Properties

Label 88.6.i.b.81.2
Level $88$
Weight $6$
Character 88.81
Analytic conductor $14.114$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [88,6,Mod(9,88)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(88, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 6]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("88.9");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 88 = 2^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 88.i (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.1137761435\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 81.2
Character \(\chi\) \(=\) 88.81
Dual form 88.6.i.b.25.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-7.55065 + 23.2385i) q^{3} +(46.4402 - 33.7408i) q^{5} +(-48.4576 - 149.137i) q^{7} +(-286.424 - 208.100i) q^{9} +(398.299 - 49.0805i) q^{11} +(-895.696 - 650.761i) q^{13} +(433.432 + 1333.97i) q^{15} +(1403.35 - 1019.60i) q^{17} +(-224.617 + 691.302i) q^{19} +3831.61 q^{21} +4796.66 q^{23} +(52.5738 - 161.806i) q^{25} +(2195.02 - 1594.78i) q^{27} +(-1444.65 - 4446.18i) q^{29} +(1618.08 + 1175.60i) q^{31} +(-1866.86 + 9626.46i) q^{33} +(-7282.38 - 5290.96i) q^{35} +(-3187.00 - 9808.56i) q^{37} +(21885.8 - 15901.0i) q^{39} +(-811.722 + 2498.22i) q^{41} -9573.28 q^{43} -20323.0 q^{45} +(1013.95 - 3120.61i) q^{47} +(-6296.59 + 4574.74i) q^{49} +(13097.6 + 40310.4i) q^{51} +(21002.8 + 15259.5i) q^{53} +(16841.1 - 15718.2i) q^{55} +(-14368.8 - 10439.5i) q^{57} +(-1366.86 - 4206.76i) q^{59} +(12513.9 - 9091.90i) q^{61} +(-17155.9 + 52800.5i) q^{63} -63553.5 q^{65} -18768.3 q^{67} +(-36217.9 + 111467. i) q^{69} +(24889.5 - 18083.3i) q^{71} +(-19431.9 - 59805.2i) q^{73} +(3363.15 + 2443.47i) q^{75} +(-26620.3 - 57022.8i) q^{77} +(-53022.4 - 38523.0i) q^{79} +(-6098.88 - 18770.4i) q^{81} +(-6802.87 + 4942.58i) q^{83} +(30770.0 - 94700.4i) q^{85} +114230. q^{87} +774.583 q^{89} +(-53649.4 + 165116. i) q^{91} +(-39536.8 + 28725.2i) q^{93} +(12893.8 + 39683.0i) q^{95} +(108537. + 78856.8i) q^{97} +(-124296. - 68828.0i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 21 q^{3} + 37 q^{5} - 181 q^{7} - 1123 q^{9} + 563 q^{11} - 753 q^{13} - 1731 q^{15} + 3153 q^{17} - 2022 q^{19} - 2282 q^{21} + 4516 q^{23} - 2551 q^{25} + 11538 q^{27} + 7829 q^{29} - 7643 q^{31}+ \cdots + 689815 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/88\mathbb{Z}\right)^\times\).

\(n\) \(23\) \(45\) \(57\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −7.55065 + 23.2385i −0.484374 + 1.49075i 0.348511 + 0.937305i \(0.386687\pi\)
−0.832885 + 0.553446i \(0.813313\pi\)
\(4\) 0 0
\(5\) 46.4402 33.7408i 0.830748 0.603573i −0.0890232 0.996030i \(-0.528375\pi\)
0.919771 + 0.392456i \(0.128375\pi\)
\(6\) 0 0
\(7\) −48.4576 149.137i −0.373781 1.15038i −0.944298 0.329092i \(-0.893257\pi\)
0.570517 0.821286i \(-0.306743\pi\)
\(8\) 0 0
\(9\) −286.424 208.100i −1.17870 0.856377i
\(10\) 0 0
\(11\) 398.299 49.0805i 0.992493 0.122300i
\(12\) 0 0
\(13\) −895.696 650.761i −1.46995 1.06798i −0.980629 0.195875i \(-0.937245\pi\)
−0.489319 0.872105i \(-0.662755\pi\)
\(14\) 0 0
\(15\) 433.432 + 1333.97i 0.497385 + 1.53079i
\(16\) 0 0
\(17\) 1403.35 1019.60i 1.17773 0.855669i 0.185813 0.982585i \(-0.440508\pi\)
0.991913 + 0.126916i \(0.0405080\pi\)
\(18\) 0 0
\(19\) −224.617 + 691.302i −0.142745 + 0.439323i −0.996714 0.0810005i \(-0.974188\pi\)
0.853970 + 0.520323i \(0.174188\pi\)
\(20\) 0 0
\(21\) 3831.61 1.89598
\(22\) 0 0
\(23\) 4796.66 1.89069 0.945343 0.326078i \(-0.105727\pi\)
0.945343 + 0.326078i \(0.105727\pi\)
\(24\) 0 0
\(25\) 52.5738 161.806i 0.0168236 0.0517778i
\(26\) 0 0
\(27\) 2195.02 1594.78i 0.579468 0.421008i
\(28\) 0 0
\(29\) −1444.65 4446.18i −0.318983 0.981729i −0.974084 0.226187i \(-0.927374\pi\)
0.655101 0.755542i \(-0.272626\pi\)
\(30\) 0 0
\(31\) 1618.08 + 1175.60i 0.302410 + 0.219714i 0.728633 0.684905i \(-0.240156\pi\)
−0.426223 + 0.904618i \(0.640156\pi\)
\(32\) 0 0
\(33\) −1866.86 + 9626.46i −0.298419 + 1.53880i
\(34\) 0 0
\(35\) −7282.38 5290.96i −1.00485 0.730070i
\(36\) 0 0
\(37\) −3187.00 9808.56i −0.382716 1.17788i −0.938123 0.346301i \(-0.887437\pi\)
0.555407 0.831579i \(-0.312563\pi\)
\(38\) 0 0
\(39\) 21885.8 15901.0i 2.30410 1.67402i
\(40\) 0 0
\(41\) −811.722 + 2498.22i −0.0754132 + 0.232098i −0.981656 0.190659i \(-0.938938\pi\)
0.906243 + 0.422757i \(0.138938\pi\)
\(42\) 0 0
\(43\) −9573.28 −0.789569 −0.394784 0.918774i \(-0.629181\pi\)
−0.394784 + 0.918774i \(0.629181\pi\)
\(44\) 0 0
\(45\) −20323.0 −1.49609
\(46\) 0 0
\(47\) 1013.95 3120.61i 0.0669531 0.206060i −0.911983 0.410229i \(-0.865449\pi\)
0.978936 + 0.204168i \(0.0654489\pi\)
\(48\) 0 0
\(49\) −6296.59 + 4574.74i −0.374641 + 0.272193i
\(50\) 0 0
\(51\) 13097.6 + 40310.4i 0.705128 + 2.17016i
\(52\) 0 0
\(53\) 21002.8 + 15259.5i 1.02704 + 0.746190i 0.967715 0.252049i \(-0.0811043\pi\)
0.0593278 + 0.998239i \(0.481104\pi\)
\(54\) 0 0
\(55\) 16841.1 15718.2i 0.750694 0.700643i
\(56\) 0 0
\(57\) −14368.8 10439.5i −0.585779 0.425593i
\(58\) 0 0
\(59\) −1366.86 4206.76i −0.0511204 0.157332i 0.922237 0.386624i \(-0.126359\pi\)
−0.973358 + 0.229292i \(0.926359\pi\)
\(60\) 0 0
\(61\) 12513.9 9091.90i 0.430595 0.312846i −0.351292 0.936266i \(-0.614257\pi\)
0.781887 + 0.623420i \(0.214257\pi\)
\(62\) 0 0
\(63\) −17155.9 + 52800.5i −0.544581 + 1.67605i
\(64\) 0 0
\(65\) −63553.5 −1.86576
\(66\) 0 0
\(67\) −18768.3 −0.510786 −0.255393 0.966837i \(-0.582205\pi\)
−0.255393 + 0.966837i \(0.582205\pi\)
\(68\) 0 0
\(69\) −36217.9 + 111467.i −0.915799 + 2.81854i
\(70\) 0 0
\(71\) 24889.5 18083.3i 0.585964 0.425728i −0.254905 0.966966i \(-0.582044\pi\)
0.840869 + 0.541238i \(0.182044\pi\)
\(72\) 0 0
\(73\) −19431.9 59805.2i −0.426784 1.31351i −0.901276 0.433245i \(-0.857368\pi\)
0.474492 0.880260i \(-0.342632\pi\)
\(74\) 0 0
\(75\) 3363.15 + 2443.47i 0.0690388 + 0.0501596i
\(76\) 0 0
\(77\) −26620.3 57022.8i −0.511666 1.09603i
\(78\) 0 0
\(79\) −53022.4 38523.0i −0.955854 0.694469i −0.00366994 0.999993i \(-0.501168\pi\)
−0.952184 + 0.305525i \(0.901168\pi\)
\(80\) 0 0
\(81\) −6098.88 18770.4i −0.103285 0.317879i
\(82\) 0 0
\(83\) −6802.87 + 4942.58i −0.108392 + 0.0787514i −0.640661 0.767824i \(-0.721340\pi\)
0.532269 + 0.846575i \(0.321340\pi\)
\(84\) 0 0
\(85\) 30770.0 94700.4i 0.461935 1.42169i
\(86\) 0 0
\(87\) 114230. 1.61802
\(88\) 0 0
\(89\) 774.583 0.0103656 0.00518278 0.999987i \(-0.498350\pi\)
0.00518278 + 0.999987i \(0.498350\pi\)
\(90\) 0 0
\(91\) −53649.4 + 165116.i −0.679143 + 2.09019i
\(92\) 0 0
\(93\) −39536.8 + 28725.2i −0.474017 + 0.344394i
\(94\) 0 0
\(95\) 12893.8 + 39683.0i 0.146579 + 0.451123i
\(96\) 0 0
\(97\) 108537. + 78856.8i 1.17125 + 0.850962i 0.991158 0.132688i \(-0.0423610\pi\)
0.180090 + 0.983650i \(0.442361\pi\)
\(98\) 0 0
\(99\) −124296. 68828.0i −1.27459 0.705793i
\(100\) 0 0
\(101\) −20551.9 14931.8i −0.200470 0.145650i 0.483021 0.875608i \(-0.339539\pi\)
−0.683491 + 0.729959i \(0.739539\pi\)
\(102\) 0 0
\(103\) −11027.1 33937.8i −0.102416 0.315203i 0.886700 0.462346i \(-0.152992\pi\)
−0.989115 + 0.147143i \(0.952992\pi\)
\(104\) 0 0
\(105\) 177941. 129281.i 1.57508 1.14436i
\(106\) 0 0
\(107\) 27769.9 85466.9i 0.234485 0.721669i −0.762705 0.646747i \(-0.776129\pi\)
0.997189 0.0749225i \(-0.0238710\pi\)
\(108\) 0 0
\(109\) −12869.0 −0.103747 −0.0518737 0.998654i \(-0.516519\pi\)
−0.0518737 + 0.998654i \(0.516519\pi\)
\(110\) 0 0
\(111\) 252000. 1.94130
\(112\) 0 0
\(113\) −27896.9 + 85857.7i −0.205522 + 0.632533i 0.794169 + 0.607697i \(0.207906\pi\)
−0.999692 + 0.0248363i \(0.992094\pi\)
\(114\) 0 0
\(115\) 222758. 161843.i 1.57068 1.14117i
\(116\) 0 0
\(117\) 121126. + 372788.i 0.818037 + 2.51766i
\(118\) 0 0
\(119\) −220063. 159885.i −1.42455 1.03500i
\(120\) 0 0
\(121\) 156233. 39097.4i 0.970085 0.242764i
\(122\) 0 0
\(123\) −51925.9 37726.4i −0.309472 0.224845i
\(124\) 0 0
\(125\) 52415.1 + 161317.i 0.300042 + 0.923434i
\(126\) 0 0
\(127\) −24728.8 + 17966.5i −0.136048 + 0.0988450i −0.653728 0.756730i \(-0.726796\pi\)
0.517680 + 0.855575i \(0.326796\pi\)
\(128\) 0 0
\(129\) 72284.5 222469.i 0.382447 1.17705i
\(130\) 0 0
\(131\) −323898. −1.64904 −0.824518 0.565836i \(-0.808553\pi\)
−0.824518 + 0.565836i \(0.808553\pi\)
\(132\) 0 0
\(133\) 113983. 0.558742
\(134\) 0 0
\(135\) 48128.3 148124.i 0.227282 0.699503i
\(136\) 0 0
\(137\) 149351. 108510.i 0.679838 0.493931i −0.193466 0.981107i \(-0.561973\pi\)
0.873304 + 0.487176i \(0.161973\pi\)
\(138\) 0 0
\(139\) 84689.0 + 260646.i 0.371783 + 1.14423i 0.945623 + 0.325264i \(0.105453\pi\)
−0.573840 + 0.818967i \(0.694547\pi\)
\(140\) 0 0
\(141\) 64862.3 + 47125.2i 0.274754 + 0.199621i
\(142\) 0 0
\(143\) −388694. 215236.i −1.58953 0.880188i
\(144\) 0 0
\(145\) −217107. 157738.i −0.857540 0.623039i
\(146\) 0 0
\(147\) −58766.8 180866.i −0.224305 0.690339i
\(148\) 0 0
\(149\) 174705. 126931.i 0.644673 0.468382i −0.216780 0.976221i \(-0.569555\pi\)
0.861452 + 0.507838i \(0.169555\pi\)
\(150\) 0 0
\(151\) −124138. + 382056.i −0.443058 + 1.36359i 0.441541 + 0.897241i \(0.354432\pi\)
−0.884599 + 0.466352i \(0.845568\pi\)
\(152\) 0 0
\(153\) −614132. −2.12096
\(154\) 0 0
\(155\) 114810. 0.383839
\(156\) 0 0
\(157\) 100910. 310570.i 0.326728 1.00557i −0.643926 0.765088i \(-0.722696\pi\)
0.970654 0.240479i \(-0.0773045\pi\)
\(158\) 0 0
\(159\) −513192. + 372856.i −1.60986 + 1.16963i
\(160\) 0 0
\(161\) −232435. 715360.i −0.706701 2.17500i
\(162\) 0 0
\(163\) 61752.1 + 44865.5i 0.182047 + 0.132265i 0.675076 0.737748i \(-0.264111\pi\)
−0.493030 + 0.870012i \(0.664111\pi\)
\(164\) 0 0
\(165\) 238107. + 510044.i 0.680867 + 1.45847i
\(166\) 0 0
\(167\) 499684. + 363042.i 1.38645 + 1.00731i 0.996244 + 0.0865869i \(0.0275960\pi\)
0.390205 + 0.920728i \(0.372404\pi\)
\(168\) 0 0
\(169\) 264045. + 812647.i 0.711150 + 2.18869i
\(170\) 0 0
\(171\) 208195. 151263.i 0.544479 0.395587i
\(172\) 0 0
\(173\) −93586.5 + 288030.i −0.237738 + 0.731681i 0.759009 + 0.651080i \(0.225684\pi\)
−0.996746 + 0.0806008i \(0.974316\pi\)
\(174\) 0 0
\(175\) −26678.8 −0.0658524
\(176\) 0 0
\(177\) 108080. 0.259305
\(178\) 0 0
\(179\) −261660. + 805307.i −0.610387 + 1.87858i −0.156043 + 0.987750i \(0.549874\pi\)
−0.454344 + 0.890826i \(0.650126\pi\)
\(180\) 0 0
\(181\) −414948. + 301477.i −0.941449 + 0.684003i −0.948769 0.315971i \(-0.897670\pi\)
0.00732012 + 0.999973i \(0.497670\pi\)
\(182\) 0 0
\(183\) 116794. + 359455.i 0.257806 + 0.793444i
\(184\) 0 0
\(185\) −478953. 347980.i −1.02888 0.747523i
\(186\) 0 0
\(187\) 508912. 474981.i 1.06424 0.993281i
\(188\) 0 0
\(189\) −344206. 250080.i −0.700913 0.509243i
\(190\) 0 0
\(191\) 102624. + 315843.i 0.203546 + 0.626452i 0.999770 + 0.0214489i \(0.00682793\pi\)
−0.796224 + 0.605003i \(0.793172\pi\)
\(192\) 0 0
\(193\) 88719.3 64458.3i 0.171445 0.124562i −0.498754 0.866744i \(-0.666209\pi\)
0.670199 + 0.742182i \(0.266209\pi\)
\(194\) 0 0
\(195\) 479870. 1.47689e6i 0.903726 2.78138i
\(196\) 0 0
\(197\) 199830. 0.366855 0.183428 0.983033i \(-0.441281\pi\)
0.183428 + 0.983033i \(0.441281\pi\)
\(198\) 0 0
\(199\) −814887. −1.45870 −0.729348 0.684143i \(-0.760176\pi\)
−0.729348 + 0.684143i \(0.760176\pi\)
\(200\) 0 0
\(201\) 141713. 436148.i 0.247411 0.761454i
\(202\) 0 0
\(203\) −593086. + 430902.i −1.01013 + 0.733902i
\(204\) 0 0
\(205\) 46595.5 + 143406.i 0.0774389 + 0.238332i
\(206\) 0 0
\(207\) −1.37388e6 998183.i −2.22855 1.61914i
\(208\) 0 0
\(209\) −55535.5 + 286369.i −0.0879438 + 0.453482i
\(210\) 0 0
\(211\) 296144. + 215161.i 0.457928 + 0.332704i 0.792718 0.609589i \(-0.208665\pi\)
−0.334790 + 0.942293i \(0.608665\pi\)
\(212\) 0 0
\(213\) 232297. + 714936.i 0.350828 + 1.07974i
\(214\) 0 0
\(215\) −444585. + 323010.i −0.655932 + 0.476563i
\(216\) 0 0
\(217\) 96917.9 298283.i 0.139719 0.430010i
\(218\) 0 0
\(219\) 1.53651e6 2.16483
\(220\) 0 0
\(221\) −1.92049e6 −2.64503
\(222\) 0 0
\(223\) 335147. 1.03148e6i 0.451309 1.38898i −0.424106 0.905612i \(-0.639412\pi\)
0.875415 0.483372i \(-0.160588\pi\)
\(224\) 0 0
\(225\) −48730.1 + 35404.5i −0.0641713 + 0.0466232i
\(226\) 0 0
\(227\) 151458. + 466139.i 0.195086 + 0.600414i 0.999976 + 0.00698886i \(0.00222464\pi\)
−0.804889 + 0.593425i \(0.797775\pi\)
\(228\) 0 0
\(229\) 171663. + 124720.i 0.216315 + 0.157162i 0.690666 0.723173i \(-0.257317\pi\)
−0.474351 + 0.880336i \(0.657317\pi\)
\(230\) 0 0
\(231\) 1.52613e6 188057.i 1.88174 0.231878i
\(232\) 0 0
\(233\) 439005. + 318956.i 0.529761 + 0.384894i 0.820268 0.571979i \(-0.193824\pi\)
−0.290508 + 0.956873i \(0.593824\pi\)
\(234\) 0 0
\(235\) −58203.9 179133.i −0.0687515 0.211595i
\(236\) 0 0
\(237\) 1.29557e6 941287.i 1.49827 1.08856i
\(238\) 0 0
\(239\) 104295. 320988.i 0.118105 0.363491i −0.874477 0.485068i \(-0.838795\pi\)
0.992582 + 0.121577i \(0.0387950\pi\)
\(240\) 0 0
\(241\) −540867. −0.599857 −0.299929 0.953962i \(-0.596963\pi\)
−0.299929 + 0.953962i \(0.596963\pi\)
\(242\) 0 0
\(243\) 1.14155e6 1.24017
\(244\) 0 0
\(245\) −138060. + 424904.i −0.146944 + 0.452247i
\(246\) 0 0
\(247\) 651061. 473023.i 0.679015 0.493333i
\(248\) 0 0
\(249\) −63492.0 195408.i −0.0648964 0.199731i
\(250\) 0 0
\(251\) −294371. 213873.i −0.294924 0.214275i 0.430477 0.902602i \(-0.358345\pi\)
−0.725401 + 0.688327i \(0.758345\pi\)
\(252\) 0 0
\(253\) 1.91050e6 235422.i 1.87649 0.231231i
\(254\) 0 0
\(255\) 1.96836e6 + 1.43010e6i 1.89563 + 1.37726i
\(256\) 0 0
\(257\) −603096. 1.85614e6i −0.569579 1.75298i −0.653938 0.756549i \(-0.726884\pi\)
0.0843585 0.996435i \(-0.473116\pi\)
\(258\) 0 0
\(259\) −1.30839e6 + 950598.i −1.21196 + 0.880537i
\(260\) 0 0
\(261\) −511464. + 1.57412e6i −0.464744 + 1.43033i
\(262\) 0 0
\(263\) 878155. 0.782856 0.391428 0.920209i \(-0.371981\pi\)
0.391428 + 0.920209i \(0.371981\pi\)
\(264\) 0 0
\(265\) 1.49024e6 1.30359
\(266\) 0 0
\(267\) −5848.60 + 18000.2i −0.00502081 + 0.0154525i
\(268\) 0 0
\(269\) −1.52482e6 + 1.10784e6i −1.28480 + 0.933465i −0.999687 0.0250282i \(-0.992032\pi\)
−0.285117 + 0.958493i \(0.592032\pi\)
\(270\) 0 0
\(271\) 491772. + 1.51352e6i 0.406762 + 1.25188i 0.919415 + 0.393289i \(0.128663\pi\)
−0.512653 + 0.858596i \(0.671337\pi\)
\(272\) 0 0
\(273\) −3.43195e6 2.49346e6i −2.78699 2.02486i
\(274\) 0 0
\(275\) 12998.6 67027.3i 0.0103649 0.0534466i
\(276\) 0 0
\(277\) 1.45252e6 + 1.05532e6i 1.13743 + 0.826390i 0.986759 0.162194i \(-0.0518571\pi\)
0.150669 + 0.988584i \(0.451857\pi\)
\(278\) 0 0
\(279\) −218815. 673443.i −0.168293 0.517953i
\(280\) 0 0
\(281\) 1.18403e6 860246.i 0.894532 0.649916i −0.0425236 0.999095i \(-0.513540\pi\)
0.937056 + 0.349180i \(0.113540\pi\)
\(282\) 0 0
\(283\) 53111.4 163460.i 0.0394204 0.121324i −0.929410 0.369050i \(-0.879683\pi\)
0.968830 + 0.247726i \(0.0796833\pi\)
\(284\) 0 0
\(285\) −1.01953e6 −0.743511
\(286\) 0 0
\(287\) 411912. 0.295189
\(288\) 0 0
\(289\) 491064. 1.51134e6i 0.345855 1.06443i
\(290\) 0 0
\(291\) −2.65204e6 + 1.92682e6i −1.83589 + 1.33385i
\(292\) 0 0
\(293\) −34149.7 105102.i −0.0232390 0.0715224i 0.938764 0.344560i \(-0.111972\pi\)
−0.962003 + 0.273037i \(0.911972\pi\)
\(294\) 0 0
\(295\) −205417. 149244.i −0.137430 0.0998486i
\(296\) 0 0
\(297\) 796003. 742931.i 0.523629 0.488717i
\(298\) 0 0
\(299\) −4.29635e6 3.12148e6i −2.77921 2.01921i
\(300\) 0 0
\(301\) 463898. + 1.42773e6i 0.295125 + 0.908302i
\(302\) 0 0
\(303\) 502174. 364851.i 0.314230 0.228301i
\(304\) 0 0
\(305\) 274381. 844459.i 0.168890 0.519791i
\(306\) 0 0
\(307\) −79497.8 −0.0481404 −0.0240702 0.999710i \(-0.507663\pi\)
−0.0240702 + 0.999710i \(0.507663\pi\)
\(308\) 0 0
\(309\) 871925. 0.519497
\(310\) 0 0
\(311\) 113313. 348743.i 0.0664324 0.204458i −0.912330 0.409456i \(-0.865719\pi\)
0.978762 + 0.204998i \(0.0657187\pi\)
\(312\) 0 0
\(313\) −2.04217e6 + 1.48372e6i −1.17823 + 0.856036i −0.991971 0.126464i \(-0.959637\pi\)
−0.186262 + 0.982500i \(0.559637\pi\)
\(314\) 0 0
\(315\) 984806. + 3.03092e6i 0.559209 + 1.72107i
\(316\) 0 0
\(317\) −1.95095e6 1.41745e6i −1.09043 0.792245i −0.110959 0.993825i \(-0.535392\pi\)
−0.979472 + 0.201580i \(0.935392\pi\)
\(318\) 0 0
\(319\) −793623. 1.70000e6i −0.436654 0.935348i
\(320\) 0 0
\(321\) 1.77644e6 + 1.29066e6i 0.962251 + 0.699116i
\(322\) 0 0
\(323\) 389630. + 1.19916e6i 0.207800 + 0.639544i
\(324\) 0 0
\(325\) −152387. + 110716.i −0.0800275 + 0.0581434i
\(326\) 0 0
\(327\) 97168.9 299055.i 0.0502525 0.154661i
\(328\) 0 0
\(329\) −514532. −0.262073
\(330\) 0 0
\(331\) −779307. −0.390966 −0.195483 0.980707i \(-0.562627\pi\)
−0.195483 + 0.980707i \(0.562627\pi\)
\(332\) 0 0
\(333\) −1.12832e6 + 3.47262e6i −0.557601 + 1.71612i
\(334\) 0 0
\(335\) −871606. + 633259.i −0.424334 + 0.308297i
\(336\) 0 0
\(337\) 88729.1 + 273080.i 0.0425590 + 0.130983i 0.970078 0.242792i \(-0.0780632\pi\)
−0.927519 + 0.373775i \(0.878063\pi\)
\(338\) 0 0
\(339\) −1.78457e6 1.29656e6i −0.843399 0.612765i
\(340\) 0 0
\(341\) 702179. + 388826.i 0.327011 + 0.181079i
\(342\) 0 0
\(343\) −1.14482e6 831757.i −0.525412 0.381734i
\(344\) 0 0
\(345\) 2.07902e6 + 6.39858e6i 0.940398 + 2.89425i
\(346\) 0 0
\(347\) 1.21041e6 879413.i 0.539645 0.392075i −0.284308 0.958733i \(-0.591764\pi\)
0.823953 + 0.566658i \(0.191764\pi\)
\(348\) 0 0
\(349\) −122209. + 376121.i −0.0537081 + 0.165297i −0.974313 0.225200i \(-0.927697\pi\)
0.920604 + 0.390496i \(0.127697\pi\)
\(350\) 0 0
\(351\) −3.00389e6 −1.30142
\(352\) 0 0
\(353\) −414432. −0.177017 −0.0885087 0.996075i \(-0.528210\pi\)
−0.0885087 + 0.996075i \(0.528210\pi\)
\(354\) 0 0
\(355\) 545730. 1.67958e6i 0.229830 0.707345i
\(356\) 0 0
\(357\) 5.37710e6 3.90669e6i 2.23294 1.62233i
\(358\) 0 0
\(359\) 562938. + 1.73254e6i 0.230528 + 0.709493i 0.997683 + 0.0680314i \(0.0216718\pi\)
−0.767155 + 0.641462i \(0.778328\pi\)
\(360\) 0 0
\(361\) 1.57576e6 + 1.14486e6i 0.636389 + 0.462363i
\(362\) 0 0
\(363\) −271097. + 3.92584e6i −0.107984 + 1.56374i
\(364\) 0 0
\(365\) −2.92029e6 2.12172e6i −1.14735 0.833596i
\(366\) 0 0
\(367\) −305378. 939856.i −0.118351 0.364247i 0.874280 0.485422i \(-0.161334\pi\)
−0.992631 + 0.121174i \(0.961334\pi\)
\(368\) 0 0
\(369\) 752376. 546633.i 0.287653 0.208992i
\(370\) 0 0
\(371\) 1.25800e6 3.87174e6i 0.474512 1.46040i
\(372\) 0 0
\(373\) 1.33761e6 0.497802 0.248901 0.968529i \(-0.419931\pi\)
0.248901 + 0.968529i \(0.419931\pi\)
\(374\) 0 0
\(375\) −4.14454e6 −1.52194
\(376\) 0 0
\(377\) −1.59943e6 + 4.92254e6i −0.579578 + 1.78376i
\(378\) 0 0
\(379\) −989419. + 718855.i −0.353820 + 0.257065i −0.750470 0.660905i \(-0.770173\pi\)
0.396650 + 0.917970i \(0.370173\pi\)
\(380\) 0 0
\(381\) −230797. 710319.i −0.0814548 0.250692i
\(382\) 0 0
\(383\) 1.84702e6 + 1.34194e6i 0.643389 + 0.467450i 0.861013 0.508583i \(-0.169831\pi\)
−0.217624 + 0.976033i \(0.569831\pi\)
\(384\) 0 0
\(385\) −3.16025e6 1.74996e6i −1.08660 0.601695i
\(386\) 0 0
\(387\) 2.74202e6 + 1.99220e6i 0.930665 + 0.676168i
\(388\) 0 0
\(389\) −410756. 1.26418e6i −0.137629 0.423579i 0.858361 0.513047i \(-0.171483\pi\)
−0.995990 + 0.0894681i \(0.971483\pi\)
\(390\) 0 0
\(391\) 6.73141e6 4.89065e6i 2.22671 1.61780i
\(392\) 0 0
\(393\) 2.44564e6 7.52690e6i 0.798750 2.45830i
\(394\) 0 0
\(395\) −3.76217e6 −1.21324
\(396\) 0 0
\(397\) 2.18246e6 0.694975 0.347488 0.937685i \(-0.387035\pi\)
0.347488 + 0.937685i \(0.387035\pi\)
\(398\) 0 0
\(399\) −860646. + 2.64880e6i −0.270640 + 0.832945i
\(400\) 0 0
\(401\) 1.81331e6 1.31745e6i 0.563134 0.409141i −0.269471 0.963009i \(-0.586849\pi\)
0.832605 + 0.553868i \(0.186849\pi\)
\(402\) 0 0
\(403\) −684270. 2.10597e6i −0.209877 0.645935i
\(404\) 0 0
\(405\) −916561. 665921.i −0.277667 0.201737i
\(406\) 0 0
\(407\) −1.75079e6 3.75032e6i −0.523898 1.12223i
\(408\) 0 0
\(409\) 3.55804e6 + 2.58507e6i 1.05173 + 0.764125i 0.972540 0.232735i \(-0.0747675\pi\)
0.0791871 + 0.996860i \(0.474768\pi\)
\(410\) 0 0
\(411\) 1.39391e6 + 4.29000e6i 0.407032 + 1.25272i
\(412\) 0 0
\(413\) −561150. + 407699.i −0.161884 + 0.117616i
\(414\) 0 0
\(415\) −149160. + 459069.i −0.0425141 + 0.130845i
\(416\) 0 0
\(417\) −6.69647e6 −1.88585
\(418\) 0 0
\(419\) 5.12999e6 1.42752 0.713759 0.700391i \(-0.246991\pi\)
0.713759 + 0.700391i \(0.246991\pi\)
\(420\) 0 0
\(421\) −383685. + 1.18086e6i −0.105504 + 0.324708i −0.989848 0.142127i \(-0.954606\pi\)
0.884344 + 0.466835i \(0.154606\pi\)
\(422\) 0 0
\(423\) −939817. + 682817.i −0.255383 + 0.185547i
\(424\) 0 0
\(425\) −91196.6 280674.i −0.0244910 0.0753755i
\(426\) 0 0
\(427\) −1.96233e6 1.42572e6i −0.520839 0.378411i
\(428\) 0 0
\(429\) 7.93666e6 7.40750e6i 2.08207 1.94325i
\(430\) 0 0
\(431\) −218627. 158842.i −0.0566905 0.0411881i 0.559079 0.829114i \(-0.311155\pi\)
−0.615770 + 0.787926i \(0.711155\pi\)
\(432\) 0 0
\(433\) −801876. 2.46792e6i −0.205536 0.632574i −0.999691 0.0248592i \(-0.992086\pi\)
0.794155 0.607715i \(-0.207914\pi\)
\(434\) 0 0
\(435\) 5.30489e6 3.85423e6i 1.34417 0.976594i
\(436\) 0 0
\(437\) −1.07741e6 + 3.31594e6i −0.269885 + 0.830621i
\(438\) 0 0
\(439\) −6.26302e6 −1.55104 −0.775519 0.631325i \(-0.782512\pi\)
−0.775519 + 0.631325i \(0.782512\pi\)
\(440\) 0 0
\(441\) 2.75550e6 0.674689
\(442\) 0 0
\(443\) 30337.8 93370.0i 0.00734470 0.0226047i −0.947317 0.320298i \(-0.896217\pi\)
0.954662 + 0.297693i \(0.0962171\pi\)
\(444\) 0 0
\(445\) 35971.8 26135.0i 0.00861117 0.00625638i
\(446\) 0 0
\(447\) 1.63054e6 + 5.01829e6i 0.385978 + 1.18792i
\(448\) 0 0
\(449\) 6.70282e6 + 4.86989e6i 1.56907 + 1.14000i 0.928041 + 0.372478i \(0.121492\pi\)
0.641028 + 0.767518i \(0.278508\pi\)
\(450\) 0 0
\(451\) −200694. + 1.03488e6i −0.0464615 + 0.239579i
\(452\) 0 0
\(453\) −7.94109e6 5.76954e6i −1.81817 1.32098i
\(454\) 0 0
\(455\) 3.07965e6 + 9.47818e6i 0.697385 + 2.14633i
\(456\) 0 0
\(457\) −1.25899e6 + 914708.i −0.281988 + 0.204876i −0.719784 0.694198i \(-0.755759\pi\)
0.437796 + 0.899074i \(0.355759\pi\)
\(458\) 0 0
\(459\) 1.45436e6 4.47607e6i 0.322212 0.991666i
\(460\) 0 0
\(461\) −601195. −0.131754 −0.0658769 0.997828i \(-0.520984\pi\)
−0.0658769 + 0.997828i \(0.520984\pi\)
\(462\) 0 0
\(463\) −1.17902e6 −0.255605 −0.127802 0.991800i \(-0.540792\pi\)
−0.127802 + 0.991800i \(0.540792\pi\)
\(464\) 0 0
\(465\) −866888. + 2.66801e6i −0.185922 + 0.572209i
\(466\) 0 0
\(467\) 2.59158e6 1.88290e6i 0.549887 0.399516i −0.277857 0.960622i \(-0.589624\pi\)
0.827744 + 0.561106i \(0.189624\pi\)
\(468\) 0 0
\(469\) 909469. + 2.79906e6i 0.190922 + 0.587597i
\(470\) 0 0
\(471\) 6.45525e6 + 4.69001e6i 1.34079 + 0.974141i
\(472\) 0 0
\(473\) −3.81303e6 + 469861.i −0.783641 + 0.0965643i
\(474\) 0 0
\(475\) 100047. + 72688.7i 0.0203457 + 0.0147820i
\(476\) 0 0
\(477\) −2.84024e6 8.74136e6i −0.571557 1.75907i
\(478\) 0 0
\(479\) 5.18757e6 3.76899e6i 1.03306 0.750561i 0.0641398 0.997941i \(-0.479570\pi\)
0.968918 + 0.247380i \(0.0795697\pi\)
\(480\) 0 0
\(481\) −3.52845e6 + 1.08595e7i −0.695379 + 2.14016i
\(482\) 0 0
\(483\) 1.83789e7 3.58470
\(484\) 0 0
\(485\) 7.70118e6 1.48663
\(486\) 0 0
\(487\) 1.68901e6 5.19823e6i 0.322708 0.993192i −0.649757 0.760142i \(-0.725129\pi\)
0.972465 0.233050i \(-0.0748706\pi\)
\(488\) 0 0
\(489\) −1.50888e6 + 1.09626e6i −0.285352 + 0.207320i
\(490\) 0 0
\(491\) 1.38828e6 + 4.27269e6i 0.259881 + 0.799831i 0.992829 + 0.119546i \(0.0381439\pi\)
−0.732948 + 0.680285i \(0.761856\pi\)
\(492\) 0 0
\(493\) −6.56065e6 4.76659e6i −1.21571 0.883265i
\(494\) 0 0
\(495\) −8.09465e6 + 997465.i −1.48486 + 0.182972i
\(496\) 0 0
\(497\) −3.90298e6 2.83568e6i −0.708770 0.514951i
\(498\) 0 0
\(499\) −2.13673e6 6.57618e6i −0.384148 1.18229i −0.937096 0.349071i \(-0.886497\pi\)
0.552948 0.833215i \(-0.313503\pi\)
\(500\) 0 0
\(501\) −1.22095e7 + 8.87070e6i −2.17322 + 1.57893i
\(502\) 0 0
\(503\) −403980. + 1.24332e6i −0.0711934 + 0.219111i −0.980322 0.197404i \(-0.936749\pi\)
0.909129 + 0.416515i \(0.136749\pi\)
\(504\) 0 0
\(505\) −1.45825e6 −0.254450
\(506\) 0 0
\(507\) −2.08784e7 −3.60726
\(508\) 0 0
\(509\) −1.69502e6 + 5.21674e6i −0.289988 + 0.892492i 0.694871 + 0.719135i \(0.255462\pi\)
−0.984859 + 0.173358i \(0.944538\pi\)
\(510\) 0 0
\(511\) −7.97755e6 + 5.79603e6i −1.35150 + 0.981925i
\(512\) 0 0
\(513\) 609432. + 1.87564e6i 0.102243 + 0.314670i
\(514\) 0 0
\(515\) −1.65719e6 1.20402e6i −0.275330 0.200039i
\(516\) 0 0
\(517\) 250693. 1.29270e6i 0.0412493 0.212702i
\(518\) 0 0
\(519\) −5.98674e6 4.34962e6i −0.975600 0.708815i
\(520\) 0 0
\(521\) −1.46235e6 4.50065e6i −0.236024 0.726408i −0.996984 0.0776089i \(-0.975271\pi\)
0.760960 0.648799i \(-0.224729\pi\)
\(522\) 0 0
\(523\) −1.20010e6 + 871927.i −0.191851 + 0.139388i −0.679564 0.733616i \(-0.737831\pi\)
0.487713 + 0.873004i \(0.337831\pi\)
\(524\) 0 0
\(525\) 201442. 619975.i 0.0318972 0.0981694i
\(526\) 0 0
\(527\) 3.46938e6 0.544158
\(528\) 0 0
\(529\) 1.65716e7 2.57469
\(530\) 0 0
\(531\) −483923. + 1.48936e6i −0.0744801 + 0.229226i
\(532\) 0 0
\(533\) 2.35280e6 1.70941e6i 0.358730 0.260632i
\(534\) 0 0
\(535\) −1.59408e6 4.90607e6i −0.240783 0.741054i
\(536\) 0 0
\(537\) −1.67384e7 1.21612e7i −2.50483 1.81987i
\(538\) 0 0
\(539\) −2.28340e6 + 2.13115e6i −0.338539 + 0.315968i
\(540\) 0 0
\(541\) 2.89312e6 + 2.10198e6i 0.424985 + 0.308770i 0.779640 0.626227i \(-0.215402\pi\)
−0.354655 + 0.934997i \(0.615402\pi\)
\(542\) 0 0
\(543\) −3.87275e6 1.19191e7i −0.563664 1.73478i
\(544\) 0 0
\(545\) −597637. + 434208.i −0.0861878 + 0.0626191i
\(546\) 0 0
\(547\) −2.13110e6 + 6.55885e6i −0.304534 + 0.937259i 0.675317 + 0.737528i \(0.264007\pi\)
−0.979851 + 0.199731i \(0.935993\pi\)
\(548\) 0 0
\(549\) −5.47631e6 −0.775457
\(550\) 0 0
\(551\) 3.39814e6 0.476829
\(552\) 0 0
\(553\) −3.17588e6 + 9.77434e6i −0.441622 + 1.35917i
\(554\) 0 0
\(555\) 1.17029e7 8.50268e6i 1.61273 1.17172i
\(556\) 0 0
\(557\) −1.15000e6 3.53935e6i −0.157058 0.483376i 0.841305 0.540560i \(-0.181788\pi\)
−0.998364 + 0.0571843i \(0.981788\pi\)
\(558\) 0 0
\(559\) 8.57475e6 + 6.22992e6i 1.16062 + 0.843243i
\(560\) 0 0
\(561\) 7.19523e6 + 1.54128e7i 0.965246 + 2.06763i
\(562\) 0 0
\(563\) 4.36375e6 + 3.17045e6i 0.580215 + 0.421551i 0.838802 0.544437i \(-0.183257\pi\)
−0.258586 + 0.965988i \(0.583257\pi\)
\(564\) 0 0
\(565\) 1.60137e6 + 4.92851e6i 0.211043 + 0.649523i
\(566\) 0 0
\(567\) −2.50383e6 + 1.81914e6i −0.327075 + 0.237634i
\(568\) 0 0
\(569\) 897590. 2.76250e6i 0.116224 0.357702i −0.875976 0.482355i \(-0.839782\pi\)
0.992200 + 0.124653i \(0.0397817\pi\)
\(570\) 0 0
\(571\) 636912. 0.0817503 0.0408752 0.999164i \(-0.486985\pi\)
0.0408752 + 0.999164i \(0.486985\pi\)
\(572\) 0 0
\(573\) −8.11458e6 −1.03248
\(574\) 0 0
\(575\) 252179. 776126.i 0.0318082 0.0978955i
\(576\) 0 0
\(577\) −1.04365e7 + 7.58253e6i −1.30501 + 0.948145i −0.999991 0.00420152i \(-0.998663\pi\)
−0.305018 + 0.952346i \(0.598663\pi\)
\(578\) 0 0
\(579\) 828027. + 2.54841e6i 0.102647 + 0.315916i
\(580\) 0 0
\(581\) 1.06677e6 + 775056.i 0.131109 + 0.0952560i
\(582\) 0 0
\(583\) 9.11435e6 + 5.04700e6i 1.11059 + 0.614981i
\(584\) 0 0
\(585\) 1.82033e7 + 1.32254e7i 2.19917 + 1.59779i
\(586\) 0 0
\(587\) 3.87594e6 + 1.19289e7i 0.464282 + 1.42891i 0.859883 + 0.510492i \(0.170537\pi\)
−0.395600 + 0.918423i \(0.629463\pi\)
\(588\) 0 0
\(589\) −1.17615e6 + 854520.i −0.139692 + 0.101493i
\(590\) 0 0
\(591\) −1.50885e6 + 4.64375e6i −0.177695 + 0.546890i
\(592\) 0 0
\(593\) 1.61155e7 1.88195 0.940973 0.338483i \(-0.109914\pi\)
0.940973 + 0.338483i \(0.109914\pi\)
\(594\) 0 0
\(595\) −1.56144e7 −1.80814
\(596\) 0 0
\(597\) 6.15292e6 1.89368e7i 0.706555 2.17455i
\(598\) 0 0
\(599\) 3.51007e6 2.55022e6i 0.399714 0.290409i −0.369711 0.929147i \(-0.620543\pi\)
0.769424 + 0.638738i \(0.220543\pi\)
\(600\) 0 0
\(601\) −4.99748e6 1.53807e7i −0.564371 1.73696i −0.669812 0.742531i \(-0.733625\pi\)
0.105440 0.994426i \(-0.466375\pi\)
\(602\) 0 0
\(603\) 5.37571e6 + 3.90568e6i 0.602064 + 0.437425i
\(604\) 0 0
\(605\) 5.93632e6 7.08712e6i 0.659370 0.787193i
\(606\) 0 0
\(607\) −922914. 670536.i −0.101669 0.0738670i 0.535789 0.844352i \(-0.320014\pi\)
−0.637458 + 0.770485i \(0.720014\pi\)
\(608\) 0 0
\(609\) −5.53533e6 1.70360e7i −0.604784 1.86133i
\(610\) 0 0
\(611\) −2.93896e6 + 2.13528e6i −0.318486 + 0.231394i
\(612\) 0 0
\(613\) 2.52586e6 7.77381e6i 0.271493 0.835570i −0.718633 0.695390i \(-0.755232\pi\)
0.990126 0.140180i \(-0.0447682\pi\)
\(614\) 0 0
\(615\) −3.68437e6 −0.392803
\(616\) 0 0
\(617\) 7.66601e6 0.810693 0.405346 0.914163i \(-0.367151\pi\)
0.405346 + 0.914163i \(0.367151\pi\)
\(618\) 0 0
\(619\) 4.47942e6 1.37862e7i 0.469889 1.44617i −0.382839 0.923815i \(-0.625054\pi\)
0.852728 0.522355i \(-0.174946\pi\)
\(620\) 0 0
\(621\) 1.05288e7 7.64960e6i 1.09559 0.795994i
\(622\) 0 0
\(623\) −37534.4 115519.i −0.00387445 0.0119243i
\(624\) 0 0
\(625\) 8.30726e6 + 6.03558e6i 0.850664 + 0.618043i
\(626\) 0 0
\(627\) −6.23546e6 3.45283e6i −0.633431 0.350757i
\(628\) 0 0
\(629\) −1.44732e7 1.05154e7i −1.45861 1.05974i
\(630\) 0 0
\(631\) 924286. + 2.84466e6i 0.0924129 + 0.284418i 0.986571 0.163334i \(-0.0522248\pi\)
−0.894158 + 0.447752i \(0.852225\pi\)
\(632\) 0 0
\(633\) −7.23611e6 + 5.25734e6i −0.717788 + 0.521503i
\(634\) 0 0
\(635\) −542206. + 1.66874e6i −0.0533617 + 0.164230i
\(636\) 0 0
\(637\) 8.61689e6 0.841399
\(638\) 0 0
\(639\) −1.08921e7 −1.05526
\(640\) 0 0
\(641\) −1.48890e6 + 4.58237e6i −0.143127 + 0.440499i −0.996765 0.0803667i \(-0.974391\pi\)
0.853638 + 0.520866i \(0.174391\pi\)
\(642\) 0 0
\(643\) −1.40425e7 + 1.02025e7i −1.33942 + 0.973145i −0.339954 + 0.940442i \(0.610412\pi\)
−0.999465 + 0.0327030i \(0.989588\pi\)
\(644\) 0 0
\(645\) −4.14936e6 1.27704e7i −0.392719 1.20867i
\(646\) 0 0
\(647\) 6.17453e6 + 4.48606e6i 0.579887 + 0.421313i 0.838683 0.544619i \(-0.183326\pi\)
−0.258796 + 0.965932i \(0.583326\pi\)
\(648\) 0 0
\(649\) −750889. 1.60846e6i −0.0699784 0.149899i
\(650\) 0 0
\(651\) 6.19985e6 + 4.50445e6i 0.573362 + 0.416572i
\(652\) 0 0
\(653\) 3.60037e6 + 1.10808e7i 0.330418 + 1.01692i 0.968935 + 0.247315i \(0.0795484\pi\)
−0.638517 + 0.769608i \(0.720452\pi\)
\(654\) 0 0
\(655\) −1.50419e7 + 1.09286e7i −1.36993 + 0.995314i
\(656\) 0 0
\(657\) −6.87967e6 + 2.11734e7i −0.621805 + 1.91372i
\(658\) 0 0
\(659\) 8.86205e6 0.794915 0.397458 0.917621i \(-0.369893\pi\)
0.397458 + 0.917621i \(0.369893\pi\)
\(660\) 0 0
\(661\) −1.73414e6 −0.154376 −0.0771882 0.997017i \(-0.524594\pi\)
−0.0771882 + 0.997017i \(0.524594\pi\)
\(662\) 0 0
\(663\) 1.45009e7 4.46293e7i 1.28119 3.94309i
\(664\) 0 0
\(665\) 5.29340e6 3.84588e6i 0.464174 0.337242i
\(666\) 0 0
\(667\) −6.92949e6 2.13268e7i −0.603097 1.85614i
\(668\) 0 0
\(669\) 2.14394e7 + 1.55766e7i 1.85203 + 1.34558i
\(670\) 0 0
\(671\) 4.53805e6 4.23548e6i 0.389102 0.363159i
\(672\) 0 0
\(673\) 1.71629e7 + 1.24695e7i 1.46067 + 1.06124i 0.983188 + 0.182597i \(0.0584504\pi\)
0.477482 + 0.878642i \(0.341550\pi\)
\(674\) 0 0
\(675\) −142643. 439010.i −0.0120501 0.0370865i
\(676\) 0 0
\(677\) 5.75993e6 4.18483e6i 0.482998 0.350919i −0.319487 0.947591i \(-0.603511\pi\)
0.802485 + 0.596672i \(0.203511\pi\)
\(678\) 0 0
\(679\) 6.50103e6 2.00081e7i 0.541138 1.66545i
\(680\) 0 0
\(681\) −1.19760e7 −0.989562
\(682\) 0 0
\(683\) −6.49102e6 −0.532428 −0.266214 0.963914i \(-0.585773\pi\)
−0.266214 + 0.963914i \(0.585773\pi\)
\(684\) 0 0
\(685\) 3.27467e6 1.00784e7i 0.266650 0.820664i
\(686\) 0 0
\(687\) −4.19448e6 + 3.04746e6i −0.339067 + 0.246347i
\(688\) 0 0
\(689\) −8.88189e6 2.73357e7i −0.712783 2.19372i
\(690\) 0 0
\(691\) −2.71270e6 1.97089e6i −0.216126 0.157025i 0.474455 0.880280i \(-0.342645\pi\)
−0.690581 + 0.723255i \(0.742645\pi\)
\(692\) 0 0
\(693\) −4.24171e6 + 2.18724e7i −0.335512 + 1.73007i
\(694\) 0 0
\(695\) 1.27274e7 + 9.24697e6i 0.999486 + 0.726169i
\(696\) 0 0
\(697\) 1.40804e6 + 4.33352e6i 0.109783 + 0.337877i
\(698\) 0 0
\(699\) −1.07268e7 + 7.79349e6i −0.830383 + 0.603308i
\(700\) 0 0
\(701\) −6.88781e6 + 2.11985e7i −0.529403 + 1.62933i 0.226039 + 0.974118i \(0.427422\pi\)
−0.755442 + 0.655216i \(0.772578\pi\)
\(702\) 0 0
\(703\) 7.49653e6 0.572100
\(704\) 0 0
\(705\) 4.60226e6 0.348737
\(706\) 0 0
\(707\) −1.23100e6 + 3.78862e6i −0.0926207 + 0.285057i
\(708\) 0 0
\(709\) 1.78239e7 1.29499e7i 1.33164 0.967496i 0.331937 0.943302i \(-0.392298\pi\)
0.999707 0.0241946i \(-0.00770214\pi\)
\(710\) 0 0
\(711\) 7.17029e6 + 2.20679e7i 0.531940 + 1.63714i
\(712\) 0 0
\(713\) 7.76138e6 + 5.63897e6i 0.571762 + 0.415409i
\(714\) 0 0
\(715\) −2.53133e7 + 3.11923e6i −1.85175 + 0.228183i
\(716\) 0 0
\(717\) 6.67177e6 + 4.84733e6i 0.484667 + 0.352131i
\(718\) 0 0
\(719\) −3.99208e6 1.22864e7i −0.287990 0.886342i −0.985487 0.169754i \(-0.945703\pi\)
0.697497 0.716588i \(-0.254297\pi\)
\(720\) 0 0
\(721\) −4.52704e6 + 3.28909e6i −0.324322 + 0.235634i
\(722\) 0 0
\(723\) 4.08389e6 1.25689e7i 0.290555 0.894237i
\(724\) 0 0
\(725\) −795367. −0.0561982
\(726\) 0 0
\(727\) 4.83500e6 0.339282 0.169641 0.985506i \(-0.445739\pi\)
0.169641 + 0.985506i \(0.445739\pi\)
\(728\) 0 0
\(729\) −7.13744e6 + 2.19668e7i −0.497420 + 1.53090i
\(730\) 0 0
\(731\) −1.34347e7 + 9.76088e6i −0.929896 + 0.675609i
\(732\) 0 0
\(733\) 2.01485e6 + 6.20107e6i 0.138511 + 0.426292i 0.996120 0.0880106i \(-0.0280509\pi\)
−0.857609 + 0.514302i \(0.828051\pi\)
\(734\) 0 0
\(735\) −8.83169e6 6.41660e6i −0.603011 0.438113i
\(736\) 0 0
\(737\) −7.47541e6 + 921159.i −0.506952 + 0.0624692i
\(738\) 0 0
\(739\) −2.17281e7 1.57864e7i −1.46356 1.06334i −0.982417 0.186697i \(-0.940222\pi\)
−0.481144 0.876642i \(-0.659778\pi\)
\(740\) 0 0
\(741\) 6.07642e6 + 1.87013e7i 0.406539 + 1.25120i
\(742\) 0 0
\(743\) 5.57432e6 4.04998e6i 0.370442 0.269142i −0.386952 0.922100i \(-0.626472\pi\)
0.757394 + 0.652958i \(0.226472\pi\)
\(744\) 0 0
\(745\) 3.83059e6 1.17894e7i 0.252857 0.778215i
\(746\) 0 0
\(747\) 2.97706e6 0.195203
\(748\) 0 0
\(749\) −1.40919e7 −0.917838
\(750\) 0 0
\(751\) −2.03794e6 + 6.27213e6i −0.131853 + 0.405803i −0.995087 0.0990011i \(-0.968435\pi\)
0.863234 + 0.504804i \(0.168435\pi\)
\(752\) 0 0
\(753\) 7.19277e6 5.22585e6i 0.462284 0.335869i
\(754\) 0 0
\(755\) 7.12590e6 + 2.19313e7i 0.454959 + 1.40022i
\(756\) 0 0
\(757\) −2.29214e7 1.66534e7i −1.45379 1.05624i −0.984927 0.172970i \(-0.944664\pi\)
−0.468863 0.883271i \(-0.655336\pi\)
\(758\) 0 0
\(759\) −8.95469e6 + 4.61749e7i −0.564217 + 2.90938i
\(760\) 0 0
\(761\) 2.45479e6 + 1.78351e6i 0.153657 + 0.111638i 0.661957 0.749541i \(-0.269726\pi\)
−0.508300 + 0.861180i \(0.669726\pi\)
\(762\) 0 0
\(763\) 623598. + 1.91924e6i 0.0387787 + 0.119349i
\(764\) 0 0
\(765\) −2.85204e7 + 2.07213e7i −1.76198 + 1.28016i
\(766\) 0 0
\(767\) −1.51331e6 + 4.65748e6i −0.0928835 + 0.285866i
\(768\) 0 0
\(769\) −1.31846e7 −0.803993 −0.401996 0.915641i \(-0.631684\pi\)
−0.401996 + 0.915641i \(0.631684\pi\)
\(770\) 0 0
\(771\) 4.76877e7 2.88915
\(772\) 0 0
\(773\) 7.94707e6 2.44586e7i 0.478364 1.47225i −0.363004 0.931788i \(-0.618249\pi\)
0.841367 0.540464i \(-0.181751\pi\)
\(774\) 0 0
\(775\) 275288. 200008.i 0.0164639 0.0119617i
\(776\) 0 0
\(777\) −1.22113e7 3.75826e7i −0.725621 2.23323i
\(778\) 0 0
\(779\) −1.54470e6 1.12229e6i −0.0912011 0.0662615i
\(780\) 0 0
\(781\) 9.02594e6 8.42415e6i 0.529499 0.494195i
\(782\) 0 0
\(783\) −1.02617e7 7.45556e6i −0.598157 0.434586i
\(784\) 0 0
\(785\) −5.79259e6 1.78277e7i −0.335505 1.03258i
\(786\) 0 0
\(787\) −5.09188e6 + 3.69947e6i −0.293050 + 0.212913i −0.724589 0.689181i \(-0.757971\pi\)
0.431540 + 0.902094i \(0.357971\pi\)
\(788\) 0 0
\(789\) −6.63064e6 + 2.04070e7i −0.379195 + 1.16704i
\(790\) 0 0
\(791\) 1.41564e7 0.804473
\(792\) 0 0
\(793\) −1.71253e7 −0.967065
\(794\) 0 0
\(795\) −1.12523e7 + 3.46310e7i −0.631427 + 1.94333i
\(796\) 0 0
\(797\) 1.71285e7 1.24446e7i 0.955157 0.693962i 0.00313577 0.999995i \(-0.499002\pi\)
0.952021 + 0.306033i \(0.0990019\pi\)
\(798\) 0 0
\(799\) −1.75883e6 5.41313e6i −0.0974670 0.299973i
\(800\) 0 0
\(801\) −221860. 161190.i −0.0122179 0.00887683i
\(802\) 0 0
\(803\) −1.06750e7 2.28666e7i −0.584222 1.25145i
\(804\) 0 0
\(805\) −3.49311e7 2.53789e7i −1.89986 1.38033i
\(806\) 0 0
\(807\) −1.42313e7 4.37994e7i −0.769237 2.36747i
\(808\) 0 0
\(809\) 8.37543e6 6.08510e6i 0.449920 0.326886i −0.339644 0.940554i \(-0.610307\pi\)
0.789564 + 0.613668i \(0.210307\pi\)
\(810\) 0 0
\(811\) −8.80616e6 + 2.71026e7i −0.470148 + 1.44697i 0.382244 + 0.924062i \(0.375152\pi\)
−0.852391 + 0.522904i \(0.824848\pi\)
\(812\) 0 0
\(813\) −3.88851e7 −2.06327
\(814\) 0 0
\(815\) 4.38158e6 0.231066
\(816\) 0 0
\(817\) 2.15033e6 6.61803e6i 0.112707 0.346875i
\(818\) 0 0
\(819\) 4.97270e7 3.61288e7i 2.59049 1.88210i
\(820\) 0 0
\(821\) −653756. 2.01205e6i −0.0338499 0.104179i 0.932704 0.360643i \(-0.117443\pi\)
−0.966554 + 0.256463i \(0.917443\pi\)
\(822\) 0 0
\(823\) 2.59528e7 + 1.88558e7i 1.33563 + 0.970390i 0.999593 + 0.0285409i \(0.00908608\pi\)
0.336035 + 0.941849i \(0.390914\pi\)
\(824\) 0 0
\(825\) 1.45947e6 + 808168.i 0.0746551 + 0.0413396i
\(826\) 0 0
\(827\) −4.96864e6 3.60993e6i −0.252623 0.183542i 0.454265 0.890866i \(-0.349902\pi\)
−0.706889 + 0.707325i \(0.749902\pi\)
\(828\) 0 0
\(829\) 1.10609e7 + 3.40421e7i 0.558992 + 1.72040i 0.685161 + 0.728391i \(0.259732\pi\)
−0.126170 + 0.992009i \(0.540268\pi\)
\(830\) 0 0
\(831\) −3.54916e7 + 2.57861e7i −1.78288 + 1.29534i
\(832\) 0 0
\(833\) −4.17195e6 + 1.28400e7i −0.208318 + 0.641137i
\(834\) 0 0
\(835\) 3.54547e7 1.75978
\(836\) 0 0
\(837\) 5.42655e6 0.267738
\(838\) 0 0
\(839\) −5.65447e6 + 1.74027e7i −0.277324 + 0.853514i 0.711272 + 0.702917i \(0.248120\pi\)
−0.988595 + 0.150597i \(0.951880\pi\)
\(840\) 0 0
\(841\) −1.08759e6 + 790184.i −0.0530246 + 0.0385246i
\(842\) 0 0
\(843\) 1.10507e7 + 3.40104e7i 0.535574 + 1.64833i
\(844\) 0 0
\(845\) 3.96816e7 + 2.88304e7i 1.91182 + 1.38902i
\(846\) 0 0
\(847\) −1.34016e7 2.14056e7i −0.641870 1.02522i
\(848\) 0 0
\(849\) 3.39754e6 + 2.46846e6i 0.161769 + 0.117532i
\(850\) 0 0
\(851\) −1.52869e7 4.70483e7i −0.723596 2.22700i
\(852\) 0 0
\(853\) −2.13878e7 + 1.55392e7i −1.00645 + 0.731232i −0.963462 0.267844i \(-0.913689\pi\)
−0.0429918 + 0.999075i \(0.513689\pi\)
\(854\) 0 0
\(855\) 4.56491e6 1.40494e7i 0.213559 0.657266i
\(856\) 0 0
\(857\) 7.98183e6 0.371236 0.185618 0.982622i \(-0.440571\pi\)
0.185618 + 0.982622i \(0.440571\pi\)
\(858\) 0 0
\(859\) 3.32876e7 1.53922 0.769609 0.638516i \(-0.220451\pi\)
0.769609 + 0.638516i \(0.220451\pi\)
\(860\) 0 0
\(861\) −3.11020e6 + 9.57221e6i −0.142982 + 0.440052i
\(862\) 0 0
\(863\) −3.16130e7 + 2.29682e7i −1.44491 + 1.04979i −0.457917 + 0.888995i \(0.651404\pi\)
−0.986989 + 0.160790i \(0.948596\pi\)
\(864\) 0 0
\(865\) 5.37217e6 + 1.65338e7i 0.244123 + 0.751334i
\(866\) 0 0
\(867\) 3.14134e7 + 2.28232e7i 1.41928 + 1.03117i
\(868\) 0 0
\(869\) −2.30095e7 1.27413e7i −1.03361 0.572354i
\(870\) 0 0
\(871\) 1.68107e7 + 1.22137e7i 0.750829 + 0.545509i
\(872\) 0 0
\(873\) −1.46776e7 4.51730e7i −0.651808 2.00606i
\(874\) 0 0
\(875\) 2.15185e7 1.56341e7i 0.950148 0.690323i
\(876\) 0 0
\(877\) 2.49335e6 7.67376e6i 0.109467 0.336906i −0.881286 0.472584i \(-0.843321\pi\)
0.990753 + 0.135678i \(0.0433212\pi\)
\(878\) 0 0
\(879\) 2.70026e6 0.117878
\(880\) 0 0
\(881\) −8.26109e6 −0.358589 −0.179295 0.983795i \(-0.557382\pi\)
−0.179295 + 0.983795i \(0.557382\pi\)
\(882\) 0 0
\(883\) 1.07419e7 3.30603e7i 0.463640 1.42694i −0.397045 0.917799i \(-0.629964\pi\)
0.860685 0.509138i \(-0.170036\pi\)
\(884\) 0 0
\(885\) 5.01924e6 3.64669e6i 0.215417 0.156509i
\(886\) 0 0
\(887\) −6.20105e6 1.90849e7i −0.264640 0.814479i −0.991776 0.127985i \(-0.959149\pi\)
0.727136 0.686494i \(-0.240851\pi\)
\(888\) 0 0
\(889\) 3.87777e6 + 2.81737e6i 0.164561 + 0.119561i
\(890\) 0 0
\(891\) −3.35044e6 7.17690e6i −0.141386 0.302860i
\(892\) 0 0
\(893\) 1.92953e6 + 1.40189e6i 0.0809698 + 0.0588280i
\(894\) 0 0
\(895\) 1.50201e7 + 4.62272e7i 0.626782 + 1.92904i
\(896\) 0 0
\(897\) 1.04979e8 7.62715e7i 4.35632 3.16505i
\(898\) 0 0
\(899\) 2.88938e6 8.89260e6i 0.119236 0.366969i
\(900\) 0 0
\(901\) 4.50329e7 1.84807
\(902\) 0 0
\(903\) −3.66811e7 −1.49700
\(904\) 0 0
\(905\) −9.09818e6 + 2.80013e7i −0.369261 + 1.13647i
\(906\) 0 0
\(907\) 7.40035e6 5.37667e6i 0.298699 0.217018i −0.428333 0.903621i \(-0.640899\pi\)
0.727032 + 0.686603i \(0.240899\pi\)
\(908\) 0 0
\(909\) 2.77926e6 + 8.55369e6i 0.111563 + 0.343355i
\(910\) 0 0
\(911\) 8.32498e6 + 6.04845e6i 0.332344 + 0.241462i 0.741424 0.671036i \(-0.234151\pi\)
−0.409081 + 0.912498i \(0.634151\pi\)
\(912\) 0 0
\(913\) −2.46699e6 + 2.30251e6i −0.0979470 + 0.0914166i
\(914\) 0 0
\(915\) 1.75522e7 + 1.27524e7i 0.693073 + 0.503547i
\(916\) 0 0
\(917\) 1.56953e7 + 4.83052e7i 0.616377 + 1.89701i
\(918\) 0 0
\(919\) 2.37352e7 1.72446e7i 0.927051 0.673542i −0.0182177 0.999834i \(-0.505799\pi\)
0.945269 + 0.326292i \(0.105799\pi\)
\(920\) 0 0
\(921\) 600260. 1.84741e6i 0.0233180 0.0717653i
\(922\) 0 0
\(923\) −3.40614e7 −1.31601
\(924\) 0 0
\(925\) −1.75463e6 −0.0674267
\(926\) 0 0
\(927\) −3.90402e6 + 1.20153e7i −0.149215 + 0.459237i
\(928\) 0 0
\(929\) −4.08360e7 + 2.96691e7i −1.55240 + 1.12789i −0.610491 + 0.792023i \(0.709028\pi\)
−0.941911 + 0.335863i \(0.890972\pi\)
\(930\) 0 0
\(931\) −1.74820e6 5.38041e6i −0.0661024 0.203442i
\(932\) 0 0
\(933\) 7.24866e6 + 5.26646e6i 0.272618 + 0.198068i
\(934\) 0 0
\(935\) 7.60773e6 3.92293e7i 0.284594 1.46751i
\(936\) 0 0
\(937\) −3.50632e7 2.54749e7i −1.30468 0.947903i −0.304687 0.952453i \(-0.598552\pi\)
−0.999990 + 0.00454983i \(0.998552\pi\)
\(938\) 0 0
\(939\) −1.90598e7 5.86601e7i −0.705431 2.17109i
\(940\) 0 0
\(941\) −1.38774e7 + 1.00825e7i −0.510897 + 0.371188i −0.813164 0.582035i \(-0.802257\pi\)
0.302267 + 0.953223i \(0.402257\pi\)
\(942\) 0 0
\(943\) −3.89355e6 + 1.19831e7i −0.142583 + 0.438825i
\(944\) 0 0
\(945\) −2.44229e7 −0.889647
\(946\) 0 0
\(947\) 4.69793e6 0.170228 0.0851141 0.996371i \(-0.472875\pi\)
0.0851141 + 0.996371i \(0.472875\pi\)
\(948\) 0 0
\(949\) −2.15138e7 + 6.62128e7i −0.775447 + 2.38658i
\(950\) 0 0
\(951\) 4.76703e7 3.46345e7i 1.70922 1.24182i
\(952\) 0 0
\(953\) −1.45737e7 4.48533e7i −0.519802 1.59979i −0.774371 0.632732i \(-0.781934\pi\)
0.254569 0.967055i \(-0.418066\pi\)
\(954\) 0 0
\(955\) 1.54226e7 + 1.12052e7i 0.547205 + 0.397568i
\(956\) 0 0
\(957\) 4.54979e7 5.60648e6i 1.60587 0.197884i
\(958\) 0 0
\(959\) −2.34200e7 1.70156e7i −0.822318 0.597449i
\(960\) 0 0
\(961\) −7.61076e6 2.34235e7i −0.265839 0.818169i
\(962\) 0 0
\(963\) −2.57396e7 + 1.87009e7i −0.894408 + 0.649825i
\(964\) 0 0
\(965\) 1.94527e6 5.98692e6i 0.0672451 0.206959i
\(966\) 0 0
\(967\) 2.66682e6 0.0917124 0.0458562 0.998948i \(-0.485398\pi\)
0.0458562 + 0.998948i \(0.485398\pi\)
\(968\) 0 0
\(969\) −3.08086e7 −1.05405
\(970\) 0 0
\(971\) −5.09144e6 + 1.56698e7i −0.173298 + 0.533355i −0.999552 0.0299424i \(-0.990468\pi\)
0.826254 + 0.563298i \(0.190468\pi\)
\(972\) 0 0
\(973\) 3.47681e7 2.52605e7i 1.17733 0.855383i
\(974\) 0 0
\(975\) −1.42224e6 4.37722e6i −0.0479140 0.147464i
\(976\) 0 0
\(977\) −1.10142e7 8.00226e6i −0.369161 0.268211i 0.387702 0.921785i \(-0.373269\pi\)
−0.756863 + 0.653574i \(0.773269\pi\)
\(978\) 0 0
\(979\) 308516. 38016.9i 0.0102878 0.00126771i
\(980\) 0 0
\(981\) 3.68598e6 + 2.67802e6i 0.122287 + 0.0888468i
\(982\) 0 0
\(983\) 3.19591e6 + 9.83599e6i 0.105490 + 0.324664i 0.989845 0.142150i \(-0.0454016\pi\)
−0.884355 + 0.466814i \(0.845402\pi\)
\(984\) 0 0
\(985\) 9.28014e6 6.74242e6i 0.304764 0.221424i
\(986\) 0 0
\(987\) 3.88505e6 1.19570e7i 0.126942 0.390686i
\(988\) 0 0
\(989\) −4.59198e7 −1.49283
\(990\) 0 0
\(991\) −1.65697e7 −0.535959 −0.267979 0.963425i \(-0.586356\pi\)
−0.267979 + 0.963425i \(0.586356\pi\)
\(992\) 0 0
\(993\) 5.88427e6 1.81099e7i 0.189374 0.582832i
\(994\) 0 0
\(995\) −3.78435e7 + 2.74949e7i −1.21181 + 0.880430i
\(996\) 0 0
\(997\) 3.01325e6 + 9.27384e6i 0.0960059 + 0.295476i 0.987515 0.157528i \(-0.0503524\pi\)
−0.891509 + 0.453004i \(0.850352\pi\)
\(998\) 0 0
\(999\) −2.26380e7 1.64475e7i −0.717669 0.521417i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 88.6.i.b.81.2 yes 32
11.3 even 5 inner 88.6.i.b.25.2 32
11.5 even 5 968.6.a.q.1.2 16
11.6 odd 10 968.6.a.p.1.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.6.i.b.25.2 32 11.3 even 5 inner
88.6.i.b.81.2 yes 32 1.1 even 1 trivial
968.6.a.p.1.2 16 11.6 odd 10
968.6.a.q.1.2 16 11.5 even 5