Properties

Label 975.2.w.b.199.2
Level $975$
Weight $2$
Character 975.199
Analytic conductor $7.785$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(49,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.w (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 199.2
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 975.199
Dual form 975.2.w.b.49.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 1.50000i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-1.50000 + 0.866025i) q^{6} +(-0.866025 - 1.50000i) q^{7} +1.73205 q^{8} +(0.500000 + 0.866025i) q^{9} +(3.00000 + 1.73205i) q^{11} +1.00000i q^{12} +(3.46410 + 1.00000i) q^{13} -3.00000 q^{14} +(2.50000 - 4.33013i) q^{16} +(5.19615 - 3.00000i) q^{17} +1.73205 q^{18} +(-1.50000 + 0.866025i) q^{19} +1.73205i q^{21} +(5.19615 - 3.00000i) q^{22} +(-5.19615 - 3.00000i) q^{23} +(-1.50000 - 0.866025i) q^{24} +(4.50000 - 4.33013i) q^{26} -1.00000i q^{27} +(-0.866025 + 1.50000i) q^{28} +(-3.00000 + 5.19615i) q^{29} -3.46410i q^{31} +(-2.59808 - 4.50000i) q^{32} +(-1.73205 - 3.00000i) q^{33} -10.3923i q^{34} +(0.500000 - 0.866025i) q^{36} +(3.46410 - 6.00000i) q^{37} +3.00000i q^{38} +(-2.50000 - 2.59808i) q^{39} +(-3.00000 - 1.73205i) q^{41} +(2.59808 + 1.50000i) q^{42} +(-4.33013 + 2.50000i) q^{43} -3.46410i q^{44} +(-9.00000 + 5.19615i) q^{46} +6.92820 q^{47} +(-4.33013 + 2.50000i) q^{48} +(2.00000 - 3.46410i) q^{49} -6.00000 q^{51} +(-0.866025 - 3.50000i) q^{52} -12.0000i q^{53} +(-1.50000 - 0.866025i) q^{54} +(-1.50000 - 2.59808i) q^{56} +1.73205 q^{57} +(5.19615 + 9.00000i) q^{58} +(-9.00000 + 5.19615i) q^{59} +(1.00000 + 1.73205i) q^{61} +(-5.19615 - 3.00000i) q^{62} +(0.866025 - 1.50000i) q^{63} +1.00000 q^{64} -6.00000 q^{66} +(-4.33013 + 7.50000i) q^{67} +(-5.19615 - 3.00000i) q^{68} +(3.00000 + 5.19615i) q^{69} +(3.00000 - 1.73205i) q^{71} +(0.866025 + 1.50000i) q^{72} +8.66025 q^{73} +(-6.00000 - 10.3923i) q^{74} +(1.50000 + 0.866025i) q^{76} -6.00000i q^{77} +(-6.06218 + 1.50000i) q^{78} +11.0000 q^{79} +(-0.500000 + 0.866025i) q^{81} +(-5.19615 + 3.00000i) q^{82} -3.46410 q^{83} +(1.50000 - 0.866025i) q^{84} +8.66025i q^{86} +(5.19615 - 3.00000i) q^{87} +(5.19615 + 3.00000i) q^{88} +(3.00000 + 1.73205i) q^{89} +(-1.50000 - 6.06218i) q^{91} +6.00000i q^{92} +(-1.73205 + 3.00000i) q^{93} +(6.00000 - 10.3923i) q^{94} +5.19615i q^{96} +(3.46410 + 6.00000i) q^{97} +(-3.46410 - 6.00000i) q^{98} +3.46410i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{4} - 6 q^{6} + 2 q^{9} + 12 q^{11} - 12 q^{14} + 10 q^{16} - 6 q^{19} - 6 q^{24} + 18 q^{26} - 12 q^{29} + 2 q^{36} - 10 q^{39} - 12 q^{41} - 36 q^{46} + 8 q^{49} - 24 q^{51} - 6 q^{54} - 6 q^{56}+ \cdots + 24 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 1.50000i 0.612372 1.06066i −0.378467 0.925615i \(-0.623549\pi\)
0.990839 0.135045i \(-0.0431180\pi\)
\(3\) −0.866025 0.500000i −0.500000 0.288675i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0 0
\(6\) −1.50000 + 0.866025i −0.612372 + 0.353553i
\(7\) −0.866025 1.50000i −0.327327 0.566947i 0.654654 0.755929i \(-0.272814\pi\)
−0.981981 + 0.188982i \(0.939481\pi\)
\(8\) 1.73205 0.612372
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 0 0
\(11\) 3.00000 + 1.73205i 0.904534 + 0.522233i 0.878668 0.477432i \(-0.158432\pi\)
0.0258656 + 0.999665i \(0.491766\pi\)
\(12\) 1.00000i 0.288675i
\(13\) 3.46410 + 1.00000i 0.960769 + 0.277350i
\(14\) −3.00000 −0.801784
\(15\) 0 0
\(16\) 2.50000 4.33013i 0.625000 1.08253i
\(17\) 5.19615 3.00000i 1.26025 0.727607i 0.287129 0.957892i \(-0.407299\pi\)
0.973123 + 0.230285i \(0.0739659\pi\)
\(18\) 1.73205 0.408248
\(19\) −1.50000 + 0.866025i −0.344124 + 0.198680i −0.662094 0.749421i \(-0.730332\pi\)
0.317970 + 0.948101i \(0.396999\pi\)
\(20\) 0 0
\(21\) 1.73205i 0.377964i
\(22\) 5.19615 3.00000i 1.10782 0.639602i
\(23\) −5.19615 3.00000i −1.08347 0.625543i −0.151642 0.988436i \(-0.548456\pi\)
−0.931831 + 0.362892i \(0.881789\pi\)
\(24\) −1.50000 0.866025i −0.306186 0.176777i
\(25\) 0 0
\(26\) 4.50000 4.33013i 0.882523 0.849208i
\(27\) 1.00000i 0.192450i
\(28\) −0.866025 + 1.50000i −0.163663 + 0.283473i
\(29\) −3.00000 + 5.19615i −0.557086 + 0.964901i 0.440652 + 0.897678i \(0.354747\pi\)
−0.997738 + 0.0672232i \(0.978586\pi\)
\(30\) 0 0
\(31\) 3.46410i 0.622171i −0.950382 0.311086i \(-0.899307\pi\)
0.950382 0.311086i \(-0.100693\pi\)
\(32\) −2.59808 4.50000i −0.459279 0.795495i
\(33\) −1.73205 3.00000i −0.301511 0.522233i
\(34\) 10.3923i 1.78227i
\(35\) 0 0
\(36\) 0.500000 0.866025i 0.0833333 0.144338i
\(37\) 3.46410 6.00000i 0.569495 0.986394i −0.427121 0.904194i \(-0.640472\pi\)
0.996616 0.0821995i \(-0.0261945\pi\)
\(38\) 3.00000i 0.486664i
\(39\) −2.50000 2.59808i −0.400320 0.416025i
\(40\) 0 0
\(41\) −3.00000 1.73205i −0.468521 0.270501i 0.247099 0.968990i \(-0.420523\pi\)
−0.715621 + 0.698489i \(0.753856\pi\)
\(42\) 2.59808 + 1.50000i 0.400892 + 0.231455i
\(43\) −4.33013 + 2.50000i −0.660338 + 0.381246i −0.792406 0.609994i \(-0.791172\pi\)
0.132068 + 0.991241i \(0.457838\pi\)
\(44\) 3.46410i 0.522233i
\(45\) 0 0
\(46\) −9.00000 + 5.19615i −1.32698 + 0.766131i
\(47\) 6.92820 1.01058 0.505291 0.862949i \(-0.331385\pi\)
0.505291 + 0.862949i \(0.331385\pi\)
\(48\) −4.33013 + 2.50000i −0.625000 + 0.360844i
\(49\) 2.00000 3.46410i 0.285714 0.494872i
\(50\) 0 0
\(51\) −6.00000 −0.840168
\(52\) −0.866025 3.50000i −0.120096 0.485363i
\(53\) 12.0000i 1.64833i −0.566352 0.824163i \(-0.691646\pi\)
0.566352 0.824163i \(-0.308354\pi\)
\(54\) −1.50000 0.866025i −0.204124 0.117851i
\(55\) 0 0
\(56\) −1.50000 2.59808i −0.200446 0.347183i
\(57\) 1.73205 0.229416
\(58\) 5.19615 + 9.00000i 0.682288 + 1.18176i
\(59\) −9.00000 + 5.19615i −1.17170 + 0.676481i −0.954080 0.299552i \(-0.903163\pi\)
−0.217620 + 0.976034i \(0.569829\pi\)
\(60\) 0 0
\(61\) 1.00000 + 1.73205i 0.128037 + 0.221766i 0.922916 0.385002i \(-0.125799\pi\)
−0.794879 + 0.606768i \(0.792466\pi\)
\(62\) −5.19615 3.00000i −0.659912 0.381000i
\(63\) 0.866025 1.50000i 0.109109 0.188982i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −6.00000 −0.738549
\(67\) −4.33013 + 7.50000i −0.529009 + 0.916271i 0.470418 + 0.882443i \(0.344103\pi\)
−0.999428 + 0.0338274i \(0.989230\pi\)
\(68\) −5.19615 3.00000i −0.630126 0.363803i
\(69\) 3.00000 + 5.19615i 0.361158 + 0.625543i
\(70\) 0 0
\(71\) 3.00000 1.73205i 0.356034 0.205557i −0.311305 0.950310i \(-0.600766\pi\)
0.667340 + 0.744753i \(0.267433\pi\)
\(72\) 0.866025 + 1.50000i 0.102062 + 0.176777i
\(73\) 8.66025 1.01361 0.506803 0.862062i \(-0.330827\pi\)
0.506803 + 0.862062i \(0.330827\pi\)
\(74\) −6.00000 10.3923i −0.697486 1.20808i
\(75\) 0 0
\(76\) 1.50000 + 0.866025i 0.172062 + 0.0993399i
\(77\) 6.00000i 0.683763i
\(78\) −6.06218 + 1.50000i −0.686406 + 0.169842i
\(79\) 11.0000 1.23760 0.618798 0.785550i \(-0.287620\pi\)
0.618798 + 0.785550i \(0.287620\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −5.19615 + 3.00000i −0.573819 + 0.331295i
\(83\) −3.46410 −0.380235 −0.190117 0.981761i \(-0.560887\pi\)
−0.190117 + 0.981761i \(0.560887\pi\)
\(84\) 1.50000 0.866025i 0.163663 0.0944911i
\(85\) 0 0
\(86\) 8.66025i 0.933859i
\(87\) 5.19615 3.00000i 0.557086 0.321634i
\(88\) 5.19615 + 3.00000i 0.553912 + 0.319801i
\(89\) 3.00000 + 1.73205i 0.317999 + 0.183597i 0.650500 0.759506i \(-0.274559\pi\)
−0.332501 + 0.943103i \(0.607893\pi\)
\(90\) 0 0
\(91\) −1.50000 6.06218i −0.157243 0.635489i
\(92\) 6.00000i 0.625543i
\(93\) −1.73205 + 3.00000i −0.179605 + 0.311086i
\(94\) 6.00000 10.3923i 0.618853 1.07188i
\(95\) 0 0
\(96\) 5.19615i 0.530330i
\(97\) 3.46410 + 6.00000i 0.351726 + 0.609208i 0.986552 0.163448i \(-0.0522615\pi\)
−0.634826 + 0.772655i \(0.718928\pi\)
\(98\) −3.46410 6.00000i −0.349927 0.606092i
\(99\) 3.46410i 0.348155i
\(100\) 0 0
\(101\) 3.00000 5.19615i 0.298511 0.517036i −0.677284 0.735721i \(-0.736843\pi\)
0.975796 + 0.218685i \(0.0701767\pi\)
\(102\) −5.19615 + 9.00000i −0.514496 + 0.891133i
\(103\) 13.0000i 1.28093i 0.767988 + 0.640464i \(0.221258\pi\)
−0.767988 + 0.640464i \(0.778742\pi\)
\(104\) 6.00000 + 1.73205i 0.588348 + 0.169842i
\(105\) 0 0
\(106\) −18.0000 10.3923i −1.74831 1.00939i
\(107\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(108\) −0.866025 + 0.500000i −0.0833333 + 0.0481125i
\(109\) 13.8564i 1.32720i 0.748086 + 0.663602i \(0.230973\pi\)
−0.748086 + 0.663602i \(0.769027\pi\)
\(110\) 0 0
\(111\) −6.00000 + 3.46410i −0.569495 + 0.328798i
\(112\) −8.66025 −0.818317
\(113\) −10.3923 + 6.00000i −0.977626 + 0.564433i −0.901553 0.432670i \(-0.857572\pi\)
−0.0760733 + 0.997102i \(0.524238\pi\)
\(114\) 1.50000 2.59808i 0.140488 0.243332i
\(115\) 0 0
\(116\) 6.00000 0.557086
\(117\) 0.866025 + 3.50000i 0.0800641 + 0.323575i
\(118\) 18.0000i 1.65703i
\(119\) −9.00000 5.19615i −0.825029 0.476331i
\(120\) 0 0
\(121\) 0.500000 + 0.866025i 0.0454545 + 0.0787296i
\(122\) 3.46410 0.313625
\(123\) 1.73205 + 3.00000i 0.156174 + 0.270501i
\(124\) −3.00000 + 1.73205i −0.269408 + 0.155543i
\(125\) 0 0
\(126\) −1.50000 2.59808i −0.133631 0.231455i
\(127\) −0.866025 0.500000i −0.0768473 0.0443678i 0.461084 0.887357i \(-0.347461\pi\)
−0.537931 + 0.842989i \(0.680794\pi\)
\(128\) 6.06218 10.5000i 0.535826 0.928078i
\(129\) 5.00000 0.440225
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) −1.73205 + 3.00000i −0.150756 + 0.261116i
\(133\) 2.59808 + 1.50000i 0.225282 + 0.130066i
\(134\) 7.50000 + 12.9904i 0.647901 + 1.12220i
\(135\) 0 0
\(136\) 9.00000 5.19615i 0.771744 0.445566i
\(137\) −5.19615 9.00000i −0.443937 0.768922i 0.554040 0.832490i \(-0.313085\pi\)
−0.997978 + 0.0635680i \(0.979752\pi\)
\(138\) 10.3923 0.884652
\(139\) 2.50000 + 4.33013i 0.212047 + 0.367277i 0.952355 0.304991i \(-0.0986536\pi\)
−0.740308 + 0.672268i \(0.765320\pi\)
\(140\) 0 0
\(141\) −6.00000 3.46410i −0.505291 0.291730i
\(142\) 6.00000i 0.503509i
\(143\) 8.66025 + 9.00000i 0.724207 + 0.752618i
\(144\) 5.00000 0.416667
\(145\) 0 0
\(146\) 7.50000 12.9904i 0.620704 1.07509i
\(147\) −3.46410 + 2.00000i −0.285714 + 0.164957i
\(148\) −6.92820 −0.569495
\(149\) −3.00000 + 1.73205i −0.245770 + 0.141895i −0.617826 0.786315i \(-0.711986\pi\)
0.372056 + 0.928210i \(0.378653\pi\)
\(150\) 0 0
\(151\) 8.66025i 0.704761i 0.935857 + 0.352381i \(0.114628\pi\)
−0.935857 + 0.352381i \(0.885372\pi\)
\(152\) −2.59808 + 1.50000i −0.210732 + 0.121666i
\(153\) 5.19615 + 3.00000i 0.420084 + 0.242536i
\(154\) −9.00000 5.19615i −0.725241 0.418718i
\(155\) 0 0
\(156\) −1.00000 + 3.46410i −0.0800641 + 0.277350i
\(157\) 23.0000i 1.83560i 0.397043 + 0.917800i \(0.370036\pi\)
−0.397043 + 0.917800i \(0.629964\pi\)
\(158\) 9.52628 16.5000i 0.757870 1.31267i
\(159\) −6.00000 + 10.3923i −0.475831 + 0.824163i
\(160\) 0 0
\(161\) 10.3923i 0.819028i
\(162\) 0.866025 + 1.50000i 0.0680414 + 0.117851i
\(163\) −12.1244 21.0000i −0.949653 1.64485i −0.746156 0.665771i \(-0.768103\pi\)
−0.203497 0.979076i \(-0.565231\pi\)
\(164\) 3.46410i 0.270501i
\(165\) 0 0
\(166\) −3.00000 + 5.19615i −0.232845 + 0.403300i
\(167\) −1.73205 + 3.00000i −0.134030 + 0.232147i −0.925227 0.379415i \(-0.876125\pi\)
0.791196 + 0.611562i \(0.209459\pi\)
\(168\) 3.00000i 0.231455i
\(169\) 11.0000 + 6.92820i 0.846154 + 0.532939i
\(170\) 0 0
\(171\) −1.50000 0.866025i −0.114708 0.0662266i
\(172\) 4.33013 + 2.50000i 0.330169 + 0.190623i
\(173\) −20.7846 + 12.0000i −1.58022 + 0.912343i −0.585399 + 0.810745i \(0.699062\pi\)
−0.994826 + 0.101598i \(0.967605\pi\)
\(174\) 10.3923i 0.787839i
\(175\) 0 0
\(176\) 15.0000 8.66025i 1.13067 0.652791i
\(177\) 10.3923 0.781133
\(178\) 5.19615 3.00000i 0.389468 0.224860i
\(179\) 6.00000 10.3923i 0.448461 0.776757i −0.549825 0.835280i \(-0.685306\pi\)
0.998286 + 0.0585225i \(0.0186389\pi\)
\(180\) 0 0
\(181\) 17.0000 1.26360 0.631800 0.775131i \(-0.282316\pi\)
0.631800 + 0.775131i \(0.282316\pi\)
\(182\) −10.3923 3.00000i −0.770329 0.222375i
\(183\) 2.00000i 0.147844i
\(184\) −9.00000 5.19615i −0.663489 0.383065i
\(185\) 0 0
\(186\) 3.00000 + 5.19615i 0.219971 + 0.381000i
\(187\) 20.7846 1.51992
\(188\) −3.46410 6.00000i −0.252646 0.437595i
\(189\) −1.50000 + 0.866025i −0.109109 + 0.0629941i
\(190\) 0 0
\(191\) 3.00000 + 5.19615i 0.217072 + 0.375980i 0.953912 0.300088i \(-0.0970159\pi\)
−0.736839 + 0.676068i \(0.763683\pi\)
\(192\) −0.866025 0.500000i −0.0625000 0.0360844i
\(193\) 11.2583 19.5000i 0.810392 1.40364i −0.102197 0.994764i \(-0.532587\pi\)
0.912590 0.408877i \(-0.134079\pi\)
\(194\) 12.0000 0.861550
\(195\) 0 0
\(196\) −4.00000 −0.285714
\(197\) −10.3923 + 18.0000i −0.740421 + 1.28245i 0.211883 + 0.977295i \(0.432041\pi\)
−0.952304 + 0.305152i \(0.901293\pi\)
\(198\) 5.19615 + 3.00000i 0.369274 + 0.213201i
\(199\) 12.5000 + 21.6506i 0.886102 + 1.53477i 0.844446 + 0.535641i \(0.179930\pi\)
0.0416556 + 0.999132i \(0.486737\pi\)
\(200\) 0 0
\(201\) 7.50000 4.33013i 0.529009 0.305424i
\(202\) −5.19615 9.00000i −0.365600 0.633238i
\(203\) 10.3923 0.729397
\(204\) 3.00000 + 5.19615i 0.210042 + 0.363803i
\(205\) 0 0
\(206\) 19.5000 + 11.2583i 1.35863 + 0.784405i
\(207\) 6.00000i 0.417029i
\(208\) 12.9904 12.5000i 0.900721 0.866719i
\(209\) −6.00000 −0.415029
\(210\) 0 0
\(211\) −8.00000 + 13.8564i −0.550743 + 0.953914i 0.447478 + 0.894295i \(0.352322\pi\)
−0.998221 + 0.0596196i \(0.981011\pi\)
\(212\) −10.3923 + 6.00000i −0.713746 + 0.412082i
\(213\) −3.46410 −0.237356
\(214\) 0 0
\(215\) 0 0
\(216\) 1.73205i 0.117851i
\(217\) −5.19615 + 3.00000i −0.352738 + 0.203653i
\(218\) 20.7846 + 12.0000i 1.40771 + 0.812743i
\(219\) −7.50000 4.33013i −0.506803 0.292603i
\(220\) 0 0
\(221\) 21.0000 5.19615i 1.41261 0.349531i
\(222\) 12.0000i 0.805387i
\(223\) −4.33013 + 7.50000i −0.289967 + 0.502237i −0.973801 0.227400i \(-0.926978\pi\)
0.683835 + 0.729637i \(0.260311\pi\)
\(224\) −4.50000 + 7.79423i −0.300669 + 0.520774i
\(225\) 0 0
\(226\) 20.7846i 1.38257i
\(227\) −13.8564 24.0000i −0.919682 1.59294i −0.799898 0.600136i \(-0.795113\pi\)
−0.119784 0.992800i \(-0.538220\pi\)
\(228\) −0.866025 1.50000i −0.0573539 0.0993399i
\(229\) 1.73205i 0.114457i −0.998361 0.0572286i \(-0.981774\pi\)
0.998361 0.0572286i \(-0.0182264\pi\)
\(230\) 0 0
\(231\) −3.00000 + 5.19615i −0.197386 + 0.341882i
\(232\) −5.19615 + 9.00000i −0.341144 + 0.590879i
\(233\) 24.0000i 1.57229i −0.618041 0.786146i \(-0.712073\pi\)
0.618041 0.786146i \(-0.287927\pi\)
\(234\) 6.00000 + 1.73205i 0.392232 + 0.113228i
\(235\) 0 0
\(236\) 9.00000 + 5.19615i 0.585850 + 0.338241i
\(237\) −9.52628 5.50000i −0.618798 0.357263i
\(238\) −15.5885 + 9.00000i −1.01045 + 0.583383i
\(239\) 10.3923i 0.672222i 0.941822 + 0.336111i \(0.109112\pi\)
−0.941822 + 0.336111i \(0.890888\pi\)
\(240\) 0 0
\(241\) −16.5000 + 9.52628i −1.06286 + 0.613642i −0.926222 0.376980i \(-0.876963\pi\)
−0.136637 + 0.990621i \(0.543629\pi\)
\(242\) 1.73205 0.111340
\(243\) 0.866025 0.500000i 0.0555556 0.0320750i
\(244\) 1.00000 1.73205i 0.0640184 0.110883i
\(245\) 0 0
\(246\) 6.00000 0.382546
\(247\) −6.06218 + 1.50000i −0.385727 + 0.0954427i
\(248\) 6.00000i 0.381000i
\(249\) 3.00000 + 1.73205i 0.190117 + 0.109764i
\(250\) 0 0
\(251\) 12.0000 + 20.7846i 0.757433 + 1.31191i 0.944156 + 0.329500i \(0.106880\pi\)
−0.186722 + 0.982413i \(0.559786\pi\)
\(252\) −1.73205 −0.109109
\(253\) −10.3923 18.0000i −0.653359 1.13165i
\(254\) −1.50000 + 0.866025i −0.0941184 + 0.0543393i
\(255\) 0 0
\(256\) −9.50000 16.4545i −0.593750 1.02841i
\(257\) 10.3923 + 6.00000i 0.648254 + 0.374270i 0.787787 0.615948i \(-0.211227\pi\)
−0.139533 + 0.990217i \(0.544560\pi\)
\(258\) 4.33013 7.50000i 0.269582 0.466930i
\(259\) −12.0000 −0.745644
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) −10.3923 + 18.0000i −0.642039 + 1.11204i
\(263\) −5.19615 3.00000i −0.320408 0.184988i 0.331166 0.943572i \(-0.392558\pi\)
−0.651575 + 0.758585i \(0.725891\pi\)
\(264\) −3.00000 5.19615i −0.184637 0.319801i
\(265\) 0 0
\(266\) 4.50000 2.59808i 0.275913 0.159298i
\(267\) −1.73205 3.00000i −0.106000 0.183597i
\(268\) 8.66025 0.529009
\(269\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(270\) 0 0
\(271\) 7.50000 + 4.33013i 0.455593 + 0.263036i 0.710189 0.704011i \(-0.248609\pi\)
−0.254597 + 0.967047i \(0.581943\pi\)
\(272\) 30.0000i 1.81902i
\(273\) −1.73205 + 6.00000i −0.104828 + 0.363137i
\(274\) −18.0000 −1.08742
\(275\) 0 0
\(276\) 3.00000 5.19615i 0.180579 0.312772i
\(277\) 14.7224 8.50000i 0.884585 0.510716i 0.0124177 0.999923i \(-0.496047\pi\)
0.872167 + 0.489207i \(0.162714\pi\)
\(278\) 8.66025 0.519408
\(279\) 3.00000 1.73205i 0.179605 0.103695i
\(280\) 0 0
\(281\) 3.46410i 0.206651i −0.994648 0.103325i \(-0.967052\pi\)
0.994648 0.103325i \(-0.0329483\pi\)
\(282\) −10.3923 + 6.00000i −0.618853 + 0.357295i
\(283\) 3.46410 + 2.00000i 0.205919 + 0.118888i 0.599414 0.800439i \(-0.295400\pi\)
−0.393494 + 0.919327i \(0.628734\pi\)
\(284\) −3.00000 1.73205i −0.178017 0.102778i
\(285\) 0 0
\(286\) 21.0000 5.19615i 1.24176 0.307255i
\(287\) 6.00000i 0.354169i
\(288\) 2.59808 4.50000i 0.153093 0.265165i
\(289\) 9.50000 16.4545i 0.558824 0.967911i
\(290\) 0 0
\(291\) 6.92820i 0.406138i
\(292\) −4.33013 7.50000i −0.253402 0.438904i
\(293\) −3.46410 6.00000i −0.202375 0.350524i 0.746918 0.664916i \(-0.231533\pi\)
−0.949293 + 0.314392i \(0.898199\pi\)
\(294\) 6.92820i 0.404061i
\(295\) 0 0
\(296\) 6.00000 10.3923i 0.348743 0.604040i
\(297\) 1.73205 3.00000i 0.100504 0.174078i
\(298\) 6.00000i 0.347571i
\(299\) −15.0000 15.5885i −0.867472 0.901504i
\(300\) 0 0
\(301\) 7.50000 + 4.33013i 0.432293 + 0.249584i
\(302\) 12.9904 + 7.50000i 0.747512 + 0.431577i
\(303\) −5.19615 + 3.00000i −0.298511 + 0.172345i
\(304\) 8.66025i 0.496700i
\(305\) 0 0
\(306\) 9.00000 5.19615i 0.514496 0.297044i
\(307\) −10.3923 −0.593120 −0.296560 0.955014i \(-0.595840\pi\)
−0.296560 + 0.955014i \(0.595840\pi\)
\(308\) −5.19615 + 3.00000i −0.296078 + 0.170941i
\(309\) 6.50000 11.2583i 0.369772 0.640464i
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) −4.33013 4.50000i −0.245145 0.254762i
\(313\) 25.0000i 1.41308i −0.707671 0.706542i \(-0.750254\pi\)
0.707671 0.706542i \(-0.249746\pi\)
\(314\) 34.5000 + 19.9186i 1.94695 + 1.12407i
\(315\) 0 0
\(316\) −5.50000 9.52628i −0.309399 0.535895i
\(317\) 6.92820 0.389127 0.194563 0.980890i \(-0.437671\pi\)
0.194563 + 0.980890i \(0.437671\pi\)
\(318\) 10.3923 + 18.0000i 0.582772 + 1.00939i
\(319\) −18.0000 + 10.3923i −1.00781 + 0.581857i
\(320\) 0 0
\(321\) 0 0
\(322\) 15.5885 + 9.00000i 0.868711 + 0.501550i
\(323\) −5.19615 + 9.00000i −0.289122 + 0.500773i
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) −42.0000 −2.32616
\(327\) 6.92820 12.0000i 0.383131 0.663602i
\(328\) −5.19615 3.00000i −0.286910 0.165647i
\(329\) −6.00000 10.3923i −0.330791 0.572946i
\(330\) 0 0
\(331\) 4.50000 2.59808i 0.247342 0.142803i −0.371204 0.928551i \(-0.621055\pi\)
0.618547 + 0.785748i \(0.287722\pi\)
\(332\) 1.73205 + 3.00000i 0.0950586 + 0.164646i
\(333\) 6.92820 0.379663
\(334\) 3.00000 + 5.19615i 0.164153 + 0.284321i
\(335\) 0 0
\(336\) 7.50000 + 4.33013i 0.409159 + 0.236228i
\(337\) 19.0000i 1.03500i 0.855684 + 0.517498i \(0.173136\pi\)
−0.855684 + 0.517498i \(0.826864\pi\)
\(338\) 19.9186 10.5000i 1.08343 0.571125i
\(339\) 12.0000 0.651751
\(340\) 0 0
\(341\) 6.00000 10.3923i 0.324918 0.562775i
\(342\) −2.59808 + 1.50000i −0.140488 + 0.0811107i
\(343\) −19.0526 −1.02874
\(344\) −7.50000 + 4.33013i −0.404373 + 0.233465i
\(345\) 0 0
\(346\) 41.5692i 2.23478i
\(347\) −20.7846 + 12.0000i −1.11578 + 0.644194i −0.940319 0.340293i \(-0.889474\pi\)
−0.175457 + 0.984487i \(0.556140\pi\)
\(348\) −5.19615 3.00000i −0.278543 0.160817i
\(349\) 10.5000 + 6.06218i 0.562052 + 0.324501i 0.753969 0.656910i \(-0.228137\pi\)
−0.191917 + 0.981411i \(0.561470\pi\)
\(350\) 0 0
\(351\) 1.00000 3.46410i 0.0533761 0.184900i
\(352\) 18.0000i 0.959403i
\(353\) −12.1244 + 21.0000i −0.645314 + 1.11772i 0.338914 + 0.940817i \(0.389940\pi\)
−0.984229 + 0.176900i \(0.943393\pi\)
\(354\) 9.00000 15.5885i 0.478345 0.828517i
\(355\) 0 0
\(356\) 3.46410i 0.183597i
\(357\) 5.19615 + 9.00000i 0.275010 + 0.476331i
\(358\) −10.3923 18.0000i −0.549250 0.951330i
\(359\) 27.7128i 1.46263i −0.682042 0.731313i \(-0.738908\pi\)
0.682042 0.731313i \(-0.261092\pi\)
\(360\) 0 0
\(361\) −8.00000 + 13.8564i −0.421053 + 0.729285i
\(362\) 14.7224 25.5000i 0.773794 1.34025i
\(363\) 1.00000i 0.0524864i
\(364\) −4.50000 + 4.33013i −0.235864 + 0.226960i
\(365\) 0 0
\(366\) −3.00000 1.73205i −0.156813 0.0905357i
\(367\) −30.3109 17.5000i −1.58222 0.913493i −0.994535 0.104399i \(-0.966708\pi\)
−0.587680 0.809093i \(-0.699959\pi\)
\(368\) −25.9808 + 15.0000i −1.35434 + 0.781929i
\(369\) 3.46410i 0.180334i
\(370\) 0 0
\(371\) −18.0000 + 10.3923i −0.934513 + 0.539542i
\(372\) 3.46410 0.179605
\(373\) −32.0429 + 18.5000i −1.65912 + 0.957894i −0.685999 + 0.727603i \(0.740634\pi\)
−0.973122 + 0.230291i \(0.926032\pi\)
\(374\) 18.0000 31.1769i 0.930758 1.61212i
\(375\) 0 0
\(376\) 12.0000 0.618853
\(377\) −15.5885 + 15.0000i −0.802846 + 0.772539i
\(378\) 3.00000i 0.154303i
\(379\) −22.5000 12.9904i −1.15575 0.667271i −0.205466 0.978664i \(-0.565871\pi\)
−0.950281 + 0.311393i \(0.899204\pi\)
\(380\) 0 0
\(381\) 0.500000 + 0.866025i 0.0256158 + 0.0443678i
\(382\) 10.3923 0.531717
\(383\) 13.8564 + 24.0000i 0.708029 + 1.22634i 0.965587 + 0.260080i \(0.0837489\pi\)
−0.257558 + 0.966263i \(0.582918\pi\)
\(384\) −10.5000 + 6.06218i −0.535826 + 0.309359i
\(385\) 0 0
\(386\) −19.5000 33.7750i −0.992524 1.71910i
\(387\) −4.33013 2.50000i −0.220113 0.127082i
\(388\) 3.46410 6.00000i 0.175863 0.304604i
\(389\) 12.0000 0.608424 0.304212 0.952604i \(-0.401607\pi\)
0.304212 + 0.952604i \(0.401607\pi\)
\(390\) 0 0
\(391\) −36.0000 −1.82060
\(392\) 3.46410 6.00000i 0.174964 0.303046i
\(393\) 10.3923 + 6.00000i 0.524222 + 0.302660i
\(394\) 18.0000 + 31.1769i 0.906827 + 1.57067i
\(395\) 0 0
\(396\) 3.00000 1.73205i 0.150756 0.0870388i
\(397\) 12.9904 + 22.5000i 0.651969 + 1.12924i 0.982645 + 0.185498i \(0.0593899\pi\)
−0.330676 + 0.943744i \(0.607277\pi\)
\(398\) 43.3013 2.17050
\(399\) −1.50000 2.59808i −0.0750939 0.130066i
\(400\) 0 0
\(401\) −6.00000 3.46410i −0.299626 0.172989i 0.342649 0.939463i \(-0.388676\pi\)
−0.642275 + 0.766475i \(0.722009\pi\)
\(402\) 15.0000i 0.748132i
\(403\) 3.46410 12.0000i 0.172559 0.597763i
\(404\) −6.00000 −0.298511
\(405\) 0 0
\(406\) 9.00000 15.5885i 0.446663 0.773642i
\(407\) 20.7846 12.0000i 1.03025 0.594818i
\(408\) −10.3923 −0.514496
\(409\) 30.0000 17.3205i 1.48340 0.856444i 0.483582 0.875299i \(-0.339335\pi\)
0.999822 + 0.0188549i \(0.00600205\pi\)
\(410\) 0 0
\(411\) 10.3923i 0.512615i
\(412\) 11.2583 6.50000i 0.554658 0.320232i
\(413\) 15.5885 + 9.00000i 0.767058 + 0.442861i
\(414\) −9.00000 5.19615i −0.442326 0.255377i
\(415\) 0 0
\(416\) −4.50000 18.1865i −0.220631 0.891668i
\(417\) 5.00000i 0.244851i
\(418\) −5.19615 + 9.00000i −0.254152 + 0.440204i
\(419\) −6.00000 + 10.3923i −0.293119 + 0.507697i −0.974546 0.224189i \(-0.928027\pi\)
0.681426 + 0.731887i \(0.261360\pi\)
\(420\) 0 0
\(421\) 5.19615i 0.253245i −0.991951 0.126622i \(-0.959586\pi\)
0.991951 0.126622i \(-0.0404137\pi\)
\(422\) 13.8564 + 24.0000i 0.674519 + 1.16830i
\(423\) 3.46410 + 6.00000i 0.168430 + 0.291730i
\(424\) 20.7846i 1.00939i
\(425\) 0 0
\(426\) −3.00000 + 5.19615i −0.145350 + 0.251754i
\(427\) 1.73205 3.00000i 0.0838198 0.145180i
\(428\) 0 0
\(429\) −3.00000 12.1244i −0.144841 0.585369i
\(430\) 0 0
\(431\) −24.0000 13.8564i −1.15604 0.667440i −0.205688 0.978618i \(-0.565943\pi\)
−0.950352 + 0.311178i \(0.899276\pi\)
\(432\) −4.33013 2.50000i −0.208333 0.120281i
\(433\) 1.73205 1.00000i 0.0832370 0.0480569i −0.457804 0.889053i \(-0.651364\pi\)
0.541041 + 0.840996i \(0.318030\pi\)
\(434\) 10.3923i 0.498847i
\(435\) 0 0
\(436\) 12.0000 6.92820i 0.574696 0.331801i
\(437\) 10.3923 0.497131
\(438\) −12.9904 + 7.50000i −0.620704 + 0.358364i
\(439\) −15.5000 + 26.8468i −0.739775 + 1.28133i 0.212822 + 0.977091i \(0.431735\pi\)
−0.952597 + 0.304236i \(0.901599\pi\)
\(440\) 0 0
\(441\) 4.00000 0.190476
\(442\) 10.3923 36.0000i 0.494312 1.71235i
\(443\) 18.0000i 0.855206i 0.903967 + 0.427603i \(0.140642\pi\)
−0.903967 + 0.427603i \(0.859358\pi\)
\(444\) 6.00000 + 3.46410i 0.284747 + 0.164399i
\(445\) 0 0
\(446\) 7.50000 + 12.9904i 0.355135 + 0.615112i
\(447\) 3.46410 0.163846
\(448\) −0.866025 1.50000i −0.0409159 0.0708683i
\(449\) −24.0000 + 13.8564i −1.13263 + 0.653924i −0.944595 0.328238i \(-0.893545\pi\)
−0.188035 + 0.982162i \(0.560212\pi\)
\(450\) 0 0
\(451\) −6.00000 10.3923i −0.282529 0.489355i
\(452\) 10.3923 + 6.00000i 0.488813 + 0.282216i
\(453\) 4.33013 7.50000i 0.203447 0.352381i
\(454\) −48.0000 −2.25275
\(455\) 0 0
\(456\) 3.00000 0.140488
\(457\) 0.866025 1.50000i 0.0405110 0.0701670i −0.845059 0.534673i \(-0.820435\pi\)
0.885570 + 0.464506i \(0.153768\pi\)
\(458\) −2.59808 1.50000i −0.121400 0.0700904i
\(459\) −3.00000 5.19615i −0.140028 0.242536i
\(460\) 0 0
\(461\) −21.0000 + 12.1244i −0.978068 + 0.564688i −0.901686 0.432391i \(-0.857670\pi\)
−0.0763814 + 0.997079i \(0.524337\pi\)
\(462\) 5.19615 + 9.00000i 0.241747 + 0.418718i
\(463\) −15.5885 −0.724457 −0.362229 0.932089i \(-0.617984\pi\)
−0.362229 + 0.932089i \(0.617984\pi\)
\(464\) 15.0000 + 25.9808i 0.696358 + 1.20613i
\(465\) 0 0
\(466\) −36.0000 20.7846i −1.66767 0.962828i
\(467\) 18.0000i 0.832941i 0.909149 + 0.416470i \(0.136733\pi\)
−0.909149 + 0.416470i \(0.863267\pi\)
\(468\) 2.59808 2.50000i 0.120096 0.115563i
\(469\) 15.0000 0.692636
\(470\) 0 0
\(471\) 11.5000 19.9186i 0.529892 0.917800i
\(472\) −15.5885 + 9.00000i −0.717517 + 0.414259i
\(473\) −17.3205 −0.796398
\(474\) −16.5000 + 9.52628i −0.757870 + 0.437557i
\(475\) 0 0
\(476\) 10.3923i 0.476331i
\(477\) 10.3923 6.00000i 0.475831 0.274721i
\(478\) 15.5885 + 9.00000i 0.712999 + 0.411650i
\(479\) −18.0000 10.3923i −0.822441 0.474837i 0.0288165 0.999585i \(-0.490826\pi\)
−0.851258 + 0.524748i \(0.824159\pi\)
\(480\) 0 0
\(481\) 18.0000 17.3205i 0.820729 0.789747i
\(482\) 33.0000i 1.50311i
\(483\) 5.19615 9.00000i 0.236433 0.409514i
\(484\) 0.500000 0.866025i 0.0227273 0.0393648i
\(485\) 0 0
\(486\) 1.73205i 0.0785674i
\(487\) −12.9904 22.5000i −0.588650 1.01957i −0.994410 0.105592i \(-0.966326\pi\)
0.405759 0.913980i \(-0.367007\pi\)
\(488\) 1.73205 + 3.00000i 0.0784063 + 0.135804i
\(489\) 24.2487i 1.09656i
\(490\) 0 0
\(491\) −15.0000 + 25.9808i −0.676941 + 1.17250i 0.298957 + 0.954267i \(0.403361\pi\)
−0.975898 + 0.218229i \(0.929972\pi\)
\(492\) 1.73205 3.00000i 0.0780869 0.135250i
\(493\) 36.0000i 1.62136i
\(494\) −3.00000 + 10.3923i −0.134976 + 0.467572i
\(495\) 0 0
\(496\) −15.0000 8.66025i −0.673520 0.388857i
\(497\) −5.19615 3.00000i −0.233079 0.134568i
\(498\) 5.19615 3.00000i 0.232845 0.134433i
\(499\) 32.9090i 1.47321i −0.676325 0.736604i \(-0.736428\pi\)
0.676325 0.736604i \(-0.263572\pi\)
\(500\) 0 0
\(501\) 3.00000 1.73205i 0.134030 0.0773823i
\(502\) 41.5692 1.85533
\(503\) 5.19615 3.00000i 0.231685 0.133763i −0.379664 0.925124i \(-0.623960\pi\)
0.611349 + 0.791361i \(0.290627\pi\)
\(504\) 1.50000 2.59808i 0.0668153 0.115728i
\(505\) 0 0
\(506\) −36.0000 −1.60040
\(507\) −6.06218 11.5000i −0.269231 0.510733i
\(508\) 1.00000i 0.0443678i
\(509\) 9.00000 + 5.19615i 0.398918 + 0.230315i 0.686017 0.727586i \(-0.259358\pi\)
−0.287099 + 0.957901i \(0.592691\pi\)
\(510\) 0 0
\(511\) −7.50000 12.9904i −0.331780 0.574661i
\(512\) −8.66025 −0.382733
\(513\) 0.866025 + 1.50000i 0.0382360 + 0.0662266i
\(514\) 18.0000 10.3923i 0.793946 0.458385i
\(515\) 0 0
\(516\) −2.50000 4.33013i −0.110056 0.190623i
\(517\) 20.7846 + 12.0000i 0.914106 + 0.527759i
\(518\) −10.3923 + 18.0000i −0.456612 + 0.790875i
\(519\) 24.0000 1.05348
\(520\) 0 0
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) −5.19615 + 9.00000i −0.227429 + 0.393919i
\(523\) 25.1147 + 14.5000i 1.09819 + 0.634041i 0.935745 0.352677i \(-0.114728\pi\)
0.162446 + 0.986718i \(0.448062\pi\)
\(524\) 6.00000 + 10.3923i 0.262111 + 0.453990i
\(525\) 0 0
\(526\) −9.00000 + 5.19615i −0.392419 + 0.226563i
\(527\) −10.3923 18.0000i −0.452696 0.784092i
\(528\) −17.3205 −0.753778
\(529\) 6.50000 + 11.2583i 0.282609 + 0.489493i
\(530\) 0 0
\(531\) −9.00000 5.19615i −0.390567 0.225494i
\(532\) 3.00000i 0.130066i
\(533\) −8.66025 9.00000i −0.375117 0.389833i
\(534\) −6.00000 −0.259645
\(535\) 0 0
\(536\) −7.50000 + 12.9904i −0.323951 + 0.561099i
\(537\) −10.3923 + 6.00000i −0.448461 + 0.258919i
\(538\) 0 0
\(539\) 12.0000 6.92820i 0.516877 0.298419i
\(540\) 0 0
\(541\) 6.92820i 0.297867i 0.988847 + 0.148933i \(0.0475840\pi\)
−0.988847 + 0.148933i \(0.952416\pi\)
\(542\) 12.9904 7.50000i 0.557985 0.322153i
\(543\) −14.7224 8.50000i −0.631800 0.364770i
\(544\) −27.0000 15.5885i −1.15762 0.668350i
\(545\) 0 0
\(546\) 7.50000 + 7.79423i 0.320970 + 0.333562i
\(547\) 17.0000i 0.726868i 0.931620 + 0.363434i \(0.118396\pi\)
−0.931620 + 0.363434i \(0.881604\pi\)
\(548\) −5.19615 + 9.00000i −0.221969 + 0.384461i
\(549\) −1.00000 + 1.73205i −0.0426790 + 0.0739221i
\(550\) 0 0
\(551\) 10.3923i 0.442727i
\(552\) 5.19615 + 9.00000i 0.221163 + 0.383065i
\(553\) −9.52628 16.5000i −0.405099 0.701651i
\(554\) 29.4449i 1.25099i
\(555\) 0 0
\(556\) 2.50000 4.33013i 0.106024 0.183638i
\(557\) −19.0526 + 33.0000i −0.807283 + 1.39825i 0.107456 + 0.994210i \(0.465729\pi\)
−0.914739 + 0.404045i \(0.867604\pi\)
\(558\) 6.00000i 0.254000i
\(559\) −17.5000 + 4.33013i −0.740171 + 0.183145i
\(560\) 0 0
\(561\) −18.0000 10.3923i −0.759961 0.438763i
\(562\) −5.19615 3.00000i −0.219186 0.126547i
\(563\) −31.1769 + 18.0000i −1.31395 + 0.758610i −0.982748 0.184950i \(-0.940788\pi\)
−0.331202 + 0.943560i \(0.607454\pi\)
\(564\) 6.92820i 0.291730i
\(565\) 0 0
\(566\) 6.00000 3.46410i 0.252199 0.145607i
\(567\) 1.73205 0.0727393
\(568\) 5.19615 3.00000i 0.218026 0.125877i
\(569\) 3.00000 5.19615i 0.125767 0.217834i −0.796266 0.604947i \(-0.793194\pi\)
0.922032 + 0.387113i \(0.126528\pi\)
\(570\) 0 0
\(571\) 19.0000 0.795125 0.397563 0.917575i \(-0.369856\pi\)
0.397563 + 0.917575i \(0.369856\pi\)
\(572\) 3.46410 12.0000i 0.144841 0.501745i
\(573\) 6.00000i 0.250654i
\(574\) 9.00000 + 5.19615i 0.375653 + 0.216883i
\(575\) 0 0
\(576\) 0.500000 + 0.866025i 0.0208333 + 0.0360844i
\(577\) 1.73205 0.0721062 0.0360531 0.999350i \(-0.488521\pi\)
0.0360531 + 0.999350i \(0.488521\pi\)
\(578\) −16.4545 28.5000i −0.684416 1.18544i
\(579\) −19.5000 + 11.2583i −0.810392 + 0.467880i
\(580\) 0 0
\(581\) 3.00000 + 5.19615i 0.124461 + 0.215573i
\(582\) −10.3923 6.00000i −0.430775 0.248708i
\(583\) 20.7846 36.0000i 0.860811 1.49097i
\(584\) 15.0000 0.620704
\(585\) 0 0
\(586\) −12.0000 −0.495715
\(587\) 20.7846 36.0000i 0.857873 1.48588i −0.0160815 0.999871i \(-0.505119\pi\)
0.873954 0.486008i \(-0.161548\pi\)
\(588\) 3.46410 + 2.00000i 0.142857 + 0.0824786i
\(589\) 3.00000 + 5.19615i 0.123613 + 0.214104i
\(590\) 0 0
\(591\) 18.0000 10.3923i 0.740421 0.427482i
\(592\) −17.3205 30.0000i −0.711868 1.23299i
\(593\) 27.7128 1.13803 0.569014 0.822328i \(-0.307325\pi\)
0.569014 + 0.822328i \(0.307325\pi\)
\(594\) −3.00000 5.19615i −0.123091 0.213201i
\(595\) 0 0
\(596\) 3.00000 + 1.73205i 0.122885 + 0.0709476i
\(597\) 25.0000i 1.02318i
\(598\) −36.3731 + 9.00000i −1.48741 + 0.368037i
\(599\) −12.0000 −0.490307 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(600\) 0 0
\(601\) 5.50000 9.52628i 0.224350 0.388585i −0.731774 0.681547i \(-0.761308\pi\)
0.956124 + 0.292962i \(0.0946409\pi\)
\(602\) 12.9904 7.50000i 0.529448 0.305677i
\(603\) −8.66025 −0.352673
\(604\) 7.50000 4.33013i 0.305171 0.176190i
\(605\) 0 0
\(606\) 10.3923i 0.422159i
\(607\) −3.46410 + 2.00000i −0.140604 + 0.0811775i −0.568652 0.822578i \(-0.692535\pi\)
0.428048 + 0.903756i \(0.359201\pi\)
\(608\) 7.79423 + 4.50000i 0.316098 + 0.182499i
\(609\) −9.00000 5.19615i −0.364698 0.210559i
\(610\) 0 0
\(611\) 24.0000 + 6.92820i 0.970936 + 0.280285i
\(612\) 6.00000i 0.242536i
\(613\) 0.866025 1.50000i 0.0349784 0.0605844i −0.848006 0.529986i \(-0.822197\pi\)
0.882985 + 0.469402i \(0.155530\pi\)
\(614\) −9.00000 + 15.5885i −0.363210 + 0.629099i
\(615\) 0 0
\(616\) 10.3923i 0.418718i
\(617\) 12.1244 + 21.0000i 0.488108 + 0.845428i 0.999906 0.0136775i \(-0.00435381\pi\)
−0.511798 + 0.859106i \(0.671020\pi\)
\(618\) −11.2583 19.5000i −0.452876 0.784405i
\(619\) 19.0526i 0.765787i −0.923792 0.382893i \(-0.874928\pi\)
0.923792 0.382893i \(-0.125072\pi\)
\(620\) 0 0
\(621\) −3.00000 + 5.19615i −0.120386 + 0.208514i
\(622\) 10.3923 18.0000i 0.416693 0.721734i
\(623\) 6.00000i 0.240385i
\(624\) −17.5000 + 4.33013i −0.700561 + 0.173344i
\(625\) 0 0
\(626\) −37.5000 21.6506i −1.49880 0.865333i
\(627\) 5.19615 + 3.00000i 0.207514 + 0.119808i
\(628\) 19.9186 11.5000i 0.794838 0.458900i
\(629\) 41.5692i 1.65747i
\(630\) 0 0
\(631\) 31.5000 18.1865i 1.25400 0.723994i 0.282095 0.959387i \(-0.408971\pi\)
0.971900 + 0.235392i \(0.0756374\pi\)
\(632\) 19.0526 0.757870
\(633\) 13.8564 8.00000i 0.550743 0.317971i
\(634\) 6.00000 10.3923i 0.238290 0.412731i
\(635\) 0 0
\(636\) 12.0000 0.475831
\(637\) 10.3923 10.0000i 0.411758 0.396214i
\(638\) 36.0000i 1.42525i
\(639\) 3.00000 + 1.73205i 0.118678 + 0.0685189i
\(640\) 0 0
\(641\) −21.0000 36.3731i −0.829450 1.43665i −0.898470 0.439034i \(-0.855321\pi\)
0.0690201 0.997615i \(-0.478013\pi\)
\(642\) 0 0
\(643\) 11.2583 + 19.5000i 0.443985 + 0.769005i 0.997981 0.0635146i \(-0.0202309\pi\)
−0.553996 + 0.832520i \(0.686898\pi\)
\(644\) 9.00000 5.19615i 0.354650 0.204757i
\(645\) 0 0
\(646\) 9.00000 + 15.5885i 0.354100 + 0.613320i
\(647\) −10.3923 6.00000i −0.408564 0.235884i 0.281609 0.959529i \(-0.409132\pi\)
−0.690172 + 0.723645i \(0.742465\pi\)
\(648\) −0.866025 + 1.50000i −0.0340207 + 0.0589256i
\(649\) −36.0000 −1.41312
\(650\) 0 0
\(651\) 6.00000 0.235159
\(652\) −12.1244 + 21.0000i −0.474826 + 0.822423i
\(653\) −10.3923 6.00000i −0.406682 0.234798i 0.282681 0.959214i \(-0.408776\pi\)
−0.689363 + 0.724416i \(0.742110\pi\)
\(654\) −12.0000 20.7846i −0.469237 0.812743i
\(655\) 0 0
\(656\) −15.0000 + 8.66025i −0.585652 + 0.338126i
\(657\) 4.33013 + 7.50000i 0.168934 + 0.292603i
\(658\) −20.7846 −0.810268
\(659\) −9.00000 15.5885i −0.350590 0.607240i 0.635763 0.771885i \(-0.280686\pi\)
−0.986353 + 0.164644i \(0.947352\pi\)
\(660\) 0 0
\(661\) 37.5000 + 21.6506i 1.45858 + 0.842112i 0.998942 0.0459936i \(-0.0146454\pi\)
0.459639 + 0.888106i \(0.347979\pi\)
\(662\) 9.00000i 0.349795i
\(663\) −20.7846 6.00000i −0.807207 0.233021i
\(664\) −6.00000 −0.232845
\(665\) 0 0
\(666\) 6.00000 10.3923i 0.232495 0.402694i
\(667\) 31.1769 18.0000i 1.20717 0.696963i
\(668\) 3.46410 0.134030
\(669\) 7.50000 4.33013i 0.289967 0.167412i
\(670\) 0 0
\(671\) 6.92820i 0.267460i
\(672\) 7.79423 4.50000i 0.300669 0.173591i
\(673\) 40.7032 + 23.5000i 1.56899 + 0.905858i 0.996287 + 0.0860977i \(0.0274397\pi\)
0.572706 + 0.819761i \(0.305894\pi\)
\(674\) 28.5000 + 16.4545i 1.09778 + 0.633803i
\(675\) 0 0
\(676\) 0.500000 12.9904i 0.0192308 0.499630i
\(677\) 24.0000i 0.922395i −0.887298 0.461197i \(-0.847420\pi\)
0.887298 0.461197i \(-0.152580\pi\)
\(678\) 10.3923 18.0000i 0.399114 0.691286i
\(679\) 6.00000 10.3923i 0.230259 0.398820i
\(680\) 0 0
\(681\) 27.7128i 1.06196i
\(682\) −10.3923 18.0000i −0.397942 0.689256i
\(683\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(684\) 1.73205i 0.0662266i
\(685\) 0 0
\(686\) −16.5000 + 28.5788i −0.629973 + 1.09115i
\(687\) −0.866025 + 1.50000i −0.0330409 + 0.0572286i
\(688\) 25.0000i 0.953116i
\(689\) 12.0000 41.5692i 0.457164 1.58366i
\(690\) 0 0
\(691\) −4.50000 2.59808i −0.171188 0.0988355i 0.411958 0.911203i \(-0.364845\pi\)
−0.583146 + 0.812367i \(0.698178\pi\)
\(692\) 20.7846 + 12.0000i 0.790112 + 0.456172i
\(693\) 5.19615 3.00000i 0.197386 0.113961i
\(694\) 41.5692i 1.57795i
\(695\) 0 0
\(696\) 9.00000 5.19615i 0.341144 0.196960i
\(697\) −20.7846 −0.787273
\(698\) 18.1865 10.5000i 0.688370 0.397431i
\(699\) −12.0000 + 20.7846i −0.453882 + 0.786146i
\(700\) 0 0
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) −4.33013 4.50000i −0.163430 0.169842i
\(703\) 12.0000i 0.452589i
\(704\) 3.00000 + 1.73205i 0.113067 + 0.0652791i
\(705\) 0 0
\(706\) 21.0000 + 36.3731i 0.790345 + 1.36892i
\(707\) −10.3923 −0.390843
\(708\) −5.19615 9.00000i −0.195283 0.338241i
\(709\) 31.5000 18.1865i 1.18301 0.683010i 0.226299 0.974058i \(-0.427337\pi\)
0.956708 + 0.291048i \(0.0940040\pi\)
\(710\) 0 0
\(711\) 5.50000 + 9.52628i 0.206266 + 0.357263i
\(712\) 5.19615 + 3.00000i 0.194734 + 0.112430i
\(713\) −10.3923 + 18.0000i −0.389195 + 0.674105i
\(714\) 18.0000 0.673633
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) 5.19615 9.00000i 0.194054 0.336111i
\(718\) −41.5692 24.0000i −1.55135 0.895672i
\(719\) −3.00000 5.19615i −0.111881 0.193784i 0.804648 0.593753i \(-0.202354\pi\)
−0.916529 + 0.399969i \(0.869021\pi\)
\(720\) 0 0
\(721\) 19.5000 11.2583i 0.726218 0.419282i
\(722\) 13.8564 + 24.0000i 0.515682 + 0.893188i
\(723\) 19.0526 0.708572
\(724\) −8.50000 14.7224i −0.315900 0.547155i
\(725\) 0 0
\(726\) −1.50000 0.866025i −0.0556702 0.0321412i
\(727\) 17.0000i 0.630495i −0.949009 0.315248i \(-0.897912\pi\)
0.949009 0.315248i \(-0.102088\pi\)
\(728\) −2.59808 10.5000i −0.0962911 0.389156i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −15.0000 + 25.9808i −0.554795 + 0.960933i
\(732\) −1.73205 + 1.00000i −0.0640184 + 0.0369611i
\(733\) 46.7654 1.72732 0.863659 0.504076i \(-0.168167\pi\)
0.863659 + 0.504076i \(0.168167\pi\)
\(734\) −52.5000 + 30.3109i −1.93781 + 1.11880i
\(735\) 0 0
\(736\) 31.1769i 1.14920i
\(737\) −25.9808 + 15.0000i −0.957014 + 0.552532i
\(738\) −5.19615 3.00000i −0.191273 0.110432i
\(739\) 21.0000 + 12.1244i 0.772497 + 0.446002i 0.833765 0.552120i \(-0.186181\pi\)
−0.0612673 + 0.998121i \(0.519514\pi\)
\(740\) 0 0
\(741\) 6.00000 + 1.73205i 0.220416 + 0.0636285i
\(742\) 36.0000i 1.32160i
\(743\) −1.73205 + 3.00000i −0.0635428 + 0.110059i −0.896047 0.443960i \(-0.853573\pi\)
0.832504 + 0.554019i \(0.186907\pi\)
\(744\) −3.00000 + 5.19615i −0.109985 + 0.190500i
\(745\) 0 0
\(746\) 64.0859i 2.34635i
\(747\) −1.73205 3.00000i −0.0633724 0.109764i
\(748\) −10.3923 18.0000i −0.379980 0.658145i
\(749\) 0 0
\(750\) 0 0
\(751\) 20.0000 34.6410i 0.729810 1.26407i −0.227153 0.973859i \(-0.572942\pi\)
0.956963 0.290209i \(-0.0937250\pi\)
\(752\) 17.3205 30.0000i 0.631614 1.09399i
\(753\) 24.0000i 0.874609i
\(754\) 9.00000 + 36.3731i 0.327761 + 1.32463i
\(755\) 0 0
\(756\) 1.50000 + 0.866025i 0.0545545 + 0.0314970i
\(757\) −37.2391 21.5000i −1.35348 0.781431i −0.364743 0.931108i \(-0.618843\pi\)
−0.988735 + 0.149677i \(0.952176\pi\)
\(758\) −38.9711 + 22.5000i −1.41550 + 0.817237i
\(759\) 20.7846i 0.754434i
\(760\) 0 0
\(761\) 39.0000 22.5167i 1.41375 0.816228i 0.418010 0.908443i \(-0.362728\pi\)
0.995739 + 0.0922143i \(0.0293945\pi\)
\(762\) 1.73205 0.0627456
\(763\) 20.7846 12.0000i 0.752453 0.434429i
\(764\) 3.00000 5.19615i 0.108536 0.187990i
\(765\) 0 0
\(766\) 48.0000 1.73431
\(767\) −36.3731 + 9.00000i −1.31336 + 0.324971i
\(768\) 19.0000i 0.685603i
\(769\) −13.5000 7.79423i −0.486822 0.281067i 0.236433 0.971648i \(-0.424022\pi\)
−0.723255 + 0.690581i \(0.757355\pi\)
\(770\) 0 0
\(771\) −6.00000 10.3923i −0.216085 0.374270i
\(772\) −22.5167 −0.810392
\(773\) −13.8564 24.0000i −0.498380 0.863220i 0.501618 0.865089i \(-0.332738\pi\)
−0.999998 + 0.00186926i \(0.999405\pi\)
\(774\) −7.50000 + 4.33013i −0.269582 + 0.155643i
\(775\) 0 0
\(776\) 6.00000 + 10.3923i 0.215387 + 0.373062i
\(777\) 10.3923 + 6.00000i 0.372822 + 0.215249i
\(778\) 10.3923 18.0000i 0.372582 0.645331i
\(779\) 6.00000 0.214972
\(780\) 0 0
\(781\) 12.0000 0.429394
\(782\) −31.1769 + 54.0000i −1.11488 + 1.93104i
\(783\) 5.19615 + 3.00000i 0.185695 + 0.107211i
\(784\) −10.0000 17.3205i −0.357143 0.618590i
\(785\) 0 0
\(786\) 18.0000 10.3923i 0.642039 0.370681i
\(787\) −25.9808 45.0000i −0.926114 1.60408i −0.789759 0.613417i \(-0.789795\pi\)
−0.136355 0.990660i \(-0.543539\pi\)
\(788\) 20.7846 0.740421
\(789\) 3.00000 + 5.19615i 0.106803 + 0.184988i
\(790\) 0 0
\(791\) 18.0000 + 10.3923i 0.640006 + 0.369508i
\(792\) 6.00000i 0.213201i
\(793\) 1.73205 + 7.00000i 0.0615069 + 0.248577i
\(794\) 45.0000 1.59699
\(795\) 0 0
\(796\) 12.5000 21.6506i 0.443051 0.767386i
\(797\) −25.9808 + 15.0000i −0.920286 + 0.531327i −0.883726 0.468004i \(-0.844973\pi\)
−0.0365596 + 0.999331i \(0.511640\pi\)
\(798\) −5.19615 −0.183942
\(799\) 36.0000 20.7846i 1.27359 0.735307i
\(800\) 0 0
\(801\) 3.46410i 0.122398i
\(802\) −10.3923 + 6.00000i −0.366965 + 0.211867i
\(803\) 25.9808 + 15.0000i 0.916841 + 0.529339i
\(804\) −7.50000 4.33013i −0.264505 0.152712i
\(805\) 0 0
\(806\) −15.0000 15.5885i −0.528352 0.549080i
\(807\) 0 0
\(808\) 5.19615 9.00000i 0.182800 0.316619i
\(809\) −12.0000 + 20.7846i −0.421898 + 0.730748i −0.996125 0.0879478i \(-0.971969\pi\)
0.574228 + 0.818696i \(0.305302\pi\)
\(810\) 0 0
\(811\) 5.19615i 0.182462i −0.995830 0.0912308i \(-0.970920\pi\)
0.995830 0.0912308i \(-0.0290801\pi\)
\(812\) −5.19615 9.00000i −0.182349 0.315838i
\(813\) −4.33013 7.50000i −0.151864 0.263036i
\(814\) 41.5692i 1.45700i
\(815\) 0 0
\(816\) −15.0000 + 25.9808i −0.525105 + 0.909509i
\(817\) 4.33013 7.50000i 0.151492 0.262392i
\(818\) 60.0000i 2.09785i
\(819\) 4.50000 4.33013i 0.157243 0.151307i
\(820\) 0 0
\(821\) 6.00000 + 3.46410i 0.209401 + 0.120898i 0.601033 0.799224i \(-0.294756\pi\)
−0.391632 + 0.920122i \(0.628089\pi\)
\(822\) 15.5885 + 9.00000i 0.543710 + 0.313911i
\(823\) 32.0429 18.5000i 1.11695 0.644869i 0.176327 0.984332i \(-0.443578\pi\)
0.940620 + 0.339462i \(0.110245\pi\)
\(824\) 22.5167i 0.784405i
\(825\) 0 0
\(826\) 27.0000 15.5885i 0.939450 0.542392i
\(827\) 48.4974 1.68642 0.843210 0.537584i \(-0.180663\pi\)
0.843210 + 0.537584i \(0.180663\pi\)
\(828\) −5.19615 + 3.00000i −0.180579 + 0.104257i
\(829\) −20.5000 + 35.5070i −0.711994 + 1.23321i 0.252113 + 0.967698i \(0.418875\pi\)
−0.964107 + 0.265513i \(0.914459\pi\)
\(830\) 0 0
\(831\) −17.0000 −0.589723
\(832\) 3.46410 + 1.00000i 0.120096 + 0.0346688i
\(833\) 24.0000i 0.831551i
\(834\) −7.50000 4.33013i −0.259704 0.149940i
\(835\) 0 0
\(836\) 3.00000 + 5.19615i 0.103757 + 0.179713i
\(837\) −3.46410 −0.119737
\(838\) 10.3923 + 18.0000i 0.358996 + 0.621800i
\(839\) −12.0000 + 6.92820i −0.414286 + 0.239188i −0.692630 0.721293i \(-0.743548\pi\)
0.278344 + 0.960482i \(0.410215\pi\)
\(840\) 0 0
\(841\) −3.50000 6.06218i −0.120690 0.209041i
\(842\) −7.79423 4.50000i −0.268607 0.155080i
\(843\) −1.73205 + 3.00000i −0.0596550 + 0.103325i
\(844\) 16.0000 0.550743
\(845\) 0 0
\(846\) 12.0000 0.412568
\(847\) 0.866025 1.50000i 0.0297570 0.0515406i
\(848\) −51.9615 30.0000i −1.78437 1.03020i
\(849\) −2.00000 3.46410i −0.0686398 0.118888i
\(850\) 0 0
\(851\) −36.0000 + 20.7846i −1.23406 + 0.712487i
\(852\) 1.73205 + 3.00000i 0.0593391 + 0.102778i
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) −3.00000 5.19615i −0.102658 0.177809i
\(855\) 0 0
\(856\) 0 0
\(857\) 42.0000i 1.43469i 0.696717 + 0.717346i \(0.254643\pi\)
−0.696717 + 0.717346i \(0.745357\pi\)
\(858\) −20.7846 6.00000i −0.709575 0.204837i
\(859\) −1.00000 −0.0341196 −0.0170598 0.999854i \(-0.505431\pi\)
−0.0170598 + 0.999854i \(0.505431\pi\)
\(860\) 0 0
\(861\) 3.00000 5.19615i 0.102240 0.177084i
\(862\) −41.5692 + 24.0000i −1.41585 + 0.817443i
\(863\) 20.7846 0.707516 0.353758 0.935337i \(-0.384904\pi\)
0.353758 + 0.935337i \(0.384904\pi\)
\(864\) −4.50000 + 2.59808i −0.153093 + 0.0883883i
\(865\) 0 0
\(866\) 3.46410i 0.117715i
\(867\) −16.4545 + 9.50000i −0.558824 + 0.322637i
\(868\) 5.19615 + 3.00000i 0.176369 + 0.101827i
\(869\) 33.0000 + 19.0526i 1.11945 + 0.646314i
\(870\) 0 0
\(871\) −22.5000 + 21.6506i −0.762383 + 0.733604i
\(872\) 24.0000i 0.812743i
\(873\) −3.46410 + 6.00000i −0.117242 + 0.203069i
\(874\) 9.00000 15.5885i 0.304430 0.527287i
\(875\) 0 0
\(876\) 8.66025i 0.292603i
\(877\) −7.79423 13.5000i −0.263192 0.455863i 0.703896 0.710303i \(-0.251442\pi\)
−0.967088 + 0.254440i \(0.918109\pi\)
\(878\) 26.8468 + 46.5000i 0.906035 + 1.56930i
\(879\) 6.92820i 0.233682i
\(880\) 0 0
\(881\) 6.00000 10.3923i 0.202145 0.350126i −0.747074 0.664741i \(-0.768542\pi\)
0.949219 + 0.314615i \(0.101875\pi\)
\(882\) 3.46410 6.00000i 0.116642 0.202031i
\(883\) 16.0000i 0.538443i −0.963078 0.269221i \(-0.913234\pi\)
0.963078 0.269221i \(-0.0867663\pi\)
\(884\) −15.0000 15.5885i −0.504505 0.524297i
\(885\) 0 0
\(886\) 27.0000 + 15.5885i 0.907083 + 0.523704i
\(887\) 20.7846 + 12.0000i 0.697879 + 0.402921i 0.806557 0.591156i \(-0.201328\pi\)
−0.108678 + 0.994077i \(0.534662\pi\)
\(888\) −10.3923 + 6.00000i −0.348743 + 0.201347i
\(889\) 1.73205i 0.0580911i
\(890\) 0 0
\(891\) −3.00000 + 1.73205i −0.100504 + 0.0580259i
\(892\) 8.66025 0.289967
\(893\) −10.3923 + 6.00000i −0.347765 + 0.200782i
\(894\) 3.00000 5.19615i 0.100335 0.173785i
\(895\) 0 0
\(896\) −21.0000 −0.701561
\(897\) 5.19615 + 21.0000i 0.173494 + 0.701170i
\(898\) 48.0000i 1.60178i
\(899\) 18.0000 + 10.3923i 0.600334 + 0.346603i
\(900\) 0 0
\(901\) −36.0000 62.3538i −1.19933 2.07731i
\(902\) −20.7846 −0.692052
\(903\) −4.33013 7.50000i −0.144098 0.249584i
\(904\) −18.0000 + 10.3923i −0.598671 + 0.345643i
\(905\) 0 0
\(906\) −7.50000 12.9904i −0.249171 0.431577i
\(907\) 6.92820 + 4.00000i 0.230047 + 0.132818i 0.610594 0.791944i \(-0.290931\pi\)
−0.380547 + 0.924762i \(0.624264\pi\)
\(908\) −13.8564 + 24.0000i −0.459841 + 0.796468i
\(909\) 6.00000 0.199007
\(910\) 0 0
\(911\) −30.0000 −0.993944 −0.496972 0.867766i \(-0.665555\pi\)
−0.496972 + 0.867766i \(0.665555\pi\)
\(912\) 4.33013 7.50000i 0.143385 0.248350i
\(913\) −10.3923 6.00000i −0.343935 0.198571i
\(914\) −1.50000 2.59808i −0.0496156 0.0859367i
\(915\) 0 0
\(916\) −1.50000 + 0.866025i −0.0495614 + 0.0286143i
\(917\) 10.3923 + 18.0000i 0.343184 + 0.594412i
\(918\) −10.3923 −0.342997
\(919\) 21.5000 + 37.2391i 0.709220 + 1.22840i 0.965147 + 0.261708i \(0.0842858\pi\)
−0.255927 + 0.966696i \(0.582381\pi\)
\(920\) 0 0
\(921\) 9.00000 + 5.19615i 0.296560 + 0.171219i
\(922\) 42.0000i 1.38320i
\(923\) 12.1244 3.00000i 0.399078 0.0987462i
\(924\) 6.00000 0.197386
\(925\) 0 0
\(926\) −13.5000 + 23.3827i −0.443638 + 0.768403i
\(927\) −11.2583 + 6.50000i −0.369772 + 0.213488i
\(928\) 31.1769 1.02343
\(929\) −27.0000 + 15.5885i −0.885841 + 0.511441i −0.872580 0.488471i \(-0.837555\pi\)
−0.0132613 + 0.999912i \(0.504221\pi\)
\(930\) 0 0
\(931\) 6.92820i 0.227063i
\(932\) −20.7846 + 12.0000i −0.680823 + 0.393073i
\(933\) −10.3923 6.00000i −0.340229 0.196431i
\(934\) 27.0000 + 15.5885i 0.883467 + 0.510070i
\(935\) 0 0
\(936\) 1.50000 + 6.06218i 0.0490290 + 0.198148i
\(937\) 13.0000i 0.424691i 0.977195 + 0.212346i \(0.0681103\pi\)
−0.977195 + 0.212346i \(0.931890\pi\)
\(938\) 12.9904 22.5000i 0.424151 0.734651i
\(939\) −12.5000 + 21.6506i −0.407922 + 0.706542i
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) −19.9186 34.5000i −0.648983 1.12407i
\(943\) 10.3923 + 18.0000i 0.338420 + 0.586161i
\(944\) 51.9615i 1.69120i
\(945\) 0 0
\(946\) −15.0000 + 25.9808i −0.487692 + 0.844707i
\(947\) 15.5885 27.0000i 0.506557 0.877382i −0.493414 0.869794i \(-0.664251\pi\)
0.999971 0.00758776i \(-0.00241528\pi\)
\(948\) 11.0000i 0.357263i
\(949\) 30.0000 + 8.66025i 0.973841 + 0.281124i
\(950\) 0 0
\(951\) −6.00000 3.46410i −0.194563 0.112331i
\(952\) −15.5885 9.00000i −0.505225 0.291692i
\(953\) 46.7654 27.0000i 1.51488 0.874616i 0.515031 0.857171i \(-0.327780\pi\)
0.999848 0.0174443i \(-0.00555298\pi\)
\(954\) 20.7846i 0.672927i
\(955\) 0 0
\(956\) 9.00000 5.19615i 0.291081 0.168056i
\(957\) 20.7846 0.671871
\(958\) −31.1769 + 18.0000i −1.00728 + 0.581554i
\(959\) −9.00000 + 15.5885i −0.290625 + 0.503378i
\(960\) 0 0
\(961\) 19.0000 0.612903
\(962\) −10.3923 42.0000i −0.335061 1.35413i
\(963\) 0 0
\(964\) 16.5000 + 9.52628i 0.531429 + 0.306821i
\(965\) 0 0
\(966\) −9.00000 15.5885i −0.289570 0.501550i
\(967\) −10.3923 −0.334194 −0.167097 0.985940i \(-0.553439\pi\)
−0.167097 + 0.985940i \(0.553439\pi\)
\(968\) 0.866025 + 1.50000i 0.0278351 + 0.0482118i
\(969\) 9.00000 5.19615i 0.289122 0.166924i
\(970\) 0 0
\(971\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(972\) −0.866025 0.500000i −0.0277778 0.0160375i
\(973\) 4.33013 7.50000i 0.138817 0.240439i
\(974\) −45.0000 −1.44189
\(975\) 0 0
\(976\) 10.0000 0.320092
\(977\) 3.46410 6.00000i 0.110826 0.191957i −0.805277 0.592898i \(-0.797984\pi\)
0.916104 + 0.400941i \(0.131317\pi\)
\(978\) 36.3731 + 21.0000i 1.16308 + 0.671506i
\(979\) 6.00000 + 10.3923i 0.191761 + 0.332140i
\(980\) 0 0
\(981\) −12.0000 + 6.92820i −0.383131 + 0.221201i
\(982\) 25.9808 + 45.0000i 0.829079 + 1.43601i
\(983\) 31.1769 0.994389 0.497195 0.867639i \(-0.334364\pi\)
0.497195 + 0.867639i \(0.334364\pi\)
\(984\) 3.00000 + 5.19615i 0.0956365 + 0.165647i
\(985\) 0 0
\(986\) 54.0000 + 31.1769i 1.71971 + 0.992875i
\(987\) 12.0000i 0.381964i
\(988\) 4.33013 + 4.50000i 0.137760 + 0.143164i
\(989\) 30.0000 0.953945
\(990\) 0 0
\(991\) −23.5000 + 40.7032i −0.746502 + 1.29298i 0.202988 + 0.979181i \(0.434935\pi\)
−0.949490 + 0.313798i \(0.898398\pi\)
\(992\) −15.5885 + 9.00000i −0.494934 + 0.285750i
\(993\) −5.19615 −0.164895
\(994\) −9.00000 + 5.19615i −0.285463 + 0.164812i
\(995\) 0 0
\(996\) 3.46410i 0.109764i
\(997\) −0.866025 + 0.500000i −0.0274273 + 0.0158352i −0.513651 0.857999i \(-0.671707\pi\)
0.486224 + 0.873834i \(0.338374\pi\)
\(998\) −49.3634 28.5000i −1.56257 0.902152i
\(999\) −6.00000 3.46410i −0.189832 0.109599i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.w.b.199.2 4
5.2 odd 4 975.2.bc.f.901.1 yes 2
5.3 odd 4 975.2.bc.b.901.1 yes 2
5.4 even 2 inner 975.2.w.b.199.1 4
13.10 even 6 inner 975.2.w.b.49.1 4
65.23 odd 12 975.2.bc.b.751.1 2
65.49 even 6 inner 975.2.w.b.49.2 4
65.62 odd 12 975.2.bc.f.751.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
975.2.w.b.49.1 4 13.10 even 6 inner
975.2.w.b.49.2 4 65.49 even 6 inner
975.2.w.b.199.1 4 5.4 even 2 inner
975.2.w.b.199.2 4 1.1 even 1 trivial
975.2.bc.b.751.1 2 65.23 odd 12
975.2.bc.b.901.1 yes 2 5.3 odd 4
975.2.bc.f.751.1 yes 2 65.62 odd 12
975.2.bc.f.901.1 yes 2 5.2 odd 4