Properties

Label 975.2.bc.f.901.1
Level $975$
Weight $2$
Character 975.901
Analytic conductor $7.785$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(751,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.751");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bc (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 901.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 975.901
Dual form 975.2.bc.f.751.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-1.50000 + 0.866025i) q^{6} +(1.50000 - 0.866025i) q^{7} -1.73205i q^{8} +(-0.500000 - 0.866025i) q^{9} +(3.00000 + 1.73205i) q^{11} -1.00000 q^{12} +(1.00000 - 3.46410i) q^{13} +3.00000 q^{14} +(2.50000 - 4.33013i) q^{16} +(3.00000 + 5.19615i) q^{17} -1.73205i q^{18} +(1.50000 - 0.866025i) q^{19} +1.73205i q^{21} +(3.00000 + 5.19615i) q^{22} +(-3.00000 + 5.19615i) q^{23} +(1.50000 + 0.866025i) q^{24} +(4.50000 - 4.33013i) q^{26} +1.00000 q^{27} +(1.50000 + 0.866025i) q^{28} +(3.00000 - 5.19615i) q^{29} -3.46410i q^{31} +(4.50000 - 2.59808i) q^{32} +(-3.00000 + 1.73205i) q^{33} +10.3923i q^{34} +(0.500000 - 0.866025i) q^{36} +(6.00000 + 3.46410i) q^{37} +3.00000 q^{38} +(2.50000 + 2.59808i) q^{39} +(-3.00000 - 1.73205i) q^{41} +(-1.50000 + 2.59808i) q^{42} +(2.50000 + 4.33013i) q^{43} +3.46410i q^{44} +(-9.00000 + 5.19615i) q^{46} +6.92820i q^{47} +(2.50000 + 4.33013i) q^{48} +(-2.00000 + 3.46410i) q^{49} -6.00000 q^{51} +(3.50000 - 0.866025i) q^{52} -12.0000 q^{53} +(1.50000 + 0.866025i) q^{54} +(-1.50000 - 2.59808i) q^{56} +1.73205i q^{57} +(9.00000 - 5.19615i) q^{58} +(9.00000 - 5.19615i) q^{59} +(1.00000 + 1.73205i) q^{61} +(3.00000 - 5.19615i) q^{62} +(-1.50000 - 0.866025i) q^{63} -1.00000 q^{64} -6.00000 q^{66} +(-7.50000 - 4.33013i) q^{67} +(-3.00000 + 5.19615i) q^{68} +(-3.00000 - 5.19615i) q^{69} +(3.00000 - 1.73205i) q^{71} +(-1.50000 + 0.866025i) q^{72} -8.66025i q^{73} +(6.00000 + 10.3923i) q^{74} +(1.50000 + 0.866025i) q^{76} +6.00000 q^{77} +(1.50000 + 6.06218i) q^{78} -11.0000 q^{79} +(-0.500000 + 0.866025i) q^{81} +(-3.00000 - 5.19615i) q^{82} +3.46410i q^{83} +(-1.50000 + 0.866025i) q^{84} +8.66025i q^{86} +(3.00000 + 5.19615i) q^{87} +(3.00000 - 5.19615i) q^{88} +(-3.00000 - 1.73205i) q^{89} +(-1.50000 - 6.06218i) q^{91} -6.00000 q^{92} +(3.00000 + 1.73205i) q^{93} +(-6.00000 + 10.3923i) q^{94} +5.19615i q^{96} +(-6.00000 + 3.46410i) q^{97} +(-6.00000 + 3.46410i) q^{98} -3.46410i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{2} - q^{3} + q^{4} - 3 q^{6} + 3 q^{7} - q^{9} + 6 q^{11} - 2 q^{12} + 2 q^{13} + 6 q^{14} + 5 q^{16} + 6 q^{17} + 3 q^{19} + 6 q^{22} - 6 q^{23} + 3 q^{24} + 9 q^{26} + 2 q^{27} + 3 q^{28}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.50000 + 0.866025i 1.06066 + 0.612372i 0.925615 0.378467i \(-0.123549\pi\)
0.135045 + 0.990839i \(0.456882\pi\)
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0 0
\(6\) −1.50000 + 0.866025i −0.612372 + 0.353553i
\(7\) 1.50000 0.866025i 0.566947 0.327327i −0.188982 0.981981i \(-0.560519\pi\)
0.755929 + 0.654654i \(0.227186\pi\)
\(8\) 1.73205i 0.612372i
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) 3.00000 + 1.73205i 0.904534 + 0.522233i 0.878668 0.477432i \(-0.158432\pi\)
0.0258656 + 0.999665i \(0.491766\pi\)
\(12\) −1.00000 −0.288675
\(13\) 1.00000 3.46410i 0.277350 0.960769i
\(14\) 3.00000 0.801784
\(15\) 0 0
\(16\) 2.50000 4.33013i 0.625000 1.08253i
\(17\) 3.00000 + 5.19615i 0.727607 + 1.26025i 0.957892 + 0.287129i \(0.0927008\pi\)
−0.230285 + 0.973123i \(0.573966\pi\)
\(18\) 1.73205i 0.408248i
\(19\) 1.50000 0.866025i 0.344124 0.198680i −0.317970 0.948101i \(-0.603001\pi\)
0.662094 + 0.749421i \(0.269668\pi\)
\(20\) 0 0
\(21\) 1.73205i 0.377964i
\(22\) 3.00000 + 5.19615i 0.639602 + 1.10782i
\(23\) −3.00000 + 5.19615i −0.625543 + 1.08347i 0.362892 + 0.931831i \(0.381789\pi\)
−0.988436 + 0.151642i \(0.951544\pi\)
\(24\) 1.50000 + 0.866025i 0.306186 + 0.176777i
\(25\) 0 0
\(26\) 4.50000 4.33013i 0.882523 0.849208i
\(27\) 1.00000 0.192450
\(28\) 1.50000 + 0.866025i 0.283473 + 0.163663i
\(29\) 3.00000 5.19615i 0.557086 0.964901i −0.440652 0.897678i \(-0.645253\pi\)
0.997738 0.0672232i \(-0.0214140\pi\)
\(30\) 0 0
\(31\) 3.46410i 0.622171i −0.950382 0.311086i \(-0.899307\pi\)
0.950382 0.311086i \(-0.100693\pi\)
\(32\) 4.50000 2.59808i 0.795495 0.459279i
\(33\) −3.00000 + 1.73205i −0.522233 + 0.301511i
\(34\) 10.3923i 1.78227i
\(35\) 0 0
\(36\) 0.500000 0.866025i 0.0833333 0.144338i
\(37\) 6.00000 + 3.46410i 0.986394 + 0.569495i 0.904194 0.427121i \(-0.140472\pi\)
0.0821995 + 0.996616i \(0.473806\pi\)
\(38\) 3.00000 0.486664
\(39\) 2.50000 + 2.59808i 0.400320 + 0.416025i
\(40\) 0 0
\(41\) −3.00000 1.73205i −0.468521 0.270501i 0.247099 0.968990i \(-0.420523\pi\)
−0.715621 + 0.698489i \(0.753856\pi\)
\(42\) −1.50000 + 2.59808i −0.231455 + 0.400892i
\(43\) 2.50000 + 4.33013i 0.381246 + 0.660338i 0.991241 0.132068i \(-0.0421616\pi\)
−0.609994 + 0.792406i \(0.708828\pi\)
\(44\) 3.46410i 0.522233i
\(45\) 0 0
\(46\) −9.00000 + 5.19615i −1.32698 + 0.766131i
\(47\) 6.92820i 1.01058i 0.862949 + 0.505291i \(0.168615\pi\)
−0.862949 + 0.505291i \(0.831385\pi\)
\(48\) 2.50000 + 4.33013i 0.360844 + 0.625000i
\(49\) −2.00000 + 3.46410i −0.285714 + 0.494872i
\(50\) 0 0
\(51\) −6.00000 −0.840168
\(52\) 3.50000 0.866025i 0.485363 0.120096i
\(53\) −12.0000 −1.64833 −0.824163 0.566352i \(-0.808354\pi\)
−0.824163 + 0.566352i \(0.808354\pi\)
\(54\) 1.50000 + 0.866025i 0.204124 + 0.117851i
\(55\) 0 0
\(56\) −1.50000 2.59808i −0.200446 0.347183i
\(57\) 1.73205i 0.229416i
\(58\) 9.00000 5.19615i 1.18176 0.682288i
\(59\) 9.00000 5.19615i 1.17170 0.676481i 0.217620 0.976034i \(-0.430171\pi\)
0.954080 + 0.299552i \(0.0968372\pi\)
\(60\) 0 0
\(61\) 1.00000 + 1.73205i 0.128037 + 0.221766i 0.922916 0.385002i \(-0.125799\pi\)
−0.794879 + 0.606768i \(0.792466\pi\)
\(62\) 3.00000 5.19615i 0.381000 0.659912i
\(63\) −1.50000 0.866025i −0.188982 0.109109i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −6.00000 −0.738549
\(67\) −7.50000 4.33013i −0.916271 0.529009i −0.0338274 0.999428i \(-0.510770\pi\)
−0.882443 + 0.470418i \(0.844103\pi\)
\(68\) −3.00000 + 5.19615i −0.363803 + 0.630126i
\(69\) −3.00000 5.19615i −0.361158 0.625543i
\(70\) 0 0
\(71\) 3.00000 1.73205i 0.356034 0.205557i −0.311305 0.950310i \(-0.600766\pi\)
0.667340 + 0.744753i \(0.267433\pi\)
\(72\) −1.50000 + 0.866025i −0.176777 + 0.102062i
\(73\) 8.66025i 1.01361i −0.862062 0.506803i \(-0.830827\pi\)
0.862062 0.506803i \(-0.169173\pi\)
\(74\) 6.00000 + 10.3923i 0.697486 + 1.20808i
\(75\) 0 0
\(76\) 1.50000 + 0.866025i 0.172062 + 0.0993399i
\(77\) 6.00000 0.683763
\(78\) 1.50000 + 6.06218i 0.169842 + 0.686406i
\(79\) −11.0000 −1.23760 −0.618798 0.785550i \(-0.712380\pi\)
−0.618798 + 0.785550i \(0.712380\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −3.00000 5.19615i −0.331295 0.573819i
\(83\) 3.46410i 0.380235i 0.981761 + 0.190117i \(0.0608868\pi\)
−0.981761 + 0.190117i \(0.939113\pi\)
\(84\) −1.50000 + 0.866025i −0.163663 + 0.0944911i
\(85\) 0 0
\(86\) 8.66025i 0.933859i
\(87\) 3.00000 + 5.19615i 0.321634 + 0.557086i
\(88\) 3.00000 5.19615i 0.319801 0.553912i
\(89\) −3.00000 1.73205i −0.317999 0.183597i 0.332501 0.943103i \(-0.392107\pi\)
−0.650500 + 0.759506i \(0.725441\pi\)
\(90\) 0 0
\(91\) −1.50000 6.06218i −0.157243 0.635489i
\(92\) −6.00000 −0.625543
\(93\) 3.00000 + 1.73205i 0.311086 + 0.179605i
\(94\) −6.00000 + 10.3923i −0.618853 + 1.07188i
\(95\) 0 0
\(96\) 5.19615i 0.530330i
\(97\) −6.00000 + 3.46410i −0.609208 + 0.351726i −0.772655 0.634826i \(-0.781072\pi\)
0.163448 + 0.986552i \(0.447739\pi\)
\(98\) −6.00000 + 3.46410i −0.606092 + 0.349927i
\(99\) 3.46410i 0.348155i
\(100\) 0 0
\(101\) 3.00000 5.19615i 0.298511 0.517036i −0.677284 0.735721i \(-0.736843\pi\)
0.975796 + 0.218685i \(0.0701767\pi\)
\(102\) −9.00000 5.19615i −0.891133 0.514496i
\(103\) 13.0000 1.28093 0.640464 0.767988i \(-0.278742\pi\)
0.640464 + 0.767988i \(0.278742\pi\)
\(104\) −6.00000 1.73205i −0.588348 0.169842i
\(105\) 0 0
\(106\) −18.0000 10.3923i −1.74831 1.00939i
\(107\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(108\) 0.500000 + 0.866025i 0.0481125 + 0.0833333i
\(109\) 13.8564i 1.32720i −0.748086 0.663602i \(-0.769027\pi\)
0.748086 0.663602i \(-0.230973\pi\)
\(110\) 0 0
\(111\) −6.00000 + 3.46410i −0.569495 + 0.328798i
\(112\) 8.66025i 0.818317i
\(113\) 6.00000 + 10.3923i 0.564433 + 0.977626i 0.997102 + 0.0760733i \(0.0242383\pi\)
−0.432670 + 0.901553i \(0.642428\pi\)
\(114\) −1.50000 + 2.59808i −0.140488 + 0.243332i
\(115\) 0 0
\(116\) 6.00000 0.557086
\(117\) −3.50000 + 0.866025i −0.323575 + 0.0800641i
\(118\) 18.0000 1.65703
\(119\) 9.00000 + 5.19615i 0.825029 + 0.476331i
\(120\) 0 0
\(121\) 0.500000 + 0.866025i 0.0454545 + 0.0787296i
\(122\) 3.46410i 0.313625i
\(123\) 3.00000 1.73205i 0.270501 0.156174i
\(124\) 3.00000 1.73205i 0.269408 0.155543i
\(125\) 0 0
\(126\) −1.50000 2.59808i −0.133631 0.231455i
\(127\) 0.500000 0.866025i 0.0443678 0.0768473i −0.842989 0.537931i \(-0.819206\pi\)
0.887357 + 0.461084i \(0.152539\pi\)
\(128\) −10.5000 6.06218i −0.928078 0.535826i
\(129\) −5.00000 −0.440225
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) −3.00000 1.73205i −0.261116 0.150756i
\(133\) 1.50000 2.59808i 0.130066 0.225282i
\(134\) −7.50000 12.9904i −0.647901 1.12220i
\(135\) 0 0
\(136\) 9.00000 5.19615i 0.771744 0.445566i
\(137\) 9.00000 5.19615i 0.768922 0.443937i −0.0635680 0.997978i \(-0.520248\pi\)
0.832490 + 0.554040i \(0.186915\pi\)
\(138\) 10.3923i 0.884652i
\(139\) −2.50000 4.33013i −0.212047 0.367277i 0.740308 0.672268i \(-0.234680\pi\)
−0.952355 + 0.304991i \(0.901346\pi\)
\(140\) 0 0
\(141\) −6.00000 3.46410i −0.505291 0.291730i
\(142\) 6.00000 0.503509
\(143\) 9.00000 8.66025i 0.752618 0.724207i
\(144\) −5.00000 −0.416667
\(145\) 0 0
\(146\) 7.50000 12.9904i 0.620704 1.07509i
\(147\) −2.00000 3.46410i −0.164957 0.285714i
\(148\) 6.92820i 0.569495i
\(149\) 3.00000 1.73205i 0.245770 0.141895i −0.372056 0.928210i \(-0.621347\pi\)
0.617826 + 0.786315i \(0.288014\pi\)
\(150\) 0 0
\(151\) 8.66025i 0.704761i 0.935857 + 0.352381i \(0.114628\pi\)
−0.935857 + 0.352381i \(0.885372\pi\)
\(152\) −1.50000 2.59808i −0.121666 0.210732i
\(153\) 3.00000 5.19615i 0.242536 0.420084i
\(154\) 9.00000 + 5.19615i 0.725241 + 0.418718i
\(155\) 0 0
\(156\) −1.00000 + 3.46410i −0.0800641 + 0.277350i
\(157\) −23.0000 −1.83560 −0.917800 0.397043i \(-0.870036\pi\)
−0.917800 + 0.397043i \(0.870036\pi\)
\(158\) −16.5000 9.52628i −1.31267 0.757870i
\(159\) 6.00000 10.3923i 0.475831 0.824163i
\(160\) 0 0
\(161\) 10.3923i 0.819028i
\(162\) −1.50000 + 0.866025i −0.117851 + 0.0680414i
\(163\) −21.0000 + 12.1244i −1.64485 + 0.949653i −0.665771 + 0.746156i \(0.731897\pi\)
−0.979076 + 0.203497i \(0.934769\pi\)
\(164\) 3.46410i 0.270501i
\(165\) 0 0
\(166\) −3.00000 + 5.19615i −0.232845 + 0.403300i
\(167\) −3.00000 1.73205i −0.232147 0.134030i 0.379415 0.925227i \(-0.376125\pi\)
−0.611562 + 0.791196i \(0.709459\pi\)
\(168\) 3.00000 0.231455
\(169\) −11.0000 6.92820i −0.846154 0.532939i
\(170\) 0 0
\(171\) −1.50000 0.866025i −0.114708 0.0662266i
\(172\) −2.50000 + 4.33013i −0.190623 + 0.330169i
\(173\) 12.0000 + 20.7846i 0.912343 + 1.58022i 0.810745 + 0.585399i \(0.199062\pi\)
0.101598 + 0.994826i \(0.467605\pi\)
\(174\) 10.3923i 0.787839i
\(175\) 0 0
\(176\) 15.0000 8.66025i 1.13067 0.652791i
\(177\) 10.3923i 0.781133i
\(178\) −3.00000 5.19615i −0.224860 0.389468i
\(179\) −6.00000 + 10.3923i −0.448461 + 0.776757i −0.998286 0.0585225i \(-0.981361\pi\)
0.549825 + 0.835280i \(0.314694\pi\)
\(180\) 0 0
\(181\) 17.0000 1.26360 0.631800 0.775131i \(-0.282316\pi\)
0.631800 + 0.775131i \(0.282316\pi\)
\(182\) 3.00000 10.3923i 0.222375 0.770329i
\(183\) −2.00000 −0.147844
\(184\) 9.00000 + 5.19615i 0.663489 + 0.383065i
\(185\) 0 0
\(186\) 3.00000 + 5.19615i 0.219971 + 0.381000i
\(187\) 20.7846i 1.51992i
\(188\) −6.00000 + 3.46410i −0.437595 + 0.252646i
\(189\) 1.50000 0.866025i 0.109109 0.0629941i
\(190\) 0 0
\(191\) 3.00000 + 5.19615i 0.217072 + 0.375980i 0.953912 0.300088i \(-0.0970159\pi\)
−0.736839 + 0.676068i \(0.763683\pi\)
\(192\) 0.500000 0.866025i 0.0360844 0.0625000i
\(193\) −19.5000 11.2583i −1.40364 0.810392i −0.408877 0.912590i \(-0.634079\pi\)
−0.994764 + 0.102197i \(0.967413\pi\)
\(194\) −12.0000 −0.861550
\(195\) 0 0
\(196\) −4.00000 −0.285714
\(197\) −18.0000 10.3923i −1.28245 0.740421i −0.305152 0.952304i \(-0.598707\pi\)
−0.977295 + 0.211883i \(0.932041\pi\)
\(198\) 3.00000 5.19615i 0.213201 0.369274i
\(199\) −12.5000 21.6506i −0.886102 1.53477i −0.844446 0.535641i \(-0.820070\pi\)
−0.0416556 0.999132i \(-0.513263\pi\)
\(200\) 0 0
\(201\) 7.50000 4.33013i 0.529009 0.305424i
\(202\) 9.00000 5.19615i 0.633238 0.365600i
\(203\) 10.3923i 0.729397i
\(204\) −3.00000 5.19615i −0.210042 0.363803i
\(205\) 0 0
\(206\) 19.5000 + 11.2583i 1.35863 + 0.784405i
\(207\) 6.00000 0.417029
\(208\) −12.5000 12.9904i −0.866719 0.900721i
\(209\) 6.00000 0.415029
\(210\) 0 0
\(211\) −8.00000 + 13.8564i −0.550743 + 0.953914i 0.447478 + 0.894295i \(0.352322\pi\)
−0.998221 + 0.0596196i \(0.981011\pi\)
\(212\) −6.00000 10.3923i −0.412082 0.713746i
\(213\) 3.46410i 0.237356i
\(214\) 0 0
\(215\) 0 0
\(216\) 1.73205i 0.117851i
\(217\) −3.00000 5.19615i −0.203653 0.352738i
\(218\) 12.0000 20.7846i 0.812743 1.40771i
\(219\) 7.50000 + 4.33013i 0.506803 + 0.292603i
\(220\) 0 0
\(221\) 21.0000 5.19615i 1.41261 0.349531i
\(222\) −12.0000 −0.805387
\(223\) 7.50000 + 4.33013i 0.502237 + 0.289967i 0.729637 0.683835i \(-0.239689\pi\)
−0.227400 + 0.973801i \(0.573022\pi\)
\(224\) 4.50000 7.79423i 0.300669 0.520774i
\(225\) 0 0
\(226\) 20.7846i 1.38257i
\(227\) 24.0000 13.8564i 1.59294 0.919682i 0.600136 0.799898i \(-0.295113\pi\)
0.992800 0.119784i \(-0.0382202\pi\)
\(228\) −1.50000 + 0.866025i −0.0993399 + 0.0573539i
\(229\) 1.73205i 0.114457i 0.998361 + 0.0572286i \(0.0182264\pi\)
−0.998361 + 0.0572286i \(0.981774\pi\)
\(230\) 0 0
\(231\) −3.00000 + 5.19615i −0.197386 + 0.341882i
\(232\) −9.00000 5.19615i −0.590879 0.341144i
\(233\) −24.0000 −1.57229 −0.786146 0.618041i \(-0.787927\pi\)
−0.786146 + 0.618041i \(0.787927\pi\)
\(234\) −6.00000 1.73205i −0.392232 0.113228i
\(235\) 0 0
\(236\) 9.00000 + 5.19615i 0.585850 + 0.338241i
\(237\) 5.50000 9.52628i 0.357263 0.618798i
\(238\) 9.00000 + 15.5885i 0.583383 + 1.01045i
\(239\) 10.3923i 0.672222i −0.941822 0.336111i \(-0.890888\pi\)
0.941822 0.336111i \(-0.109112\pi\)
\(240\) 0 0
\(241\) −16.5000 + 9.52628i −1.06286 + 0.613642i −0.926222 0.376980i \(-0.876963\pi\)
−0.136637 + 0.990621i \(0.543629\pi\)
\(242\) 1.73205i 0.111340i
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) −1.00000 + 1.73205i −0.0640184 + 0.110883i
\(245\) 0 0
\(246\) 6.00000 0.382546
\(247\) −1.50000 6.06218i −0.0954427 0.385727i
\(248\) −6.00000 −0.381000
\(249\) −3.00000 1.73205i −0.190117 0.109764i
\(250\) 0 0
\(251\) 12.0000 + 20.7846i 0.757433 + 1.31191i 0.944156 + 0.329500i \(0.106880\pi\)
−0.186722 + 0.982413i \(0.559786\pi\)
\(252\) 1.73205i 0.109109i
\(253\) −18.0000 + 10.3923i −1.13165 + 0.653359i
\(254\) 1.50000 0.866025i 0.0941184 0.0543393i
\(255\) 0 0
\(256\) −9.50000 16.4545i −0.593750 1.02841i
\(257\) −6.00000 + 10.3923i −0.374270 + 0.648254i −0.990217 0.139533i \(-0.955440\pi\)
0.615948 + 0.787787i \(0.288773\pi\)
\(258\) −7.50000 4.33013i −0.466930 0.269582i
\(259\) 12.0000 0.745644
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) −18.0000 10.3923i −1.11204 0.642039i
\(263\) −3.00000 + 5.19615i −0.184988 + 0.320408i −0.943572 0.331166i \(-0.892558\pi\)
0.758585 + 0.651575i \(0.225891\pi\)
\(264\) 3.00000 + 5.19615i 0.184637 + 0.319801i
\(265\) 0 0
\(266\) 4.50000 2.59808i 0.275913 0.159298i
\(267\) 3.00000 1.73205i 0.183597 0.106000i
\(268\) 8.66025i 0.529009i
\(269\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(270\) 0 0
\(271\) 7.50000 + 4.33013i 0.455593 + 0.263036i 0.710189 0.704011i \(-0.248609\pi\)
−0.254597 + 0.967047i \(0.581943\pi\)
\(272\) 30.0000 1.81902
\(273\) 6.00000 + 1.73205i 0.363137 + 0.104828i
\(274\) 18.0000 1.08742
\(275\) 0 0
\(276\) 3.00000 5.19615i 0.180579 0.312772i
\(277\) 8.50000 + 14.7224i 0.510716 + 0.884585i 0.999923 + 0.0124177i \(0.00395278\pi\)
−0.489207 + 0.872167i \(0.662714\pi\)
\(278\) 8.66025i 0.519408i
\(279\) −3.00000 + 1.73205i −0.179605 + 0.103695i
\(280\) 0 0
\(281\) 3.46410i 0.206651i −0.994648 0.103325i \(-0.967052\pi\)
0.994648 0.103325i \(-0.0329483\pi\)
\(282\) −6.00000 10.3923i −0.357295 0.618853i
\(283\) 2.00000 3.46410i 0.118888 0.205919i −0.800439 0.599414i \(-0.795400\pi\)
0.919327 + 0.393494i \(0.128734\pi\)
\(284\) 3.00000 + 1.73205i 0.178017 + 0.102778i
\(285\) 0 0
\(286\) 21.0000 5.19615i 1.24176 0.307255i
\(287\) −6.00000 −0.354169
\(288\) −4.50000 2.59808i −0.265165 0.153093i
\(289\) −9.50000 + 16.4545i −0.558824 + 0.967911i
\(290\) 0 0
\(291\) 6.92820i 0.406138i
\(292\) 7.50000 4.33013i 0.438904 0.253402i
\(293\) −6.00000 + 3.46410i −0.350524 + 0.202375i −0.664916 0.746918i \(-0.731533\pi\)
0.314392 + 0.949293i \(0.398199\pi\)
\(294\) 6.92820i 0.404061i
\(295\) 0 0
\(296\) 6.00000 10.3923i 0.348743 0.604040i
\(297\) 3.00000 + 1.73205i 0.174078 + 0.100504i
\(298\) 6.00000 0.347571
\(299\) 15.0000 + 15.5885i 0.867472 + 0.901504i
\(300\) 0 0
\(301\) 7.50000 + 4.33013i 0.432293 + 0.249584i
\(302\) −7.50000 + 12.9904i −0.431577 + 0.747512i
\(303\) 3.00000 + 5.19615i 0.172345 + 0.298511i
\(304\) 8.66025i 0.496700i
\(305\) 0 0
\(306\) 9.00000 5.19615i 0.514496 0.297044i
\(307\) 10.3923i 0.593120i −0.955014 0.296560i \(-0.904160\pi\)
0.955014 0.296560i \(-0.0958395\pi\)
\(308\) 3.00000 + 5.19615i 0.170941 + 0.296078i
\(309\) −6.50000 + 11.2583i −0.369772 + 0.640464i
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) 4.50000 4.33013i 0.254762 0.245145i
\(313\) −25.0000 −1.41308 −0.706542 0.707671i \(-0.749746\pi\)
−0.706542 + 0.707671i \(0.749746\pi\)
\(314\) −34.5000 19.9186i −1.94695 1.12407i
\(315\) 0 0
\(316\) −5.50000 9.52628i −0.309399 0.535895i
\(317\) 6.92820i 0.389127i 0.980890 + 0.194563i \(0.0623290\pi\)
−0.980890 + 0.194563i \(0.937671\pi\)
\(318\) 18.0000 10.3923i 1.00939 0.582772i
\(319\) 18.0000 10.3923i 1.00781 0.581857i
\(320\) 0 0
\(321\) 0 0
\(322\) −9.00000 + 15.5885i −0.501550 + 0.868711i
\(323\) 9.00000 + 5.19615i 0.500773 + 0.289122i
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) −42.0000 −2.32616
\(327\) 12.0000 + 6.92820i 0.663602 + 0.383131i
\(328\) −3.00000 + 5.19615i −0.165647 + 0.286910i
\(329\) 6.00000 + 10.3923i 0.330791 + 0.572946i
\(330\) 0 0
\(331\) 4.50000 2.59808i 0.247342 0.142803i −0.371204 0.928551i \(-0.621055\pi\)
0.618547 + 0.785748i \(0.287722\pi\)
\(332\) −3.00000 + 1.73205i −0.164646 + 0.0950586i
\(333\) 6.92820i 0.379663i
\(334\) −3.00000 5.19615i −0.164153 0.284321i
\(335\) 0 0
\(336\) 7.50000 + 4.33013i 0.409159 + 0.236228i
\(337\) −19.0000 −1.03500 −0.517498 0.855684i \(-0.673136\pi\)
−0.517498 + 0.855684i \(0.673136\pi\)
\(338\) −10.5000 19.9186i −0.571125 1.08343i
\(339\) −12.0000 −0.651751
\(340\) 0 0
\(341\) 6.00000 10.3923i 0.324918 0.562775i
\(342\) −1.50000 2.59808i −0.0811107 0.140488i
\(343\) 19.0526i 1.02874i
\(344\) 7.50000 4.33013i 0.404373 0.233465i
\(345\) 0 0
\(346\) 41.5692i 2.23478i
\(347\) −12.0000 20.7846i −0.644194 1.11578i −0.984487 0.175457i \(-0.943860\pi\)
0.340293 0.940319i \(-0.389474\pi\)
\(348\) −3.00000 + 5.19615i −0.160817 + 0.278543i
\(349\) −10.5000 6.06218i −0.562052 0.324501i 0.191917 0.981411i \(-0.438530\pi\)
−0.753969 + 0.656910i \(0.771863\pi\)
\(350\) 0 0
\(351\) 1.00000 3.46410i 0.0533761 0.184900i
\(352\) 18.0000 0.959403
\(353\) 21.0000 + 12.1244i 1.11772 + 0.645314i 0.940817 0.338914i \(-0.110060\pi\)
0.176900 + 0.984229i \(0.443393\pi\)
\(354\) −9.00000 + 15.5885i −0.478345 + 0.828517i
\(355\) 0 0
\(356\) 3.46410i 0.183597i
\(357\) −9.00000 + 5.19615i −0.476331 + 0.275010i
\(358\) −18.0000 + 10.3923i −0.951330 + 0.549250i
\(359\) 27.7128i 1.46263i 0.682042 + 0.731313i \(0.261092\pi\)
−0.682042 + 0.731313i \(0.738908\pi\)
\(360\) 0 0
\(361\) −8.00000 + 13.8564i −0.421053 + 0.729285i
\(362\) 25.5000 + 14.7224i 1.34025 + 0.773794i
\(363\) −1.00000 −0.0524864
\(364\) 4.50000 4.33013i 0.235864 0.226960i
\(365\) 0 0
\(366\) −3.00000 1.73205i −0.156813 0.0905357i
\(367\) 17.5000 30.3109i 0.913493 1.58222i 0.104399 0.994535i \(-0.466708\pi\)
0.809093 0.587680i \(-0.199959\pi\)
\(368\) 15.0000 + 25.9808i 0.781929 + 1.35434i
\(369\) 3.46410i 0.180334i
\(370\) 0 0
\(371\) −18.0000 + 10.3923i −0.934513 + 0.539542i
\(372\) 3.46410i 0.179605i
\(373\) 18.5000 + 32.0429i 0.957894 + 1.65912i 0.727603 + 0.685999i \(0.240634\pi\)
0.230291 + 0.973122i \(0.426032\pi\)
\(374\) −18.0000 + 31.1769i −0.930758 + 1.61212i
\(375\) 0 0
\(376\) 12.0000 0.618853
\(377\) −15.0000 15.5885i −0.772539 0.802846i
\(378\) 3.00000 0.154303
\(379\) 22.5000 + 12.9904i 1.15575 + 0.667271i 0.950281 0.311393i \(-0.100796\pi\)
0.205466 + 0.978664i \(0.434129\pi\)
\(380\) 0 0
\(381\) 0.500000 + 0.866025i 0.0256158 + 0.0443678i
\(382\) 10.3923i 0.531717i
\(383\) 24.0000 13.8564i 1.22634 0.708029i 0.260080 0.965587i \(-0.416251\pi\)
0.966263 + 0.257558i \(0.0829178\pi\)
\(384\) 10.5000 6.06218i 0.535826 0.309359i
\(385\) 0 0
\(386\) −19.5000 33.7750i −0.992524 1.71910i
\(387\) 2.50000 4.33013i 0.127082 0.220113i
\(388\) −6.00000 3.46410i −0.304604 0.175863i
\(389\) −12.0000 −0.608424 −0.304212 0.952604i \(-0.598393\pi\)
−0.304212 + 0.952604i \(0.598393\pi\)
\(390\) 0 0
\(391\) −36.0000 −1.82060
\(392\) 6.00000 + 3.46410i 0.303046 + 0.174964i
\(393\) 6.00000 10.3923i 0.302660 0.524222i
\(394\) −18.0000 31.1769i −0.906827 1.57067i
\(395\) 0 0
\(396\) 3.00000 1.73205i 0.150756 0.0870388i
\(397\) −22.5000 + 12.9904i −1.12924 + 0.651969i −0.943744 0.330676i \(-0.892723\pi\)
−0.185498 + 0.982645i \(0.559390\pi\)
\(398\) 43.3013i 2.17050i
\(399\) 1.50000 + 2.59808i 0.0750939 + 0.130066i
\(400\) 0 0
\(401\) −6.00000 3.46410i −0.299626 0.172989i 0.342649 0.939463i \(-0.388676\pi\)
−0.642275 + 0.766475i \(0.722009\pi\)
\(402\) 15.0000 0.748132
\(403\) −12.0000 3.46410i −0.597763 0.172559i
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) 9.00000 15.5885i 0.446663 0.773642i
\(407\) 12.0000 + 20.7846i 0.594818 + 1.03025i
\(408\) 10.3923i 0.514496i
\(409\) −30.0000 + 17.3205i −1.48340 + 0.856444i −0.999822 0.0188549i \(-0.993998\pi\)
−0.483582 + 0.875299i \(0.660665\pi\)
\(410\) 0 0
\(411\) 10.3923i 0.512615i
\(412\) 6.50000 + 11.2583i 0.320232 + 0.554658i
\(413\) 9.00000 15.5885i 0.442861 0.767058i
\(414\) 9.00000 + 5.19615i 0.442326 + 0.255377i
\(415\) 0 0
\(416\) −4.50000 18.1865i −0.220631 0.891668i
\(417\) 5.00000 0.244851
\(418\) 9.00000 + 5.19615i 0.440204 + 0.254152i
\(419\) 6.00000 10.3923i 0.293119 0.507697i −0.681426 0.731887i \(-0.738640\pi\)
0.974546 + 0.224189i \(0.0719734\pi\)
\(420\) 0 0
\(421\) 5.19615i 0.253245i −0.991951 0.126622i \(-0.959586\pi\)
0.991951 0.126622i \(-0.0404137\pi\)
\(422\) −24.0000 + 13.8564i −1.16830 + 0.674519i
\(423\) 6.00000 3.46410i 0.291730 0.168430i
\(424\) 20.7846i 1.00939i
\(425\) 0 0
\(426\) −3.00000 + 5.19615i −0.145350 + 0.251754i
\(427\) 3.00000 + 1.73205i 0.145180 + 0.0838198i
\(428\) 0 0
\(429\) 3.00000 + 12.1244i 0.144841 + 0.585369i
\(430\) 0 0
\(431\) −24.0000 13.8564i −1.15604 0.667440i −0.205688 0.978618i \(-0.565943\pi\)
−0.950352 + 0.311178i \(0.899276\pi\)
\(432\) 2.50000 4.33013i 0.120281 0.208333i
\(433\) −1.00000 1.73205i −0.0480569 0.0832370i 0.840996 0.541041i \(-0.181970\pi\)
−0.889053 + 0.457804i \(0.848636\pi\)
\(434\) 10.3923i 0.498847i
\(435\) 0 0
\(436\) 12.0000 6.92820i 0.574696 0.331801i
\(437\) 10.3923i 0.497131i
\(438\) 7.50000 + 12.9904i 0.358364 + 0.620704i
\(439\) 15.5000 26.8468i 0.739775 1.28133i −0.212822 0.977091i \(-0.568265\pi\)
0.952597 0.304236i \(-0.0984012\pi\)
\(440\) 0 0
\(441\) 4.00000 0.190476
\(442\) 36.0000 + 10.3923i 1.71235 + 0.494312i
\(443\) 18.0000 0.855206 0.427603 0.903967i \(-0.359358\pi\)
0.427603 + 0.903967i \(0.359358\pi\)
\(444\) −6.00000 3.46410i −0.284747 0.164399i
\(445\) 0 0
\(446\) 7.50000 + 12.9904i 0.355135 + 0.615112i
\(447\) 3.46410i 0.163846i
\(448\) −1.50000 + 0.866025i −0.0708683 + 0.0409159i
\(449\) 24.0000 13.8564i 1.13263 0.653924i 0.188035 0.982162i \(-0.439788\pi\)
0.944595 + 0.328238i \(0.106455\pi\)
\(450\) 0 0
\(451\) −6.00000 10.3923i −0.282529 0.489355i
\(452\) −6.00000 + 10.3923i −0.282216 + 0.488813i
\(453\) −7.50000 4.33013i −0.352381 0.203447i
\(454\) 48.0000 2.25275
\(455\) 0 0
\(456\) 3.00000 0.140488
\(457\) 1.50000 + 0.866025i 0.0701670 + 0.0405110i 0.534673 0.845059i \(-0.320435\pi\)
−0.464506 + 0.885570i \(0.653768\pi\)
\(458\) −1.50000 + 2.59808i −0.0700904 + 0.121400i
\(459\) 3.00000 + 5.19615i 0.140028 + 0.242536i
\(460\) 0 0
\(461\) −21.0000 + 12.1244i −0.978068 + 0.564688i −0.901686 0.432391i \(-0.857670\pi\)
−0.0763814 + 0.997079i \(0.524337\pi\)
\(462\) −9.00000 + 5.19615i −0.418718 + 0.241747i
\(463\) 15.5885i 0.724457i 0.932089 + 0.362229i \(0.117984\pi\)
−0.932089 + 0.362229i \(0.882016\pi\)
\(464\) −15.0000 25.9808i −0.696358 1.20613i
\(465\) 0 0
\(466\) −36.0000 20.7846i −1.66767 0.962828i
\(467\) −18.0000 −0.832941 −0.416470 0.909149i \(-0.636733\pi\)
−0.416470 + 0.909149i \(0.636733\pi\)
\(468\) −2.50000 2.59808i −0.115563 0.120096i
\(469\) −15.0000 −0.692636
\(470\) 0 0
\(471\) 11.5000 19.9186i 0.529892 0.917800i
\(472\) −9.00000 15.5885i −0.414259 0.717517i
\(473\) 17.3205i 0.796398i
\(474\) 16.5000 9.52628i 0.757870 0.437557i
\(475\) 0 0
\(476\) 10.3923i 0.476331i
\(477\) 6.00000 + 10.3923i 0.274721 + 0.475831i
\(478\) 9.00000 15.5885i 0.411650 0.712999i
\(479\) 18.0000 + 10.3923i 0.822441 + 0.474837i 0.851258 0.524748i \(-0.175841\pi\)
−0.0288165 + 0.999585i \(0.509174\pi\)
\(480\) 0 0
\(481\) 18.0000 17.3205i 0.820729 0.789747i
\(482\) −33.0000 −1.50311
\(483\) −9.00000 5.19615i −0.409514 0.236433i
\(484\) −0.500000 + 0.866025i −0.0227273 + 0.0393648i
\(485\) 0 0
\(486\) 1.73205i 0.0785674i
\(487\) 22.5000 12.9904i 1.01957 0.588650i 0.105592 0.994410i \(-0.466326\pi\)
0.913980 + 0.405759i \(0.132993\pi\)
\(488\) 3.00000 1.73205i 0.135804 0.0784063i
\(489\) 24.2487i 1.09656i
\(490\) 0 0
\(491\) −15.0000 + 25.9808i −0.676941 + 1.17250i 0.298957 + 0.954267i \(0.403361\pi\)
−0.975898 + 0.218229i \(0.929972\pi\)
\(492\) 3.00000 + 1.73205i 0.135250 + 0.0780869i
\(493\) 36.0000 1.62136
\(494\) 3.00000 10.3923i 0.134976 0.467572i
\(495\) 0 0
\(496\) −15.0000 8.66025i −0.673520 0.388857i
\(497\) 3.00000 5.19615i 0.134568 0.233079i
\(498\) −3.00000 5.19615i −0.134433 0.232845i
\(499\) 32.9090i 1.47321i 0.676325 + 0.736604i \(0.263572\pi\)
−0.676325 + 0.736604i \(0.736428\pi\)
\(500\) 0 0
\(501\) 3.00000 1.73205i 0.134030 0.0773823i
\(502\) 41.5692i 1.85533i
\(503\) −3.00000 5.19615i −0.133763 0.231685i 0.791361 0.611349i \(-0.209373\pi\)
−0.925124 + 0.379664i \(0.876040\pi\)
\(504\) −1.50000 + 2.59808i −0.0668153 + 0.115728i
\(505\) 0 0
\(506\) −36.0000 −1.60040
\(507\) 11.5000 6.06218i 0.510733 0.269231i
\(508\) 1.00000 0.0443678
\(509\) −9.00000 5.19615i −0.398918 0.230315i 0.287099 0.957901i \(-0.407309\pi\)
−0.686017 + 0.727586i \(0.740642\pi\)
\(510\) 0 0
\(511\) −7.50000 12.9904i −0.331780 0.574661i
\(512\) 8.66025i 0.382733i
\(513\) 1.50000 0.866025i 0.0662266 0.0382360i
\(514\) −18.0000 + 10.3923i −0.793946 + 0.458385i
\(515\) 0 0
\(516\) −2.50000 4.33013i −0.110056 0.190623i
\(517\) −12.0000 + 20.7846i −0.527759 + 0.914106i
\(518\) 18.0000 + 10.3923i 0.790875 + 0.456612i
\(519\) −24.0000 −1.05348
\(520\) 0 0
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) −9.00000 5.19615i −0.393919 0.227429i
\(523\) 14.5000 25.1147i 0.634041 1.09819i −0.352677 0.935745i \(-0.614728\pi\)
0.986718 0.162446i \(-0.0519382\pi\)
\(524\) −6.00000 10.3923i −0.262111 0.453990i
\(525\) 0 0
\(526\) −9.00000 + 5.19615i −0.392419 + 0.226563i
\(527\) 18.0000 10.3923i 0.784092 0.452696i
\(528\) 17.3205i 0.753778i
\(529\) −6.50000 11.2583i −0.282609 0.489493i
\(530\) 0 0
\(531\) −9.00000 5.19615i −0.390567 0.225494i
\(532\) 3.00000 0.130066
\(533\) −9.00000 + 8.66025i −0.389833 + 0.375117i
\(534\) 6.00000 0.259645
\(535\) 0 0
\(536\) −7.50000 + 12.9904i −0.323951 + 0.561099i
\(537\) −6.00000 10.3923i −0.258919 0.448461i
\(538\) 0 0
\(539\) −12.0000 + 6.92820i −0.516877 + 0.298419i
\(540\) 0 0
\(541\) 6.92820i 0.297867i 0.988847 + 0.148933i \(0.0475840\pi\)
−0.988847 + 0.148933i \(0.952416\pi\)
\(542\) 7.50000 + 12.9904i 0.322153 + 0.557985i
\(543\) −8.50000 + 14.7224i −0.364770 + 0.631800i
\(544\) 27.0000 + 15.5885i 1.15762 + 0.668350i
\(545\) 0 0
\(546\) 7.50000 + 7.79423i 0.320970 + 0.333562i
\(547\) −17.0000 −0.726868 −0.363434 0.931620i \(-0.618396\pi\)
−0.363434 + 0.931620i \(0.618396\pi\)
\(548\) 9.00000 + 5.19615i 0.384461 + 0.221969i
\(549\) 1.00000 1.73205i 0.0426790 0.0739221i
\(550\) 0 0
\(551\) 10.3923i 0.442727i
\(552\) −9.00000 + 5.19615i −0.383065 + 0.221163i
\(553\) −16.5000 + 9.52628i −0.701651 + 0.405099i
\(554\) 29.4449i 1.25099i
\(555\) 0 0
\(556\) 2.50000 4.33013i 0.106024 0.183638i
\(557\) −33.0000 19.0526i −1.39825 0.807283i −0.404045 0.914739i \(-0.632396\pi\)
−0.994210 + 0.107456i \(0.965729\pi\)
\(558\) −6.00000 −0.254000
\(559\) 17.5000 4.33013i 0.740171 0.183145i
\(560\) 0 0
\(561\) −18.0000 10.3923i −0.759961 0.438763i
\(562\) 3.00000 5.19615i 0.126547 0.219186i
\(563\) 18.0000 + 31.1769i 0.758610 + 1.31395i 0.943560 + 0.331202i \(0.107454\pi\)
−0.184950 + 0.982748i \(0.559212\pi\)
\(564\) 6.92820i 0.291730i
\(565\) 0 0
\(566\) 6.00000 3.46410i 0.252199 0.145607i
\(567\) 1.73205i 0.0727393i
\(568\) −3.00000 5.19615i −0.125877 0.218026i
\(569\) −3.00000 + 5.19615i −0.125767 + 0.217834i −0.922032 0.387113i \(-0.873472\pi\)
0.796266 + 0.604947i \(0.206806\pi\)
\(570\) 0 0
\(571\) 19.0000 0.795125 0.397563 0.917575i \(-0.369856\pi\)
0.397563 + 0.917575i \(0.369856\pi\)
\(572\) 12.0000 + 3.46410i 0.501745 + 0.144841i
\(573\) −6.00000 −0.250654
\(574\) −9.00000 5.19615i −0.375653 0.216883i
\(575\) 0 0
\(576\) 0.500000 + 0.866025i 0.0208333 + 0.0360844i
\(577\) 1.73205i 0.0721062i 0.999350 + 0.0360531i \(0.0114785\pi\)
−0.999350 + 0.0360531i \(0.988521\pi\)
\(578\) −28.5000 + 16.4545i −1.18544 + 0.684416i
\(579\) 19.5000 11.2583i 0.810392 0.467880i
\(580\) 0 0
\(581\) 3.00000 + 5.19615i 0.124461 + 0.215573i
\(582\) 6.00000 10.3923i 0.248708 0.430775i
\(583\) −36.0000 20.7846i −1.49097 0.860811i
\(584\) −15.0000 −0.620704
\(585\) 0 0
\(586\) −12.0000 −0.495715
\(587\) 36.0000 + 20.7846i 1.48588 + 0.857873i 0.999871 0.0160815i \(-0.00511913\pi\)
0.486008 + 0.873954i \(0.338452\pi\)
\(588\) 2.00000 3.46410i 0.0824786 0.142857i
\(589\) −3.00000 5.19615i −0.123613 0.214104i
\(590\) 0 0
\(591\) 18.0000 10.3923i 0.740421 0.427482i
\(592\) 30.0000 17.3205i 1.23299 0.711868i
\(593\) 27.7128i 1.13803i −0.822328 0.569014i \(-0.807325\pi\)
0.822328 0.569014i \(-0.192675\pi\)
\(594\) 3.00000 + 5.19615i 0.123091 + 0.213201i
\(595\) 0 0
\(596\) 3.00000 + 1.73205i 0.122885 + 0.0709476i
\(597\) 25.0000 1.02318
\(598\) 9.00000 + 36.3731i 0.368037 + 1.48741i
\(599\) 12.0000 0.490307 0.245153 0.969484i \(-0.421162\pi\)
0.245153 + 0.969484i \(0.421162\pi\)
\(600\) 0 0
\(601\) 5.50000 9.52628i 0.224350 0.388585i −0.731774 0.681547i \(-0.761308\pi\)
0.956124 + 0.292962i \(0.0946409\pi\)
\(602\) 7.50000 + 12.9904i 0.305677 + 0.529448i
\(603\) 8.66025i 0.352673i
\(604\) −7.50000 + 4.33013i −0.305171 + 0.176190i
\(605\) 0 0
\(606\) 10.3923i 0.422159i
\(607\) −2.00000 3.46410i −0.0811775 0.140604i 0.822578 0.568652i \(-0.192535\pi\)
−0.903756 + 0.428048i \(0.859201\pi\)
\(608\) 4.50000 7.79423i 0.182499 0.316098i
\(609\) 9.00000 + 5.19615i 0.364698 + 0.210559i
\(610\) 0 0
\(611\) 24.0000 + 6.92820i 0.970936 + 0.280285i
\(612\) 6.00000 0.242536
\(613\) −1.50000 0.866025i −0.0605844 0.0349784i 0.469402 0.882985i \(-0.344470\pi\)
−0.529986 + 0.848006i \(0.677803\pi\)
\(614\) 9.00000 15.5885i 0.363210 0.629099i
\(615\) 0 0
\(616\) 10.3923i 0.418718i
\(617\) −21.0000 + 12.1244i −0.845428 + 0.488108i −0.859106 0.511798i \(-0.828980\pi\)
0.0136775 + 0.999906i \(0.495646\pi\)
\(618\) −19.5000 + 11.2583i −0.784405 + 0.452876i
\(619\) 19.0526i 0.765787i 0.923792 + 0.382893i \(0.125072\pi\)
−0.923792 + 0.382893i \(0.874928\pi\)
\(620\) 0 0
\(621\) −3.00000 + 5.19615i −0.120386 + 0.208514i
\(622\) 18.0000 + 10.3923i 0.721734 + 0.416693i
\(623\) −6.00000 −0.240385
\(624\) 17.5000 4.33013i 0.700561 0.173344i
\(625\) 0 0
\(626\) −37.5000 21.6506i −1.49880 0.865333i
\(627\) −3.00000 + 5.19615i −0.119808 + 0.207514i
\(628\) −11.5000 19.9186i −0.458900 0.794838i
\(629\) 41.5692i 1.65747i
\(630\) 0 0
\(631\) 31.5000 18.1865i 1.25400 0.723994i 0.282095 0.959387i \(-0.408971\pi\)
0.971900 + 0.235392i \(0.0756374\pi\)
\(632\) 19.0526i 0.757870i
\(633\) −8.00000 13.8564i −0.317971 0.550743i
\(634\) −6.00000 + 10.3923i −0.238290 + 0.412731i
\(635\) 0 0
\(636\) 12.0000 0.475831
\(637\) 10.0000 + 10.3923i 0.396214 + 0.411758i
\(638\) 36.0000 1.42525
\(639\) −3.00000 1.73205i −0.118678 0.0685189i
\(640\) 0 0
\(641\) −21.0000 36.3731i −0.829450 1.43665i −0.898470 0.439034i \(-0.855321\pi\)
0.0690201 0.997615i \(-0.478013\pi\)
\(642\) 0 0
\(643\) 19.5000 11.2583i 0.769005 0.443985i −0.0635146 0.997981i \(-0.520231\pi\)
0.832520 + 0.553996i \(0.186898\pi\)
\(644\) −9.00000 + 5.19615i −0.354650 + 0.204757i
\(645\) 0 0
\(646\) 9.00000 + 15.5885i 0.354100 + 0.613320i
\(647\) 6.00000 10.3923i 0.235884 0.408564i −0.723645 0.690172i \(-0.757535\pi\)
0.959529 + 0.281609i \(0.0908680\pi\)
\(648\) 1.50000 + 0.866025i 0.0589256 + 0.0340207i
\(649\) 36.0000 1.41312
\(650\) 0 0
\(651\) 6.00000 0.235159
\(652\) −21.0000 12.1244i −0.822423 0.474826i
\(653\) −6.00000 + 10.3923i −0.234798 + 0.406682i −0.959214 0.282681i \(-0.908776\pi\)
0.724416 + 0.689363i \(0.242110\pi\)
\(654\) 12.0000 + 20.7846i 0.469237 + 0.812743i
\(655\) 0 0
\(656\) −15.0000 + 8.66025i −0.585652 + 0.338126i
\(657\) −7.50000 + 4.33013i −0.292603 + 0.168934i
\(658\) 20.7846i 0.810268i
\(659\) 9.00000 + 15.5885i 0.350590 + 0.607240i 0.986353 0.164644i \(-0.0526477\pi\)
−0.635763 + 0.771885i \(0.719314\pi\)
\(660\) 0 0
\(661\) 37.5000 + 21.6506i 1.45858 + 0.842112i 0.998942 0.0459936i \(-0.0146454\pi\)
0.459639 + 0.888106i \(0.347979\pi\)
\(662\) 9.00000 0.349795
\(663\) −6.00000 + 20.7846i −0.233021 + 0.807207i
\(664\) 6.00000 0.232845
\(665\) 0 0
\(666\) 6.00000 10.3923i 0.232495 0.402694i
\(667\) 18.0000 + 31.1769i 0.696963 + 1.20717i
\(668\) 3.46410i 0.134030i
\(669\) −7.50000 + 4.33013i −0.289967 + 0.167412i
\(670\) 0 0
\(671\) 6.92820i 0.267460i
\(672\) 4.50000 + 7.79423i 0.173591 + 0.300669i
\(673\) 23.5000 40.7032i 0.905858 1.56899i 0.0860977 0.996287i \(-0.472560\pi\)
0.819761 0.572706i \(-0.194106\pi\)
\(674\) −28.5000 16.4545i −1.09778 0.633803i
\(675\) 0 0
\(676\) 0.500000 12.9904i 0.0192308 0.499630i
\(677\) 24.0000 0.922395 0.461197 0.887298i \(-0.347420\pi\)
0.461197 + 0.887298i \(0.347420\pi\)
\(678\) −18.0000 10.3923i −0.691286 0.399114i
\(679\) −6.00000 + 10.3923i −0.230259 + 0.398820i
\(680\) 0 0
\(681\) 27.7128i 1.06196i
\(682\) 18.0000 10.3923i 0.689256 0.397942i
\(683\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(684\) 1.73205i 0.0662266i
\(685\) 0 0
\(686\) −16.5000 + 28.5788i −0.629973 + 1.09115i
\(687\) −1.50000 0.866025i −0.0572286 0.0330409i
\(688\) 25.0000 0.953116
\(689\) −12.0000 + 41.5692i −0.457164 + 1.58366i
\(690\) 0 0
\(691\) −4.50000 2.59808i −0.171188 0.0988355i 0.411958 0.911203i \(-0.364845\pi\)
−0.583146 + 0.812367i \(0.698178\pi\)
\(692\) −12.0000 + 20.7846i −0.456172 + 0.790112i
\(693\) −3.00000 5.19615i −0.113961 0.197386i
\(694\) 41.5692i 1.57795i
\(695\) 0 0
\(696\) 9.00000 5.19615i 0.341144 0.196960i
\(697\) 20.7846i 0.787273i
\(698\) −10.5000 18.1865i −0.397431 0.688370i
\(699\) 12.0000 20.7846i 0.453882 0.786146i
\(700\) 0 0
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) 4.50000 4.33013i 0.169842 0.163430i
\(703\) 12.0000 0.452589
\(704\) −3.00000 1.73205i −0.113067 0.0652791i
\(705\) 0 0
\(706\) 21.0000 + 36.3731i 0.790345 + 1.36892i
\(707\) 10.3923i 0.390843i
\(708\) −9.00000 + 5.19615i −0.338241 + 0.195283i
\(709\) −31.5000 + 18.1865i −1.18301 + 0.683010i −0.956708 0.291048i \(-0.905996\pi\)
−0.226299 + 0.974058i \(0.572663\pi\)
\(710\) 0 0
\(711\) 5.50000 + 9.52628i 0.206266 + 0.357263i
\(712\) −3.00000 + 5.19615i −0.112430 + 0.194734i
\(713\) 18.0000 + 10.3923i 0.674105 + 0.389195i
\(714\) −18.0000 −0.673633
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) 9.00000 + 5.19615i 0.336111 + 0.194054i
\(718\) −24.0000 + 41.5692i −0.895672 + 1.55135i
\(719\) 3.00000 + 5.19615i 0.111881 + 0.193784i 0.916529 0.399969i \(-0.130979\pi\)
−0.804648 + 0.593753i \(0.797646\pi\)
\(720\) 0 0
\(721\) 19.5000 11.2583i 0.726218 0.419282i
\(722\) −24.0000 + 13.8564i −0.893188 + 0.515682i
\(723\) 19.0526i 0.708572i
\(724\) 8.50000 + 14.7224i 0.315900 + 0.547155i
\(725\) 0 0
\(726\) −1.50000 0.866025i −0.0556702 0.0321412i
\(727\) 17.0000 0.630495 0.315248 0.949009i \(-0.397912\pi\)
0.315248 + 0.949009i \(0.397912\pi\)
\(728\) −10.5000 + 2.59808i −0.389156 + 0.0962911i
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −15.0000 + 25.9808i −0.554795 + 0.960933i
\(732\) −1.00000 1.73205i −0.0369611 0.0640184i
\(733\) 46.7654i 1.72732i −0.504076 0.863659i \(-0.668167\pi\)
0.504076 0.863659i \(-0.331833\pi\)
\(734\) 52.5000 30.3109i 1.93781 1.11880i
\(735\) 0 0
\(736\) 31.1769i 1.14920i
\(737\) −15.0000 25.9808i −0.552532 0.957014i
\(738\) −3.00000 + 5.19615i −0.110432 + 0.191273i
\(739\) −21.0000 12.1244i −0.772497 0.446002i 0.0612673 0.998121i \(-0.480486\pi\)
−0.833765 + 0.552120i \(0.813819\pi\)
\(740\) 0 0
\(741\) 6.00000 + 1.73205i 0.220416 + 0.0636285i
\(742\) −36.0000 −1.32160
\(743\) 3.00000 + 1.73205i 0.110059 + 0.0635428i 0.554019 0.832504i \(-0.313093\pi\)
−0.443960 + 0.896047i \(0.646427\pi\)
\(744\) 3.00000 5.19615i 0.109985 0.190500i
\(745\) 0 0
\(746\) 64.0859i 2.34635i
\(747\) 3.00000 1.73205i 0.109764 0.0633724i
\(748\) −18.0000 + 10.3923i −0.658145 + 0.379980i
\(749\) 0 0
\(750\) 0 0
\(751\) 20.0000 34.6410i 0.729810 1.26407i −0.227153 0.973859i \(-0.572942\pi\)
0.956963 0.290209i \(-0.0937250\pi\)
\(752\) 30.0000 + 17.3205i 1.09399 + 0.631614i
\(753\) −24.0000 −0.874609
\(754\) −9.00000 36.3731i −0.327761 1.32463i
\(755\) 0 0
\(756\) 1.50000 + 0.866025i 0.0545545 + 0.0314970i
\(757\) 21.5000 37.2391i 0.781431 1.35348i −0.149677 0.988735i \(-0.547824\pi\)
0.931108 0.364743i \(-0.118843\pi\)
\(758\) 22.5000 + 38.9711i 0.817237 + 1.41550i
\(759\) 20.7846i 0.754434i
\(760\) 0 0
\(761\) 39.0000 22.5167i 1.41375 0.816228i 0.418010 0.908443i \(-0.362728\pi\)
0.995739 + 0.0922143i \(0.0293945\pi\)
\(762\) 1.73205i 0.0627456i
\(763\) −12.0000 20.7846i −0.434429 0.752453i
\(764\) −3.00000 + 5.19615i −0.108536 + 0.187990i
\(765\) 0 0
\(766\) 48.0000 1.73431
\(767\) −9.00000 36.3731i −0.324971 1.31336i
\(768\) 19.0000 0.685603
\(769\) 13.5000 + 7.79423i 0.486822 + 0.281067i 0.723255 0.690581i \(-0.242645\pi\)
−0.236433 + 0.971648i \(0.575978\pi\)
\(770\) 0 0
\(771\) −6.00000 10.3923i −0.216085 0.374270i
\(772\) 22.5167i 0.810392i
\(773\) −24.0000 + 13.8564i −0.863220 + 0.498380i −0.865089 0.501618i \(-0.832738\pi\)
0.00186926 + 0.999998i \(0.499405\pi\)
\(774\) 7.50000 4.33013i 0.269582 0.155643i
\(775\) 0 0
\(776\) 6.00000 + 10.3923i 0.215387 + 0.373062i
\(777\) −6.00000 + 10.3923i −0.215249 + 0.372822i
\(778\) −18.0000 10.3923i −0.645331 0.372582i
\(779\) −6.00000 −0.214972
\(780\) 0 0
\(781\) 12.0000 0.429394
\(782\) −54.0000 31.1769i −1.93104 1.11488i
\(783\) 3.00000 5.19615i 0.107211 0.185695i
\(784\) 10.0000 + 17.3205i 0.357143 + 0.618590i
\(785\) 0 0
\(786\) 18.0000 10.3923i 0.642039 0.370681i
\(787\) 45.0000 25.9808i 1.60408 0.926114i 0.613417 0.789759i \(-0.289795\pi\)
0.990660 0.136355i \(-0.0435387\pi\)
\(788\) 20.7846i 0.740421i
\(789\) −3.00000 5.19615i −0.106803 0.184988i
\(790\) 0 0
\(791\) 18.0000 + 10.3923i 0.640006 + 0.369508i
\(792\) −6.00000 −0.213201
\(793\) 7.00000 1.73205i 0.248577 0.0615069i
\(794\) −45.0000 −1.59699
\(795\) 0 0
\(796\) 12.5000 21.6506i 0.443051 0.767386i
\(797\) −15.0000 25.9808i −0.531327 0.920286i −0.999331 0.0365596i \(-0.988360\pi\)
0.468004 0.883726i \(-0.344973\pi\)
\(798\) 5.19615i 0.183942i
\(799\) −36.0000 + 20.7846i −1.27359 + 0.735307i
\(800\) 0 0
\(801\) 3.46410i 0.122398i
\(802\) −6.00000 10.3923i −0.211867 0.366965i
\(803\) 15.0000 25.9808i 0.529339 0.916841i
\(804\) 7.50000 + 4.33013i 0.264505 + 0.152712i
\(805\) 0 0
\(806\) −15.0000 15.5885i −0.528352 0.549080i
\(807\) 0 0
\(808\) −9.00000 5.19615i −0.316619 0.182800i
\(809\) 12.0000 20.7846i 0.421898 0.730748i −0.574228 0.818696i \(-0.694698\pi\)
0.996125 + 0.0879478i \(0.0280309\pi\)
\(810\) 0 0
\(811\) 5.19615i 0.182462i −0.995830 0.0912308i \(-0.970920\pi\)
0.995830 0.0912308i \(-0.0290801\pi\)
\(812\) 9.00000 5.19615i 0.315838 0.182349i
\(813\) −7.50000 + 4.33013i −0.263036 + 0.151864i
\(814\) 41.5692i 1.45700i
\(815\) 0 0
\(816\) −15.0000 + 25.9808i −0.525105 + 0.909509i
\(817\) 7.50000 + 4.33013i 0.262392 + 0.151492i
\(818\) −60.0000 −2.09785
\(819\) −4.50000 + 4.33013i −0.157243 + 0.151307i
\(820\) 0 0
\(821\) 6.00000 + 3.46410i 0.209401 + 0.120898i 0.601033 0.799224i \(-0.294756\pi\)
−0.391632 + 0.920122i \(0.628089\pi\)
\(822\) −9.00000 + 15.5885i −0.313911 + 0.543710i
\(823\) −18.5000 32.0429i −0.644869 1.11695i −0.984332 0.176327i \(-0.943578\pi\)
0.339462 0.940620i \(-0.389755\pi\)
\(824\) 22.5167i 0.784405i
\(825\) 0 0
\(826\) 27.0000 15.5885i 0.939450 0.542392i
\(827\) 48.4974i 1.68642i 0.537584 + 0.843210i \(0.319337\pi\)
−0.537584 + 0.843210i \(0.680663\pi\)
\(828\) 3.00000 + 5.19615i 0.104257 + 0.180579i
\(829\) 20.5000 35.5070i 0.711994 1.23321i −0.252113 0.967698i \(-0.581125\pi\)
0.964107 0.265513i \(-0.0855412\pi\)
\(830\) 0 0
\(831\) −17.0000 −0.589723
\(832\) −1.00000 + 3.46410i −0.0346688 + 0.120096i
\(833\) −24.0000 −0.831551
\(834\) 7.50000 + 4.33013i 0.259704 + 0.149940i
\(835\) 0 0
\(836\) 3.00000 + 5.19615i 0.103757 + 0.179713i
\(837\) 3.46410i 0.119737i
\(838\) 18.0000 10.3923i 0.621800 0.358996i
\(839\) 12.0000 6.92820i 0.414286 0.239188i −0.278344 0.960482i \(-0.589785\pi\)
0.692630 + 0.721293i \(0.256452\pi\)
\(840\) 0 0
\(841\) −3.50000 6.06218i −0.120690 0.209041i
\(842\) 4.50000 7.79423i 0.155080 0.268607i
\(843\) 3.00000 + 1.73205i 0.103325 + 0.0596550i
\(844\) −16.0000 −0.550743
\(845\) 0 0
\(846\) 12.0000 0.412568
\(847\) 1.50000 + 0.866025i 0.0515406 + 0.0297570i
\(848\) −30.0000 + 51.9615i −1.03020 + 1.78437i
\(849\) 2.00000 + 3.46410i 0.0686398 + 0.118888i
\(850\) 0 0
\(851\) −36.0000 + 20.7846i −1.23406 + 0.712487i
\(852\) −3.00000 + 1.73205i −0.102778 + 0.0593391i
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 3.00000 + 5.19615i 0.102658 + 0.177809i
\(855\) 0 0
\(856\) 0 0
\(857\) −42.0000 −1.43469 −0.717346 0.696717i \(-0.754643\pi\)
−0.717346 + 0.696717i \(0.754643\pi\)
\(858\) −6.00000 + 20.7846i −0.204837 + 0.709575i
\(859\) 1.00000 0.0341196 0.0170598 0.999854i \(-0.494569\pi\)
0.0170598 + 0.999854i \(0.494569\pi\)
\(860\) 0 0
\(861\) 3.00000 5.19615i 0.102240 0.177084i
\(862\) −24.0000 41.5692i −0.817443 1.41585i
\(863\) 20.7846i 0.707516i −0.935337 0.353758i \(-0.884904\pi\)
0.935337 0.353758i \(-0.115096\pi\)
\(864\) 4.50000 2.59808i 0.153093 0.0883883i
\(865\) 0 0
\(866\) 3.46410i 0.117715i
\(867\) −9.50000 16.4545i −0.322637 0.558824i
\(868\) 3.00000 5.19615i 0.101827 0.176369i
\(869\) −33.0000 19.0526i −1.11945 0.646314i
\(870\) 0 0
\(871\) −22.5000 + 21.6506i −0.762383 + 0.733604i
\(872\) −24.0000 −0.812743
\(873\) 6.00000 + 3.46410i 0.203069 + 0.117242i
\(874\) −9.00000 + 15.5885i −0.304430 + 0.527287i
\(875\) 0 0
\(876\) 8.66025i 0.292603i
\(877\) 13.5000 7.79423i 0.455863 0.263192i −0.254440 0.967088i \(-0.581891\pi\)
0.710303 + 0.703896i \(0.248558\pi\)
\(878\) 46.5000 26.8468i 1.56930 0.906035i
\(879\) 6.92820i 0.233682i
\(880\) 0 0
\(881\) 6.00000 10.3923i 0.202145 0.350126i −0.747074 0.664741i \(-0.768542\pi\)
0.949219 + 0.314615i \(0.101875\pi\)
\(882\) 6.00000 + 3.46410i 0.202031 + 0.116642i
\(883\) −16.0000 −0.538443 −0.269221 0.963078i \(-0.586766\pi\)
−0.269221 + 0.963078i \(0.586766\pi\)
\(884\) 15.0000 + 15.5885i 0.504505 + 0.524297i
\(885\) 0 0
\(886\) 27.0000 + 15.5885i 0.907083 + 0.523704i
\(887\) −12.0000 + 20.7846i −0.402921 + 0.697879i −0.994077 0.108678i \(-0.965338\pi\)
0.591156 + 0.806557i \(0.298672\pi\)
\(888\) 6.00000 + 10.3923i 0.201347 + 0.348743i
\(889\) 1.73205i 0.0580911i
\(890\) 0 0
\(891\) −3.00000 + 1.73205i −0.100504 + 0.0580259i
\(892\) 8.66025i 0.289967i
\(893\) 6.00000 + 10.3923i 0.200782 + 0.347765i
\(894\) −3.00000 + 5.19615i −0.100335 + 0.173785i
\(895\) 0 0
\(896\) −21.0000 −0.701561
\(897\) −21.0000 + 5.19615i −0.701170 + 0.173494i
\(898\) 48.0000 1.60178
\(899\) −18.0000 10.3923i −0.600334 0.346603i
\(900\) 0 0
\(901\) −36.0000 62.3538i −1.19933 2.07731i
\(902\) 20.7846i 0.692052i
\(903\) −7.50000 + 4.33013i −0.249584 + 0.144098i
\(904\) 18.0000 10.3923i 0.598671 0.345643i
\(905\) 0 0
\(906\) −7.50000 12.9904i −0.249171 0.431577i
\(907\) −4.00000 + 6.92820i −0.132818 + 0.230047i −0.924762 0.380547i \(-0.875736\pi\)
0.791944 + 0.610594i \(0.209069\pi\)
\(908\) 24.0000 + 13.8564i 0.796468 + 0.459841i
\(909\) −6.00000 −0.199007
\(910\) 0 0
\(911\) −30.0000 −0.993944 −0.496972 0.867766i \(-0.665555\pi\)
−0.496972 + 0.867766i \(0.665555\pi\)
\(912\) 7.50000 + 4.33013i 0.248350 + 0.143385i
\(913\) −6.00000 + 10.3923i −0.198571 + 0.343935i
\(914\) 1.50000 + 2.59808i 0.0496156 + 0.0859367i
\(915\) 0 0
\(916\) −1.50000 + 0.866025i −0.0495614 + 0.0286143i
\(917\) −18.0000 + 10.3923i −0.594412 + 0.343184i
\(918\) 10.3923i 0.342997i
\(919\) −21.5000 37.2391i −0.709220 1.22840i −0.965147 0.261708i \(-0.915714\pi\)
0.255927 0.966696i \(-0.417619\pi\)
\(920\) 0 0
\(921\) 9.00000 + 5.19615i 0.296560 + 0.171219i
\(922\) −42.0000 −1.38320
\(923\) −3.00000 12.1244i −0.0987462 0.399078i
\(924\) −6.00000 −0.197386
\(925\) 0 0
\(926\) −13.5000 + 23.3827i −0.443638 + 0.768403i
\(927\) −6.50000 11.2583i −0.213488 0.369772i
\(928\) 31.1769i 1.02343i
\(929\) 27.0000 15.5885i 0.885841 0.511441i 0.0132613 0.999912i \(-0.495779\pi\)
0.872580 + 0.488471i \(0.162445\pi\)
\(930\) 0 0
\(931\) 6.92820i 0.227063i
\(932\) −12.0000 20.7846i −0.393073 0.680823i
\(933\) −6.00000 + 10.3923i −0.196431 + 0.340229i
\(934\) −27.0000 15.5885i −0.883467 0.510070i
\(935\) 0 0
\(936\) 1.50000 + 6.06218i 0.0490290 + 0.198148i
\(937\) −13.0000 −0.424691 −0.212346 0.977195i \(-0.568110\pi\)
−0.212346 + 0.977195i \(0.568110\pi\)
\(938\) −22.5000 12.9904i −0.734651 0.424151i
\(939\) 12.5000 21.6506i 0.407922 0.706542i
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 34.5000 19.9186i 1.12407 0.648983i
\(943\) 18.0000 10.3923i 0.586161 0.338420i
\(944\) 51.9615i 1.69120i
\(945\) 0 0
\(946\) −15.0000 + 25.9808i −0.487692 + 0.844707i
\(947\) 27.0000 + 15.5885i 0.877382 + 0.506557i 0.869794 0.493414i \(-0.164251\pi\)
0.00758776 + 0.999971i \(0.497585\pi\)
\(948\) 11.0000 0.357263
\(949\) −30.0000 8.66025i −0.973841 0.281124i
\(950\) 0 0
\(951\) −6.00000 3.46410i −0.194563 0.112331i
\(952\) 9.00000 15.5885i 0.291692 0.505225i
\(953\) −27.0000 46.7654i −0.874616 1.51488i −0.857171 0.515031i \(-0.827780\pi\)
−0.0174443 0.999848i \(-0.505553\pi\)
\(954\) 20.7846i 0.672927i
\(955\) 0 0
\(956\) 9.00000 5.19615i 0.291081 0.168056i
\(957\) 20.7846i 0.671871i
\(958\) 18.0000 + 31.1769i 0.581554 + 1.00728i
\(959\) 9.00000 15.5885i 0.290625 0.503378i
\(960\) 0 0
\(961\) 19.0000 0.612903
\(962\) 42.0000 10.3923i 1.35413 0.335061i
\(963\) 0 0
\(964\) −16.5000 9.52628i −0.531429 0.306821i
\(965\) 0 0
\(966\) −9.00000 15.5885i −0.289570 0.501550i
\(967\) 10.3923i 0.334194i −0.985940 0.167097i \(-0.946561\pi\)
0.985940 0.167097i \(-0.0534393\pi\)
\(968\) 1.50000 0.866025i 0.0482118 0.0278351i
\(969\) −9.00000 + 5.19615i −0.289122 + 0.166924i
\(970\) 0 0
\(971\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(972\) 0.500000 0.866025i 0.0160375 0.0277778i
\(973\) −7.50000 4.33013i −0.240439 0.138817i
\(974\) 45.0000 1.44189
\(975\) 0 0
\(976\) 10.0000 0.320092
\(977\) 6.00000 + 3.46410i 0.191957 + 0.110826i 0.592898 0.805277i \(-0.297984\pi\)
−0.400941 + 0.916104i \(0.631317\pi\)
\(978\) 21.0000 36.3731i 0.671506 1.16308i
\(979\) −6.00000 10.3923i −0.191761 0.332140i
\(980\) 0 0
\(981\) −12.0000 + 6.92820i −0.383131 + 0.221201i
\(982\) −45.0000 + 25.9808i −1.43601 + 0.829079i
\(983\) 31.1769i 0.994389i −0.867639 0.497195i \(-0.834364\pi\)
0.867639 0.497195i \(-0.165636\pi\)
\(984\) −3.00000 5.19615i −0.0956365 0.165647i
\(985\) 0 0
\(986\) 54.0000 + 31.1769i 1.71971 + 0.992875i
\(987\) −12.0000 −0.381964
\(988\) 4.50000 4.33013i 0.143164 0.137760i
\(989\) −30.0000 −0.953945
\(990\) 0 0
\(991\) −23.5000 + 40.7032i −0.746502 + 1.29298i 0.202988 + 0.979181i \(0.434935\pi\)
−0.949490 + 0.313798i \(0.898398\pi\)
\(992\) −9.00000 15.5885i −0.285750 0.494934i
\(993\) 5.19615i 0.164895i
\(994\) 9.00000 5.19615i 0.285463 0.164812i
\(995\) 0 0
\(996\) 3.46410i 0.109764i
\(997\) −0.500000 0.866025i −0.0158352 0.0274273i 0.857999 0.513651i \(-0.171707\pi\)
−0.873834 + 0.486224i \(0.838374\pi\)
\(998\) −28.5000 + 49.3634i −0.902152 + 1.56257i
\(999\) 6.00000 + 3.46410i 0.189832 + 0.109599i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bc.f.901.1 yes 2
5.2 odd 4 975.2.w.b.199.1 4
5.3 odd 4 975.2.w.b.199.2 4
5.4 even 2 975.2.bc.b.901.1 yes 2
13.10 even 6 inner 975.2.bc.f.751.1 yes 2
65.23 odd 12 975.2.w.b.49.1 4
65.49 even 6 975.2.bc.b.751.1 2
65.62 odd 12 975.2.w.b.49.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
975.2.w.b.49.1 4 65.23 odd 12
975.2.w.b.49.2 4 65.62 odd 12
975.2.w.b.199.1 4 5.2 odd 4
975.2.w.b.199.2 4 5.3 odd 4
975.2.bc.b.751.1 2 65.49 even 6
975.2.bc.b.901.1 yes 2 5.4 even 2
975.2.bc.f.751.1 yes 2 13.10 even 6 inner
975.2.bc.f.901.1 yes 2 1.1 even 1 trivial