) −3.00389e6 −1.30142
\(352\) 0 0
\(353\) −414432. −0.177017 −0.0885087 0.996075i \(-0.528210\pi\)
−0.0885087 + 0.996075i \(0.528210\pi\)
\(354\) 0 0
\(355\) 1.76602e6 0.743746
\(356\) 0 0
\(357\) −6.64646e6 −2.76007
\(358\) 0 0
\(359\) 1.82171e6 0.746005 0.373003 0.927830i \(-0.378328\pi\)
0.373003 + 0.927830i \(0.378328\pi\)
\(360\) 0 0
\(361\) −1.94775e6 −0.786620
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.60968e6 1.41820
\(366\) 0 0
\(367\) −988223. −0.382992 −0.191496 0.981493i \(-0.561334\pi\)
−0.191496 + 0.981493i \(0.561334\pi\)
\(368\) 0 0
\(369\) −929988. −0.355559
\(370\) 0 0
\(371\) 4.07099e6 1.53555
\(372\) 0 0
\(373\) 1.33761e6 0.497802 0.248901 0.968529i \(-0.419931\pi\)
0.248901 + 0.968529i \(0.419931\pi\)
\(374\) 0 0
\(375\) −4.14454e6 −1.52194
\(376\) 0 0
\(377\) −5.17587e6 −1.87555
\(378\) 0 0
\(379\) 1.22299e6 0.437345 0.218673 0.975798i \(-0.429827\pi\)
0.218673 + 0.975798i \(0.429827\pi\)
\(380\) 0 0
\(381\) −746873. −0.263593
\(382\) 0 0
\(383\) −2.28304e6 −0.795273 −0.397637 0.917543i \(-0.630169\pi\)
−0.397637 + 0.917543i \(0.630169\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −3.38933e6 −1.15037
\(388\) 0 0
\(389\) −1.32923e6 −0.445377 −0.222688 0.974890i \(-0.571483\pi\)
−0.222688 + 0.974890i \(0.571483\pi\)
\(390\) 0 0
\(391\) −8.32048e6 −2.75237
\(392\) 0 0
\(393\) 7.91425e6 2.58481
\(394\) 0 0
\(395\) −3.76217e6 −1.21324
\(396\) 0 0
\(397\) 2.18246e6 0.694975 0.347488 0.937685i \(-0.387035\pi\)
0.347488 + 0.937685i \(0.387035\pi\)
\(398\) 0 0
\(399\) −2.78511e6 −0.875810
\(400\) 0 0
\(401\) −2.24138e6 −0.696072 −0.348036 0.937481i \(-0.613151\pi\)
−0.348036 + 0.937481i \(0.613151\pi\)
\(402\) 0 0
\(403\) −2.21434e6 −0.679176
\(404\) 0 0
\(405\) 1.13293e6 0.343215
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −4.39799e6 −1.30001 −0.650003 0.759931i \(-0.725232\pi\)
−0.650003 + 0.759931i \(0.725232\pi\)
\(410\) 0 0
\(411\) 4.51077e6 1.31718
\(412\) 0 0
\(413\) 693619. 0.200100
\(414\) 0 0
\(415\) −482693. −0.137579
\(416\) 0 0
\(417\) −6.69647e6 −1.88585
\(418\) 0 0
\(419\) 5.12999e6 1.42752 0.713759 0.700391i \(-0.246991\pi\)
0.713759 + 0.700391i \(0.246991\pi\)
\(420\) 0 0
\(421\) −1.24163e6 −0.341419 −0.170709 0.985321i \(-0.554606\pi\)
−0.170709 + 0.985321i \(0.554606\pi\)
\(422\) 0 0
\(423\) 1.16168e6 0.315671
\(424\) 0 0
\(425\) −295118. −0.0792545
\(426\) 0 0
\(427\) 2.42558e6 0.643792
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 270238. 0.0700734 0.0350367 0.999386i \(-0.488845\pi\)
0.0350367 + 0.999386i \(0.488845\pi\)
\(432\) 0 0
\(433\) −2.59493e6 −0.665128 −0.332564 0.943081i \(-0.607914\pi\)
−0.332564 + 0.943081i \(0.607914\pi\)
\(434\) 0 0
\(435\) −6.55720e6 −1.66148
\(436\) 0 0
\(437\) −3.48658e6 −0.873367
\(438\) 0 0
\(439\) −6.26302e6 −1.55104 −0.775519 0.631325i \(-0.782512\pi\)
−0.775519 + 0.631325i \(0.782512\pi\)
\(440\) 0 0
\(441\) 2.75550e6 0.674689
\(442\) 0 0
\(443\) 98175.1 0.0237680 0.0118840 0.999929i \(-0.496217\pi\)
0.0118840 + 0.999929i \(0.496217\pi\)
\(444\) 0 0
\(445\) −44463.6 −0.0106440
\(446\) 0 0
\(447\) 5.27654e6 1.24905
\(448\) 0 0
\(449\) −8.28515e6 −1.93948 −0.969738 0.244148i \(-0.921492\pi\)
−0.969738 + 0.244148i \(0.921492\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 9.81573e6 2.24738
\(454\) 0 0
\(455\) 9.96595e6 2.25678
\(456\) 0 0
\(457\) 1.55619e6 0.348556 0.174278 0.984696i \(-0.444241\pi\)
0.174278 + 0.984696i \(0.444241\pi\)
\(458\) 0 0
\(459\) 4.70642e6 1.04270
\(460\) 0 0
\(461\) −601195. −0.131754 −0.0658769 0.997828i \(-0.520984\pi\)
−0.0658769 + 0.997828i \(0.520984\pi\)
\(462\) 0 0
\(463\) −1.17902e6 −0.255605 −0.127802 0.991800i \(-0.540792\pi\)
−0.127802 + 0.991800i \(0.540792\pi\)
\(464\) 0 0
\(465\) −2.80531e6 −0.601656
\(466\) 0 0
\(467\) −3.20338e6 −0.679697 −0.339849 0.940480i \(-0.610376\pi\)
−0.339849 + 0.940480i \(0.610376\pi\)
\(468\) 0 0
\(469\) 2.94310e6 0.617836
\(470\) 0 0
\(471\) −7.97913e6 −1.65731
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −123665. −0.0251486
\(476\) 0 0
\(477\) −9.19121e6 −1.84960
\(478\) 0 0
\(479\) −6.41218e6 −1.27693 −0.638465 0.769651i \(-0.720430\pi\)
−0.638465 + 0.769651i \(0.720430\pi\)
\(480\) 0 0
\(481\) −1.14183e7 −2.25029
\(482\) 0 0
\(483\) 1.83789e7 3.58470
\(484\) 0 0
\(485\) 7.70118e6 1.48663
\(486\) 0 0
\(487\) 5.46574e6 1.04430 0.522152 0.852852i \(-0.325129\pi\)
0.522152 + 0.852852i \(0.325129\pi\)
\(488\) 0 0
\(489\) 1.86507e6 0.352715
\(490\) 0 0
\(491\) 4.49258e6 0.840992 0.420496 0.907294i \(-0.361856\pi\)
0.420496 + 0.907294i \(0.361856\pi\)
\(492\) 0 0
\(493\) 8.10942e6 1.50270
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.82435e6 0.876088
\(498\) 0 0
\(499\) −6.91461e6 −1.24313 −0.621565 0.783363i \(-0.713503\pi\)
−0.621565 + 0.783363i \(0.713503\pi\)
\(500\) 0 0
\(501\) 1.50917e7 2.68624
\(502\) 0 0
\(503\) −1.30731e6 −0.230387 −0.115193 0.993343i \(-0.536749\pi\)
−0.115193 + 0.993343i \(0.536749\pi\)
\(504\) 0 0
\(505\) −1.45825e6 −0.254450
\(506\) 0 0
\(507\) −2.08784e7 −3.60726
\(508\) 0 0
\(509\) −5.48520e6 −0.938422 −0.469211 0.883086i \(-0.655462\pi\)
−0.469211 + 0.883086i \(0.655462\pi\)
\(510\) 0 0
\(511\) 9.86080e6 1.67055
\(512\) 0 0
\(513\) 1.97216e6 0.330864
\(514\) 0 0
\(515\) 2.04840e6 0.340326
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 7.40001e6 1.20591
\(520\) 0 0
\(521\) −4.73226e6 −0.763791 −0.381895 0.924206i \(-0.624729\pi\)
−0.381895 + 0.924206i \(0.624729\pi\)
\(522\) 0 0
\(523\) 1.48341e6 0.237141 0.118571 0.992946i \(-0.462169\pi\)
0.118571 + 0.992946i \(0.462169\pi\)
\(524\) 0 0
\(525\) 651881. 0.103221
\(526\) 0 0
\(527\) 3.46938e6 0.544158
\(528\) 0 0
\(529\) 1.65716e7 2.57469
\(530\) 0 0
\(531\) −1.56601e6 −0.241023
\(532\) 0 0
\(533\) −2.90822e6 −0.443414
\(534\) 0 0
\(535\) −5.15855e6 −0.779190
\(536\) 0 0
\(537\) 2.06898e7 3.09614
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −3.57610e6 −0.525310 −0.262655 0.964890i \(-0.584598\pi\)
−0.262655 + 0.964890i \(0.584598\pi\)
\(542\) 0 0
\(543\) −1.25325e7 −1.82405
\(544\) 0 0
\(545\) 738720. 0.106534
\(546\) 0 0
\(547\) −6.89639e6 −0.985493 −0.492746 0.870173i \(-0.664007\pi\)
−0.492746 + 0.870173i \(0.664007\pi\)
\(548\) 0 0
\(549\) −5.47631e6 −0.775457
\(550\) 0 0
\(551\) 3.39814e6 0.476829
\(552\) 0 0
\(553\) −1.02773e7 −1.42912
\(554\) 0 0
\(555\) −1.44656e7 −1.99345
\(556\) 0 0
\(557\) −3.72149e6 −0.508252 −0.254126 0.967171i \(-0.581788\pi\)
−0.254126 + 0.967171i \(0.581788\pi\)
\(558\) 0 0
\(559\) −1.05990e7 −1.43461
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −5.39390e6 −0.717186 −0.358593 0.933494i \(-0.616743\pi\)
−0.358593 + 0.933494i \(0.616743\pi\)
\(564\) 0 0
\(565\) 5.18214e6 0.682949
\(566\) 0 0
\(567\) 3.09490e6 0.404286
\(568\) 0 0
\(569\) 2.90466e6 0.376110 0.188055 0.982159i \(-0.439782\pi\)
0.188055 + 0.982159i \(0.439782\pi\)
\(570\) 0 0
\(571\) 636912. 0.0817503 0.0408752 0.999164i \(-0.486985\pi\)
0.0408752 + 0.999164i \(0.486985\pi\)
\(572\) 0 0
\(573\) −8.11458e6 −1.03248
\(574\) 0 0
\(575\) 816067. 0.102933
\(576\) 0 0
\(577\) 1.29002e7 1.61308 0.806540 0.591179i \(-0.201337\pi\)
0.806540 + 0.591179i \(0.201337\pi\)
\(578\) 0 0
\(579\) 2.67955e6 0.332174
\(580\) 0 0
\(581\) −1.31860e6 −0.162059
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −2.25005e7 −2.71833
\(586\) 0 0
\(587\) 1.25428e7 1.50245 0.751225 0.660046i \(-0.229463\pi\)
0.751225 + 0.660046i \(0.229463\pi\)
\(588\) 0 0
\(589\) 1.45380e6 0.172669
\(590\) 0 0
\(591\) −4.88273e6 −0.575034
\(592\) 0 0
\(593\) 1.61155e7 1.88195 0.940973 0.338483i \(-0.109914\pi\)
0.940973 + 0.338483i \(0.109914\pi\)
\(594\) 0 0
\(595\) −1.56144e7 −1.80814
\(596\) 0 0
\(597\) 1.99113e7 2.28646
\(598\) 0 0
\(599\) −4.33869e6 −0.494073 −0.247037 0.969006i \(-0.579457\pi\)
−0.247037 + 0.969006i \(0.579457\pi\)
\(600\) 0 0
\(601\) −1.61722e7 −1.82634 −0.913172 0.407574i \(-0.866375\pi\)
−0.913172 + 0.407574i \(0.866375\pi\)
\(602\) 0 0
\(603\) −6.64474e6 −0.744192
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 1.14078e6 0.125670 0.0628350 0.998024i \(-0.479986\pi\)
0.0628350 + 0.998024i \(0.479986\pi\)
\(608\) 0 0
\(609\) −1.79127e7 −1.95712
\(610\) 0 0
\(611\) 3.63275e6 0.393670
\(612\) 0 0
\(613\) 8.17387e6 0.878570 0.439285 0.898348i \(-0.355232\pi\)
0.439285 + 0.898348i \(0.355232\pi\)
\(614\) 0 0
\(615\) −3.68437e6 −0.392803
\(616\) 0 0
\(617\) 7.66601e6 0.810693 0.405346 0.914163i \(-0.367151\pi\)
0.405346 + 0.914163i \(0.367151\pi\)
\(618\) 0 0
\(619\) 1.44957e7 1.52059 0.760297 0.649576i \(-0.225054\pi\)
0.760297 + 0.649576i \(0.225054\pi\)
\(620\) 0 0
\(621\) −1.30143e7 −1.35423
\(622\) 0 0
\(623\) −121464. −0.0125380
\(624\) 0 0
\(625\) −1.02683e7 −1.05148
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.78899e7 1.80294
\(630\) 0 0
\(631\) 2.99105e6 0.299055 0.149527 0.988758i \(-0.452225\pi\)
0.149527 + 0.988758i \(0.452225\pi\)
\(632\) 0 0
\(633\) 8.94432e6 0.887234
\(634\) 0 0
\(635\) −1.75461e6 −0.172682
\(636\) 0 0
\(637\) 8.61689e6 0.841399
\(638\) 0 0
\(639\) −1.08921e7 −1.05526
\(640\) 0 0
\(641\) −4.81819e6 −0.463168 −0.231584 0.972815i \(-0.574391\pi\)
−0.231584 + 0.972815i \(0.574391\pi\)
\(642\) 0 0
\(643\) 1.73575e7 1.65561 0.827807 0.561014i \(-0.189588\pi\)
0.827807 + 0.561014i \(0.189588\pi\)
\(644\) 0 0
\(645\) −1.34276e7 −1.27087
\(646\) 0 0
\(647\) −7.63214e6 −0.716780 −0.358390 0.933572i \(-0.616674\pi\)
−0.358390 + 0.933572i \(0.616674\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −7.66344e6 −0.708714
\(652\) 0 0
\(653\) 1.16510e7 1.06926 0.534628 0.845087i \(-0.320452\pi\)
0.534628 + 0.845087i \(0.320452\pi\)
\(654\) 0 0
\(655\) 1.85928e7 1.69333
\(656\) 0 0
\(657\) −2.22631e7 −2.01220
\(658\) 0 0
\(659\) 8.86205e6 0.794915 0.397458 0.917621i \(-0.369893\pi\)
0.397458 + 0.917621i \(0.369893\pi\)
\(660\) 0 0
\(661\) −1.73414e6 −0.154376 −0.0771882 0.997017i \(-0.524594\pi\)
−0.0771882 + 0.997017i \(0.524594\pi\)
\(662\) 0 0
\(663\) 4.69260e7 4.14601
\(664\) 0 0
\(665\) −6.54300e6 −0.573750
\(666\) 0 0
\(667\) −2.24243e7 −1.95166
\(668\) 0 0
\(669\) −2.65006e7 −2.28923
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −2.12145e7 −1.80549 −0.902743 0.430179i \(-0.858450\pi\)
−0.902743 + 0.430179i \(0.858450\pi\)
\(674\) 0 0
\(675\) −461603. −0.0389950
\(676\) 0 0
\(677\) −7.11966e6 −0.597018 −0.298509 0.954407i \(-0.596489\pi\)
−0.298509 + 0.954407i \(0.596489\pi\)
\(678\) 0 0
\(679\) 2.10378e7 1.75116
\(680\) 0 0
\(681\) −1.19760e7 −0.989562
\(682\) 0 0
\(683\) −6.49102e6 −0.532428 −0.266214 0.963914i \(-0.585773\pi\)
−0.266214 + 0.963914i \(0.585773\pi\)
\(684\) 0 0
\(685\) 1.05971e7 0.862898
\(686\) 0 0
\(687\) 5.18466e6 0.419110
\(688\) 0 0
\(689\) −2.87424e7 −2.30662
\(690\) 0 0
\(691\) 3.35308e6 0.267146 0.133573 0.991039i \(-0.457355\pi\)
0.133573 + 0.991039i \(0.457355\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.57319e7 −1.23543
\(696\) 0 0
\(697\) 4.55653e6 0.355265
\(698\) 0 0
\(699\) 1.32591e7 1.02641
\(700\) 0 0
\(701\) −2.22894e7 −1.71318 −0.856592 0.515995i \(-0.827422\pi\)
−0.856592 + 0.515995i \(0.827422\pi\)
\(702\) 0 0
\(703\) 7.49653e6 0.572100
\(704\) 0 0
\(705\) 4.60226e6 0.348737
\(706\) 0 0
\(707\) −3.98359e6 −0.299727
\(708\) 0 0
\(709\) −2.20316e7 −1.64600 −0.823001 0.568039i \(-0.807702\pi\)
−0.823001 + 0.568039i \(0.807702\pi\)
\(710\) 0 0
\(711\) 2.32035e7 1.72139
\(712\) 0 0
\(713\) −9.59359e6 −0.706736
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −8.24677e6 −0.599081
\(718\) 0 0
\(719\) −1.29186e7 −0.931955 −0.465977 0.884797i \(-0.654297\pi\)
−0.465977 + 0.884797i \(0.654297\pi\)
\(720\) 0 0
\(721\) 5.59573e6 0.400884
\(722\) 0 0
\(723\) 1.32158e7 0.940257
\(724\) 0 0
\(725\) −795367. −0.0561982
\(726\) 0 0
\(727\) 4.83500e6 0.339282 0.169641 0.985506i \(-0.445739\pi\)
0.169641 + 0.985506i \(0.445739\pi\)
\(728\) 0 0
\(729\) −2.30972e7 −1.60969
\(730\) 0 0
\(731\) 1.66062e7 1.14941
\(732\) 0 0
\(733\) 6.52019e6 0.448230 0.224115 0.974563i \(-0.428051\pi\)
0.224115 + 0.974563i \(0.428051\pi\)
\(734\) 0 0
\(735\) 1.09166e7 0.745363
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 2.68574e7 1.80906 0.904530 0.426409i \(-0.140222\pi\)
0.904530 + 0.426409i \(0.140222\pi\)
\(740\) 0 0
\(741\) 1.96637e7 1.31559
\(742\) 0 0
\(743\) −6.89024e6 −0.457891 −0.228946 0.973439i \(-0.573528\pi\)
−0.228946 + 0.973439i \(0.573528\pi\)
\(744\) 0 0
\(745\) 1.23961e7 0.818263
\(746\) 0 0
\(747\) 2.97706e6 0.195203
\(748\) 0 0
\(749\) −1.40919e7 −0.917838
\(750\) 0 0
\(751\) −6.59491e6 −0.426686 −0.213343 0.976977i \(-0.568435\pi\)
−0.213343 + 0.976977i \(0.568435\pi\)
\(752\) 0 0
\(753\) −8.89075e6 −0.571414
\(754\) 0 0
\(755\) 2.30599e7 1.47228
\(756\) 0 0
\(757\) 2.83324e7 1.79698 0.898492 0.438990i \(-0.144664\pi\)
0.898492 + 0.438990i \(0.144664\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −3.03429e6 −0.189931 −0.0949653 0.995481i \(-0.530274\pi\)
−0.0949653 + 0.995481i \(0.530274\pi\)
\(762\) 0 0
\(763\) 2.01801e6 0.125491
\(764\) 0 0
\(765\) 3.52532e7 2.17793
\(766\) 0 0
\(767\) −4.89716e6 −0.300577
\(768\) 0 0
\(769\) −1.31846e7 −0.803993 −0.401996 0.915641i \(-0.631684\pi\)
−0.401996 + 0.915641i \(0.631684\pi\)
\(770\) 0 0
\(771\) 4.76877e7 2.88915
\(772\) 0 0
\(773\) 2.57172e7 1.54802 0.774008 0.633175i \(-0.218249\pi\)
0.774008 + 0.633175i \(0.218249\pi\)
\(774\) 0 0
\(775\) −340275. −0.0203505
\(776\) 0 0
\(777\) −3.95167e7 −2.34816
\(778\) 0 0
\(779\) 1.90935e6 0.112731
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 1.26842e7 0.739362
\(784\) 0 0
\(785\) −1.87452e7 −1.08572
\(786\) 0 0
\(787\) 6.29391e6 0.362229 0.181115 0.983462i \(-0.442029\pi\)
0.181115 + 0.983462i \(0.442029\pi\)
\(788\) 0 0
\(789\) −2.14572e7 −1.22710
\(790\) 0 0
\(791\) 1.41564e7 0.804473
\(792\) 0 0
\(793\) −1.71253e7 −0.967065
\(794\) 0 0
\(795\) −3.64132e7 −2.04334
\(796\) 0 0
\(797\) −2.11720e7 −1.18064 −0.590319 0.807170i \(-0.700998\pi\)
−0.590319 + 0.807170i \(0.700998\pi\)
\(798\) 0 0
\(799\) −5.69170e6 −0.315410
\(800\) 0 0
\(801\) 274233. 0.0151022
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 4.31772e7 2.34836
\(806\) 0 0
\(807\) −4.60534e7 −2.48930
\(808\) 0 0
\(809\) −1.03526e7 −0.556132 −0.278066 0.960562i \(-0.589693\pi\)
−0.278066 + 0.960562i \(0.589693\pi\)
\(810\) 0 0
\(811\) −2.84973e7 −1.52143 −0.760715 0.649086i \(-0.775152\pi\)
−0.760715 + 0.649086i \(0.775152\pi\)
\(812\) 0 0
\(813\) −3.88851e7 −2.06327
\(814\) 0 0
\(815\) 4.38158e6 0.231066
\(816\) 0 0
\(817\) 6.95861e6 0.364726
\(818\) 0 0
\(819\) −6.14659e7 −3.20203
\(820\) 0 0
\(821\) −2.11560e6 −0.109541 −0.0547703 0.998499i \(-0.517443\pi\)
−0.0547703 + 0.998499i \(0.517443\pi\)
\(822\) 0 0
\(823\) −3.20795e7 −1.65093 −0.825463 0.564456i \(-0.809086\pi\)
−0.825463 + 0.564456i \(0.809086\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 6.14157e6 0.312260 0.156130 0.987737i \(-0.450098\pi\)
0.156130 + 0.987737i \(0.450098\pi\)
\(828\) 0 0
\(829\) 3.57939e7 1.80894 0.904468 0.426542i \(-0.140268\pi\)
0.904468 + 0.426542i \(0.140268\pi\)
\(830\) 0 0
\(831\) 4.38700e7 2.20376
\(832\) 0 0
\(833\) −1.35007e7 −0.674131
\(834\) 0 0
\(835\) 3.54547e7 1.75978
\(836\) 0 0
\(837\) 5.42655e6 0.267738
\(838\) 0 0
\(839\) −1.82982e7 −0.897438 −0.448719 0.893673i \(-0.648120\pi\)
−0.448719 + 0.893673i \(0.648120\pi\)
\(840\) 0 0
\(841\) 1.34434e6 0.0655420
\(842\) 0 0
\(843\) 3.57607e7 1.73315
\(844\) 0 0
\(845\) −4.90492e7 −2.36314
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −4.19959e6 −0.199958
\(850\) 0 0
\(851\) −4.94696e7 −2.34161
\(852\) 0 0
\(853\) 2.64368e7 1.24405 0.622023 0.782999i \(-0.286311\pi\)
0.622023 + 0.782999i \(0.286311\pi\)
\(854\) 0 0
\(855\) 1.47724e7 0.691090
\(856\) 0 0
\(857\) 7.98183e6 0.371236 0.185618 0.982622i \(-0.440571\pi\)
0.185618 + 0.982622i \(0.440571\pi\)
\(858\) 0 0
\(859\) 3.32876e7 1.53922 0.769609 0.638516i \(-0.220451\pi\)
0.769609 + 0.638516i \(0.220451\pi\)
\(860\) 0 0
\(861\) −1.00648e7 −0.462699
\(862\) 0 0
\(863\) 3.90759e7 1.78600 0.893001 0.450056i \(-0.148596\pi\)
0.893001 + 0.450056i \(0.148596\pi\)
\(864\) 0 0
\(865\) 1.73847e7 0.790000
\(866\) 0 0
\(867\) −3.88291e7 −1.75432
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −2.07792e7 −0.928076
\(872\) 0 0
\(873\) −4.74978e7 −2.10930
\(874\) 0 0
\(875\) −2.65983e7 −1.17445
\(876\) 0 0
\(877\) 8.06867e6 0.354244 0.177122 0.984189i \(-0.443321\pi\)
0.177122 + 0.984189i \(0.443321\pi\)
\(878\) 0 0
\(879\) 2.70026e6 0.117878
\(880\) 0 0
\(881\) −8.26109e6 −0.358589 −0.179295 0.983795i \(-0.557382\pi\)
−0.179295 + 0.983795i \(0.557382\pi\)
\(882\) 0 0
\(883\) 3.47617e7 1.50037 0.750186 0.661227i \(-0.229964\pi\)
0.750186 + 0.661227i \(0.229964\pi\)
\(884\) 0 0
\(885\) −6.20412e6 −0.266270
\(886\) 0 0
\(887\) −2.00670e7 −0.856394 −0.428197 0.903685i \(-0.640851\pi\)
−0.428197 + 0.903685i \(0.640851\pi\)
\(888\) 0 0
\(889\) −4.79319e6 −0.203409
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −2.38503e6 −0.100084
\(894\) 0 0
\(895\) 4.86062e7 2.02831
\(896\) 0 0
\(897\) −1.29761e8 −5.38471
\(898\) 0 0
\(899\) 9.35024e6 0.385854
\(900\) 0 0
\(901\) 4.50329e7 1.84807
\(902\) 0 0
\(903\) −3.66811e7 −1.49700
\(904\) 0 0
\(905\) −2.94423e7 −1.19495
\(906\) 0 0
\(907\) −9.14734e6 −0.369213 −0.184606 0.982813i \(-0.559101\pi\)
−0.184606 + 0.982813i \(0.559101\pi\)
\(908\) 0 0
\(909\) 8.99388e6 0.361025
\(910\) 0 0
\(911\) −1.02902e7 −0.410799 −0.205400 0.978678i \(-0.565849\pi\)
−0.205400 + 0.978678i \(0.565849\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −2.16957e7 −0.856685
\(916\) 0 0
\(917\) 5.07911e7 1.99464
\(918\) 0 0
\(919\) −2.93383e7 −1.14590 −0.572949 0.819591i \(-0.694201\pi\)
−0.572949 + 0.819591i \(0.694201\pi\)
\(920\) 0 0
\(921\) 1.94248e6 0.0754585
\(922\) 0 0
\(923\) −3.40614e7 −1.31601
\(924\) 0 0
\(925\) −1.75463e6 −0.0674267
\(926\) 0 0
\(927\) −1.26337e7 −0.482870
\(928\) 0 0
\(929\) 5.04761e7 1.91887 0.959437 0.281922i \(-0.0909720\pi\)
0.959437 + 0.281922i \(0.0909720\pi\)
\(930\) 0 0
\(931\) −5.65730e6 −0.213912
\(932\) 0 0
\(933\) −8.95984e6 −0.336974
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 4.33405e7 1.61267 0.806334 0.591460i \(-0.201448\pi\)
0.806334 + 0.591460i \(0.201448\pi\)
\(938\) 0 0
\(939\) −6.16788e7 −2.28282
\(940\) 0 0
\(941\) 1.71534e7 0.631503 0.315751 0.948842i \(-0.397743\pi\)
0.315751 + 0.948842i \(0.397743\pi\)
\(942\) 0 0
\(943\) −1.25998e7 −0.461407
\(944\) 0 0
\(945\) −2.44229e7 −0.889647
\(946\) 0 0
\(947\) 4.69793e6 0.170228 0.0851141 0.996371i \(-0.472875\pi\)
0.0851141 + 0.996371i \(0.472875\pi\)
\(948\) 0 0
\(949\) −6.96202e7 −2.50940
\(950\) 0 0
\(951\) −5.89238e7 −2.11271
\(952\) 0 0
\(953\) −4.71615e7 −1.68212 −0.841058 0.540946i \(-0.818066\pi\)
−0.841058 + 0.540946i \(0.818066\pi\)
\(954\) 0 0
\(955\) −1.90634e7 −0.676383
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 2.89487e7 1.01644
\(960\) 0 0
\(961\) −2.46289e7 −0.860274
\(962\) 0 0
\(963\) 3.18159e7 1.10555
\(964\) 0 0
\(965\) 6.29502e6 0.217610
\(966\) 0 0
\(967\) 2.66682e6 0.0917124 0.0458562 0.998948i \(-0.485398\pi\)
0.0458562 + 0.998948i \(0.485398\pi\)
\(968\) 0 0
\(969\) −3.08086e7 −1.05405
\(970\) 0 0
\(971\) −1.64763e7 −0.560803 −0.280401 0.959883i \(-0.590468\pi\)
−0.280401 + 0.959883i \(0.590468\pi\)
\(972\) 0 0
\(973\) −4.29758e7 −1.45526
\(974\) 0 0
\(975\) −4.60248e6 −0.155053
\(976\) 0 0
\(977\) 1.36143e7 0.456308 0.228154 0.973625i \(-0.426731\pi\)
0.228154 + 0.973625i \(0.426731\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −4.55612e6 −0.151155
\(982\) 0 0
\(983\) 1.03422e7 0.341372 0.170686 0.985325i \(-0.445402\pi\)
0.170686 + 0.985325i \(0.445402\pi\)
\(984\) 0 0
\(985\) −1.14709e7 −0.376709
\(986\) 0 0
\(987\) 1.25723e7 0.410791
\(988\) 0 0
\(989\) −4.59198e7 −1.49283
\(990\) 0 0
\(991\) −1.65697e7 −0.535959 −0.267979 0.963425i \(-0.586356\pi\)
−0.267979 + 0.963425i \(0.586356\pi\)
\(992\) 0 0
\(993\) 1.90419e7 0.612826
\(994\) 0 0
\(995\) 4.67772e7 1.49788
\(996\) 0 0
\(997\) 9.75109e6 0.310682 0.155341 0.987861i \(-0.450352\pi\)
0.155341 + 0.987861i \(0.450352\pi\)
\(998\) 0 0
\(999\) 2.79821e7 0.887088
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 968.6.a.q.1.2 16
11.5 even 5 88.6.i.b.25.2 32
11.9 even 5 88.6.i.b.81.2 yes 32
11.10 odd 2 968.6.a.p.1.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.6.i.b.25.2 32 11.5 even 5
88.6.i.b.81.2 yes 32 11.9 even 5
968.6.a.p.1.2 16 11.10 odd 2
968.6.a.q.1.2 16 1.1 even 1 trivial