Properties

Label 975.2.i.n.601.4
Level $975$
Weight $2$
Character 975.601
Analytic conductor $7.785$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(451,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.451");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 10x^{10} - 4x^{9} + 79x^{8} - 24x^{7} + 210x^{6} - 38x^{5} + 429x^{4} - 76x^{3} + 58x^{2} + 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 601.4
Root \(0.215564 - 0.373368i\) of defining polynomial
Character \(\chi\) \(=\) 975.601
Dual form 975.2.i.n.451.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.215564 + 0.373368i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(0.907064 - 1.57108i) q^{4} +(0.215564 - 0.373368i) q^{6} +(2.03980 - 3.53303i) q^{7} +1.64438 q^{8} +(-0.500000 + 0.866025i) q^{9} +(2.18676 + 3.78758i) q^{11} -1.81413 q^{12} +(3.39041 + 1.22684i) q^{13} +1.75883 q^{14} +(-1.45966 - 2.52820i) q^{16} +(2.88837 - 5.00280i) q^{17} -0.431128 q^{18} +(-1.16512 + 2.01805i) q^{19} -4.07959 q^{21} +(-0.942775 + 1.63293i) q^{22} +(3.98461 + 6.90155i) q^{23} +(-0.822190 - 1.42407i) q^{24} +(0.272789 + 1.53033i) q^{26} +1.00000 q^{27} +(-3.70045 - 6.40937i) q^{28} +(-1.29122 - 2.23645i) q^{29} -7.52862 q^{31} +(2.27368 - 3.93813i) q^{32} +(2.18676 - 3.78758i) q^{33} +2.49051 q^{34} +(0.907064 + 1.57108i) q^{36} +(-3.08460 - 5.34269i) q^{37} -1.00463 q^{38} +(-0.632732 - 3.54960i) q^{39} +(2.88837 + 5.00280i) q^{41} +(-0.879414 - 1.52319i) q^{42} +(3.42280 - 5.92846i) q^{43} +7.93414 q^{44} +(-1.71788 + 2.97546i) q^{46} -6.00254 q^{47} +(-1.45966 + 2.52820i) q^{48} +(-4.82154 - 8.35115i) q^{49} -5.77673 q^{51} +(5.00278 - 4.21379i) q^{52} -10.2347 q^{53} +(0.215564 + 0.373368i) q^{54} +(3.35420 - 5.80964i) q^{56} +2.33024 q^{57} +(0.556680 - 0.964198i) q^{58} +(2.28174 - 3.95209i) q^{59} +(-5.95928 + 10.3218i) q^{61} +(-1.62290 - 2.81095i) q^{62} +(2.03980 + 3.53303i) q^{63} -3.87814 q^{64} +1.88555 q^{66} +(1.96429 + 3.40225i) q^{67} +(-5.23987 - 9.07572i) q^{68} +(3.98461 - 6.90155i) q^{69} +(4.18676 - 7.25169i) q^{71} +(-0.822190 + 1.42407i) q^{72} -4.01327 q^{73} +(1.32986 - 2.30339i) q^{74} +(2.11368 + 3.66099i) q^{76} +17.8422 q^{77} +(1.18891 - 1.00141i) q^{78} +9.17355 q^{79} +(-0.500000 - 0.866025i) q^{81} +(-1.24526 + 2.15685i) q^{82} -12.6272 q^{83} +(-3.70045 + 6.40937i) q^{84} +2.95133 q^{86} +(-1.29122 + 2.23645i) q^{87} +(3.59587 + 6.22822i) q^{88} +(6.99498 + 12.1157i) q^{89} +(11.2502 - 9.47592i) q^{91} +14.4572 q^{92} +(3.76431 + 6.51998i) q^{93} +(-1.29393 - 2.24116i) q^{94} -4.54736 q^{96} +(-1.74194 + 3.01714i) q^{97} +(2.07870 - 3.60042i) q^{98} -4.37352 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{3} - 8 q^{4} + q^{7} + 12 q^{8} - 6 q^{9} - q^{11} + 16 q^{12} - 3 q^{13} + 30 q^{14} - 20 q^{16} + 8 q^{17} + 3 q^{19} - 2 q^{21} - 3 q^{22} - q^{23} - 6 q^{24} + 9 q^{26} + 12 q^{27} + 3 q^{28}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.215564 + 0.373368i 0.152427 + 0.264011i 0.932119 0.362152i \(-0.117958\pi\)
−0.779692 + 0.626163i \(0.784624\pi\)
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 0.907064 1.57108i 0.453532 0.785541i
\(5\) 0 0
\(6\) 0.215564 0.373368i 0.0880037 0.152427i
\(7\) 2.03980 3.53303i 0.770970 1.33536i −0.166061 0.986115i \(-0.553105\pi\)
0.937032 0.349245i \(-0.113562\pi\)
\(8\) 1.64438 0.581376
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 2.18676 + 3.78758i 0.659334 + 1.14200i 0.980788 + 0.195075i \(0.0624949\pi\)
−0.321455 + 0.946925i \(0.604172\pi\)
\(12\) −1.81413 −0.523694
\(13\) 3.39041 + 1.22684i 0.940330 + 0.340263i
\(14\) 1.75883 0.470067
\(15\) 0 0
\(16\) −1.45966 2.52820i −0.364915 0.632051i
\(17\) 2.88837 5.00280i 0.700532 1.21336i −0.267748 0.963489i \(-0.586280\pi\)
0.968280 0.249868i \(-0.0803871\pi\)
\(18\) −0.431128 −0.101618
\(19\) −1.16512 + 2.01805i −0.267297 + 0.462972i −0.968163 0.250321i \(-0.919464\pi\)
0.700866 + 0.713293i \(0.252797\pi\)
\(20\) 0 0
\(21\) −4.07959 −0.890240
\(22\) −0.942775 + 1.63293i −0.201000 + 0.348143i
\(23\) 3.98461 + 6.90155i 0.830849 + 1.43907i 0.897365 + 0.441288i \(0.145478\pi\)
−0.0665160 + 0.997785i \(0.521188\pi\)
\(24\) −0.822190 1.42407i −0.167829 0.290688i
\(25\) 0 0
\(26\) 0.272789 + 1.53033i 0.0534983 + 0.300123i
\(27\) 1.00000 0.192450
\(28\) −3.70045 6.40937i −0.699320 1.21126i
\(29\) −1.29122 2.23645i −0.239773 0.415299i 0.720876 0.693064i \(-0.243740\pi\)
−0.960649 + 0.277765i \(0.910406\pi\)
\(30\) 0 0
\(31\) −7.52862 −1.35218 −0.676090 0.736819i \(-0.736327\pi\)
−0.676090 + 0.736819i \(0.736327\pi\)
\(32\) 2.27368 3.93813i 0.401934 0.696169i
\(33\) 2.18676 3.78758i 0.380666 0.659334i
\(34\) 2.49051 0.427120
\(35\) 0 0
\(36\) 0.907064 + 1.57108i 0.151177 + 0.261847i
\(37\) −3.08460 5.34269i −0.507106 0.878333i −0.999966 0.00822447i \(-0.997382\pi\)
0.492860 0.870108i \(-0.335951\pi\)
\(38\) −1.00463 −0.162973
\(39\) −0.632732 3.54960i −0.101318 0.568391i
\(40\) 0 0
\(41\) 2.88837 + 5.00280i 0.451087 + 0.781306i 0.998454 0.0555872i \(-0.0177031\pi\)
−0.547367 + 0.836893i \(0.684370\pi\)
\(42\) −0.879414 1.52319i −0.135697 0.235033i
\(43\) 3.42280 5.92846i 0.521972 0.904081i −0.477702 0.878522i \(-0.658530\pi\)
0.999673 0.0255591i \(-0.00813661\pi\)
\(44\) 7.93414 1.19612
\(45\) 0 0
\(46\) −1.71788 + 2.97546i −0.253288 + 0.438707i
\(47\) −6.00254 −0.875560 −0.437780 0.899082i \(-0.644235\pi\)
−0.437780 + 0.899082i \(0.644235\pi\)
\(48\) −1.45966 + 2.52820i −0.210684 + 0.364915i
\(49\) −4.82154 8.35115i −0.688791 1.19302i
\(50\) 0 0
\(51\) −5.77673 −0.808904
\(52\) 5.00278 4.21379i 0.693761 0.584347i
\(53\) −10.2347 −1.40584 −0.702922 0.711267i \(-0.748122\pi\)
−0.702922 + 0.711267i \(0.748122\pi\)
\(54\) 0.215564 + 0.373368i 0.0293346 + 0.0508090i
\(55\) 0 0
\(56\) 3.35420 5.80964i 0.448224 0.776346i
\(57\) 2.33024 0.308648
\(58\) 0.556680 0.964198i 0.0730956 0.126605i
\(59\) 2.28174 3.95209i 0.297057 0.514518i −0.678404 0.734689i \(-0.737328\pi\)
0.975461 + 0.220171i \(0.0706614\pi\)
\(60\) 0 0
\(61\) −5.95928 + 10.3218i −0.763008 + 1.32157i 0.178286 + 0.983979i \(0.442945\pi\)
−0.941294 + 0.337589i \(0.890389\pi\)
\(62\) −1.62290 2.81095i −0.206109 0.356991i
\(63\) 2.03980 + 3.53303i 0.256990 + 0.445120i
\(64\) −3.87814 −0.484768
\(65\) 0 0
\(66\) 1.88555 0.232095
\(67\) 1.96429 + 3.40225i 0.239976 + 0.415651i 0.960707 0.277564i \(-0.0895271\pi\)
−0.720731 + 0.693215i \(0.756194\pi\)
\(68\) −5.23987 9.07572i −0.635427 1.10059i
\(69\) 3.98461 6.90155i 0.479691 0.830849i
\(70\) 0 0
\(71\) 4.18676 7.25169i 0.496877 0.860617i −0.503116 0.864219i \(-0.667813\pi\)
0.999994 + 0.00360204i \(0.00114657\pi\)
\(72\) −0.822190 + 1.42407i −0.0968960 + 0.167829i
\(73\) −4.01327 −0.469718 −0.234859 0.972029i \(-0.575463\pi\)
−0.234859 + 0.972029i \(0.575463\pi\)
\(74\) 1.32986 2.30339i 0.154593 0.267763i
\(75\) 0 0
\(76\) 2.11368 + 3.66099i 0.242455 + 0.419945i
\(77\) 17.8422 2.03331
\(78\) 1.18891 1.00141i 0.134618 0.113387i
\(79\) 9.17355 1.03210 0.516052 0.856557i \(-0.327401\pi\)
0.516052 + 0.856557i \(0.327401\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −1.24526 + 2.15685i −0.137516 + 0.238184i
\(83\) −12.6272 −1.38601 −0.693006 0.720932i \(-0.743714\pi\)
−0.693006 + 0.720932i \(0.743714\pi\)
\(84\) −3.70045 + 6.40937i −0.403752 + 0.699320i
\(85\) 0 0
\(86\) 2.95133 0.318250
\(87\) −1.29122 + 2.23645i −0.138433 + 0.239773i
\(88\) 3.59587 + 6.22822i 0.383321 + 0.663931i
\(89\) 6.99498 + 12.1157i 0.741466 + 1.28426i 0.951828 + 0.306634i \(0.0992027\pi\)
−0.210361 + 0.977624i \(0.567464\pi\)
\(90\) 0 0
\(91\) 11.2502 9.47592i 1.17934 0.993346i
\(92\) 14.4572 1.50727
\(93\) 3.76431 + 6.51998i 0.390341 + 0.676090i
\(94\) −1.29393 2.24116i −0.133459 0.231158i
\(95\) 0 0
\(96\) −4.54736 −0.464113
\(97\) −1.74194 + 3.01714i −0.176868 + 0.306344i −0.940806 0.338945i \(-0.889930\pi\)
0.763938 + 0.645289i \(0.223263\pi\)
\(98\) 2.07870 3.60042i 0.209981 0.363697i
\(99\) −4.37352 −0.439556
\(100\) 0 0
\(101\) 5.12143 + 8.87058i 0.509601 + 0.882656i 0.999938 + 0.0111225i \(0.00354047\pi\)
−0.490337 + 0.871533i \(0.663126\pi\)
\(102\) −1.24526 2.15685i −0.123299 0.213560i
\(103\) 15.8100 1.55781 0.778903 0.627145i \(-0.215777\pi\)
0.778903 + 0.627145i \(0.215777\pi\)
\(104\) 5.57512 + 2.01739i 0.546685 + 0.197821i
\(105\) 0 0
\(106\) −2.20623 3.82131i −0.214288 0.371158i
\(107\) −1.12791 1.95360i −0.109039 0.188861i 0.806342 0.591449i \(-0.201444\pi\)
−0.915381 + 0.402588i \(0.868111\pi\)
\(108\) 0.907064 1.57108i 0.0872823 0.151177i
\(109\) −13.6978 −1.31201 −0.656007 0.754755i \(-0.727756\pi\)
−0.656007 + 0.754755i \(0.727756\pi\)
\(110\) 0 0
\(111\) −3.08460 + 5.34269i −0.292778 + 0.507106i
\(112\) −11.9096 −1.12535
\(113\) 5.86353 10.1559i 0.551594 0.955389i −0.446566 0.894751i \(-0.647353\pi\)
0.998160 0.0606383i \(-0.0193136\pi\)
\(114\) 0.502316 + 0.870037i 0.0470462 + 0.0814864i
\(115\) 0 0
\(116\) −4.68486 −0.434978
\(117\) −2.75768 + 2.32276i −0.254947 + 0.214739i
\(118\) 1.96745 0.181118
\(119\) −11.7834 20.4094i −1.08018 1.87092i
\(120\) 0 0
\(121\) −4.06386 + 7.03881i −0.369442 + 0.639892i
\(122\) −5.13843 −0.465212
\(123\) 2.88837 5.00280i 0.260435 0.451087i
\(124\) −6.82895 + 11.8281i −0.613257 + 1.06219i
\(125\) 0 0
\(126\) −0.879414 + 1.52319i −0.0783444 + 0.135697i
\(127\) 0.862259 + 1.49348i 0.0765132 + 0.132525i 0.901743 0.432272i \(-0.142288\pi\)
−0.825230 + 0.564797i \(0.808955\pi\)
\(128\) −5.38335 9.32423i −0.475825 0.824153i
\(129\) −6.84559 −0.602721
\(130\) 0 0
\(131\) −3.81897 −0.333665 −0.166833 0.985985i \(-0.553354\pi\)
−0.166833 + 0.985985i \(0.553354\pi\)
\(132\) −3.96707 6.87116i −0.345289 0.598058i
\(133\) 4.75321 + 8.23281i 0.412156 + 0.713875i
\(134\) −0.846861 + 1.46681i −0.0731576 + 0.126713i
\(135\) 0 0
\(136\) 4.74957 8.22649i 0.407272 0.705416i
\(137\) −4.66601 + 8.08177i −0.398644 + 0.690472i −0.993559 0.113317i \(-0.963852\pi\)
0.594915 + 0.803789i \(0.297186\pi\)
\(138\) 3.43576 0.292471
\(139\) 0.976709 1.69171i 0.0828433 0.143489i −0.821627 0.570026i \(-0.806933\pi\)
0.904470 + 0.426537i \(0.140267\pi\)
\(140\) 0 0
\(141\) 3.00127 + 5.19835i 0.252753 + 0.437780i
\(142\) 3.61006 0.302950
\(143\) 2.76727 + 15.5243i 0.231411 + 1.29820i
\(144\) 2.91932 0.243277
\(145\) 0 0
\(146\) −0.865118 1.49843i −0.0715977 0.124011i
\(147\) −4.82154 + 8.35115i −0.397674 + 0.688791i
\(148\) −11.1917 −0.919955
\(149\) −8.74433 + 15.1456i −0.716364 + 1.24078i 0.246068 + 0.969253i \(0.420861\pi\)
−0.962431 + 0.271526i \(0.912472\pi\)
\(150\) 0 0
\(151\) −8.03580 −0.653944 −0.326972 0.945034i \(-0.606028\pi\)
−0.326972 + 0.945034i \(0.606028\pi\)
\(152\) −1.91590 + 3.31843i −0.155400 + 0.269160i
\(153\) 2.88837 + 5.00280i 0.233511 + 0.404452i
\(154\) 3.84614 + 6.66171i 0.309931 + 0.536816i
\(155\) 0 0
\(156\) −6.15064 2.22564i −0.492445 0.178194i
\(157\) −15.4942 −1.23657 −0.618287 0.785953i \(-0.712173\pi\)
−0.618287 + 0.785953i \(0.712173\pi\)
\(158\) 1.97749 + 3.42511i 0.157321 + 0.272487i
\(159\) 5.11735 + 8.86350i 0.405832 + 0.702922i
\(160\) 0 0
\(161\) 32.5112 2.56224
\(162\) 0.215564 0.373368i 0.0169363 0.0293346i
\(163\) 1.86394 3.22845i 0.145995 0.252871i −0.783748 0.621078i \(-0.786695\pi\)
0.929744 + 0.368207i \(0.120028\pi\)
\(164\) 10.4797 0.818330
\(165\) 0 0
\(166\) −2.72197 4.71458i −0.211265 0.365923i
\(167\) 4.17457 + 7.23057i 0.323038 + 0.559518i 0.981113 0.193434i \(-0.0619625\pi\)
−0.658075 + 0.752952i \(0.728629\pi\)
\(168\) −6.70840 −0.517564
\(169\) 9.98974 + 8.31896i 0.768442 + 0.639920i
\(170\) 0 0
\(171\) −1.16512 2.01805i −0.0890989 0.154324i
\(172\) −6.20939 10.7550i −0.473462 0.820060i
\(173\) −7.68083 + 13.3036i −0.583963 + 1.01145i 0.411041 + 0.911617i \(0.365165\pi\)
−0.995004 + 0.0998361i \(0.968168\pi\)
\(174\) −1.11336 −0.0844036
\(175\) 0 0
\(176\) 6.38386 11.0572i 0.481201 0.833465i
\(177\) −4.56348 −0.343012
\(178\) −3.01573 + 5.22341i −0.226039 + 0.391511i
\(179\) −0.347795 0.602398i −0.0259954 0.0450253i 0.852735 0.522344i \(-0.174942\pi\)
−0.878730 + 0.477318i \(0.841609\pi\)
\(180\) 0 0
\(181\) 8.76032 0.651150 0.325575 0.945516i \(-0.394442\pi\)
0.325575 + 0.945516i \(0.394442\pi\)
\(182\) 5.96315 + 2.15780i 0.442018 + 0.159946i
\(183\) 11.9186 0.881045
\(184\) 6.55222 + 11.3488i 0.483036 + 0.836643i
\(185\) 0 0
\(186\) −1.62290 + 2.81095i −0.118997 + 0.206109i
\(187\) 25.2647 1.84754
\(188\) −5.44469 + 9.43048i −0.397095 + 0.687788i
\(189\) 2.03980 3.53303i 0.148373 0.256990i
\(190\) 0 0
\(191\) 6.34059 10.9822i 0.458789 0.794646i −0.540108 0.841596i \(-0.681617\pi\)
0.998897 + 0.0469495i \(0.0149500\pi\)
\(192\) 1.93907 + 3.35857i 0.139940 + 0.242384i
\(193\) −0.863956 1.49642i −0.0621889 0.107714i 0.833255 0.552889i \(-0.186475\pi\)
−0.895444 + 0.445175i \(0.853141\pi\)
\(194\) −1.50200 −0.107838
\(195\) 0 0
\(196\) −17.4938 −1.24956
\(197\) 8.96796 + 15.5330i 0.638941 + 1.10668i 0.985666 + 0.168711i \(0.0539604\pi\)
−0.346725 + 0.937967i \(0.612706\pi\)
\(198\) −0.942775 1.63293i −0.0670001 0.116048i
\(199\) 6.94299 12.0256i 0.492176 0.852473i −0.507784 0.861485i \(-0.669535\pi\)
0.999959 + 0.00901136i \(0.00286844\pi\)
\(200\) 0 0
\(201\) 1.96429 3.40225i 0.138550 0.239976i
\(202\) −2.20799 + 3.82436i −0.155354 + 0.269081i
\(203\) −10.5353 −0.739431
\(204\) −5.23987 + 9.07572i −0.366864 + 0.635427i
\(205\) 0 0
\(206\) 3.40807 + 5.90295i 0.237451 + 0.411278i
\(207\) −7.96923 −0.553900
\(208\) −1.84715 10.3624i −0.128077 0.718504i
\(209\) −10.1914 −0.704951
\(210\) 0 0
\(211\) −7.49885 12.9884i −0.516242 0.894157i −0.999822 0.0188573i \(-0.993997\pi\)
0.483580 0.875300i \(-0.339336\pi\)
\(212\) −9.28352 + 16.0795i −0.637595 + 1.10435i
\(213\) −8.37352 −0.573744
\(214\) 0.486274 0.842252i 0.0332410 0.0575751i
\(215\) 0 0
\(216\) 1.64438 0.111886
\(217\) −15.3569 + 26.5989i −1.04249 + 1.80565i
\(218\) −2.95276 5.11433i −0.199986 0.346386i
\(219\) 2.00664 + 3.47560i 0.135596 + 0.234859i
\(220\) 0 0
\(221\) 15.9304 13.4180i 1.07159 0.902590i
\(222\) −2.65972 −0.178509
\(223\) 3.14128 + 5.44086i 0.210356 + 0.364347i 0.951826 0.306639i \(-0.0992044\pi\)
−0.741470 + 0.670986i \(0.765871\pi\)
\(224\) −9.27569 16.0660i −0.619758 1.07345i
\(225\) 0 0
\(226\) 5.05587 0.336311
\(227\) 2.18586 3.78603i 0.145081 0.251287i −0.784322 0.620354i \(-0.786989\pi\)
0.929403 + 0.369066i \(0.120322\pi\)
\(228\) 2.11368 3.66099i 0.139982 0.242455i
\(229\) −10.0497 −0.664100 −0.332050 0.943262i \(-0.607740\pi\)
−0.332050 + 0.943262i \(0.607740\pi\)
\(230\) 0 0
\(231\) −8.92110 15.4518i −0.586965 1.01665i
\(232\) −2.12325 3.67757i −0.139398 0.241445i
\(233\) 2.90450 0.190280 0.0951399 0.995464i \(-0.469670\pi\)
0.0951399 + 0.995464i \(0.469670\pi\)
\(234\) −1.46170 0.528924i −0.0955544 0.0345769i
\(235\) 0 0
\(236\) −4.13937 7.16960i −0.269450 0.466701i
\(237\) −4.58677 7.94452i −0.297943 0.516052i
\(238\) 5.08014 8.79906i 0.329297 0.570358i
\(239\) 19.3460 1.25139 0.625694 0.780068i \(-0.284816\pi\)
0.625694 + 0.780068i \(0.284816\pi\)
\(240\) 0 0
\(241\) −4.55976 + 7.89774i −0.293720 + 0.508738i −0.974686 0.223577i \(-0.928227\pi\)
0.680966 + 0.732315i \(0.261560\pi\)
\(242\) −3.50409 −0.225252
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 10.8109 + 18.7250i 0.692097 + 1.19875i
\(245\) 0 0
\(246\) 2.49051 0.158789
\(247\) −6.42605 + 5.41259i −0.408879 + 0.344395i
\(248\) −12.3799 −0.786125
\(249\) 6.31358 + 10.9354i 0.400107 + 0.693006i
\(250\) 0 0
\(251\) −11.1047 + 19.2339i −0.700921 + 1.21403i 0.267223 + 0.963635i \(0.413894\pi\)
−0.968144 + 0.250396i \(0.919439\pi\)
\(252\) 7.40090 0.466213
\(253\) −17.4268 + 30.1841i −1.09561 + 1.89766i
\(254\) −0.371745 + 0.643880i −0.0233253 + 0.0404007i
\(255\) 0 0
\(256\) −1.55723 + 2.69720i −0.0973266 + 0.168575i
\(257\) −10.0381 17.3865i −0.626159 1.08454i −0.988316 0.152422i \(-0.951293\pi\)
0.362157 0.932117i \(-0.382040\pi\)
\(258\) −1.47566 2.55593i −0.0918709 0.159125i
\(259\) −25.1678 −1.56385
\(260\) 0 0
\(261\) 2.58243 0.159848
\(262\) −0.823233 1.42588i −0.0508595 0.0880913i
\(263\) 11.0037 + 19.0590i 0.678518 + 1.17523i 0.975427 + 0.220321i \(0.0707106\pi\)
−0.296910 + 0.954906i \(0.595956\pi\)
\(264\) 3.59587 6.22822i 0.221310 0.383321i
\(265\) 0 0
\(266\) −2.04925 + 3.54940i −0.125647 + 0.217627i
\(267\) 6.99498 12.1157i 0.428086 0.741466i
\(268\) 7.12694 0.435347
\(269\) −5.53737 + 9.59101i −0.337620 + 0.584774i −0.983984 0.178254i \(-0.942955\pi\)
0.646365 + 0.763028i \(0.276288\pi\)
\(270\) 0 0
\(271\) 11.9216 + 20.6489i 0.724188 + 1.25433i 0.959307 + 0.282364i \(0.0911187\pi\)
−0.235119 + 0.971967i \(0.575548\pi\)
\(272\) −16.8641 −1.02254
\(273\) −13.8315 5.00500i −0.837120 0.302916i
\(274\) −4.02330 −0.243056
\(275\) 0 0
\(276\) −7.22860 12.5203i −0.435111 0.753634i
\(277\) −4.28621 + 7.42393i −0.257533 + 0.446061i −0.965580 0.260104i \(-0.916243\pi\)
0.708047 + 0.706165i \(0.249576\pi\)
\(278\) 0.842174 0.0505102
\(279\) 3.76431 6.51998i 0.225363 0.390341i
\(280\) 0 0
\(281\) 3.48613 0.207965 0.103982 0.994579i \(-0.466841\pi\)
0.103982 + 0.994579i \(0.466841\pi\)
\(282\) −1.29393 + 2.24116i −0.0770526 + 0.133459i
\(283\) −4.22976 7.32615i −0.251433 0.435494i 0.712488 0.701685i \(-0.247568\pi\)
−0.963921 + 0.266190i \(0.914235\pi\)
\(284\) −7.59532 13.1555i −0.450700 0.780635i
\(285\) 0 0
\(286\) −5.19974 + 4.37968i −0.307467 + 0.258976i
\(287\) 23.5667 1.39110
\(288\) 2.27368 + 3.93813i 0.133978 + 0.232056i
\(289\) −8.18532 14.1774i −0.481489 0.833964i
\(290\) 0 0
\(291\) 3.48389 0.204229
\(292\) −3.64029 + 6.30518i −0.213032 + 0.368983i
\(293\) 0.722056 1.25064i 0.0421830 0.0730630i −0.844163 0.536086i \(-0.819902\pi\)
0.886346 + 0.463023i \(0.153235\pi\)
\(294\) −4.15740 −0.242465
\(295\) 0 0
\(296\) −5.07226 8.78541i −0.294819 0.510641i
\(297\) 2.18676 + 3.78758i 0.126889 + 0.219778i
\(298\) −7.53986 −0.436772
\(299\) 5.04239 + 28.2876i 0.291609 + 1.63591i
\(300\) 0 0
\(301\) −13.9636 24.1857i −0.804849 1.39404i
\(302\) −1.73223 3.00031i −0.0996787 0.172649i
\(303\) 5.12143 8.87058i 0.294219 0.509601i
\(304\) 6.80271 0.390162
\(305\) 0 0
\(306\) −1.24526 + 2.15685i −0.0711866 + 0.123299i
\(307\) −3.55726 −0.203024 −0.101512 0.994834i \(-0.532368\pi\)
−0.101512 + 0.994834i \(0.532368\pi\)
\(308\) 16.1840 28.0315i 0.922170 1.59725i
\(309\) −7.90500 13.6919i −0.449700 0.778903i
\(310\) 0 0
\(311\) −18.7527 −1.06337 −0.531683 0.846943i \(-0.678440\pi\)
−0.531683 + 0.846943i \(0.678440\pi\)
\(312\) −1.04045 5.83689i −0.0589040 0.330449i
\(313\) 13.8732 0.784161 0.392081 0.919931i \(-0.371755\pi\)
0.392081 + 0.919931i \(0.371755\pi\)
\(314\) −3.34000 5.78505i −0.188487 0.326469i
\(315\) 0 0
\(316\) 8.32099 14.4124i 0.468093 0.810760i
\(317\) 7.36281 0.413537 0.206768 0.978390i \(-0.433705\pi\)
0.206768 + 0.978390i \(0.433705\pi\)
\(318\) −2.20623 + 3.82131i −0.123719 + 0.214288i
\(319\) 5.64716 9.78118i 0.316180 0.547641i
\(320\) 0 0
\(321\) −1.12791 + 1.95360i −0.0629538 + 0.109039i
\(322\) 7.00825 + 12.1386i 0.390555 + 0.676460i
\(323\) 6.73058 + 11.6577i 0.374500 + 0.648652i
\(324\) −1.81413 −0.100785
\(325\) 0 0
\(326\) 1.60720 0.0890145
\(327\) 6.84892 + 11.8627i 0.378746 + 0.656007i
\(328\) 4.74957 + 8.22649i 0.262251 + 0.454232i
\(329\) −12.2440 + 21.2072i −0.675031 + 1.16919i
\(330\) 0 0
\(331\) 2.62472 4.54614i 0.144267 0.249879i −0.784832 0.619709i \(-0.787251\pi\)
0.929099 + 0.369830i \(0.120584\pi\)
\(332\) −11.4537 + 19.8383i −0.628601 + 1.08877i
\(333\) 6.16921 0.338070
\(334\) −1.79978 + 3.11730i −0.0984794 + 0.170571i
\(335\) 0 0
\(336\) 5.95481 + 10.3140i 0.324862 + 0.562677i
\(337\) −16.3450 −0.890371 −0.445185 0.895438i \(-0.646862\pi\)
−0.445185 + 0.895438i \(0.646862\pi\)
\(338\) −0.952604 + 5.52312i −0.0518148 + 0.300418i
\(339\) −11.7271 −0.636926
\(340\) 0 0
\(341\) −16.4633 28.5153i −0.891538 1.54419i
\(342\) 0.502316 0.870037i 0.0271621 0.0470462i
\(343\) −10.7827 −0.582209
\(344\) 5.62837 9.74863i 0.303462 0.525611i
\(345\) 0 0
\(346\) −6.62285 −0.356046
\(347\) 6.31091 10.9308i 0.338787 0.586797i −0.645417 0.763830i \(-0.723317\pi\)
0.984205 + 0.177033i \(0.0566499\pi\)
\(348\) 2.34243 + 4.05721i 0.125567 + 0.217489i
\(349\) −5.18018 8.97234i −0.277289 0.480278i 0.693421 0.720532i \(-0.256103\pi\)
−0.970710 + 0.240254i \(0.922769\pi\)
\(350\) 0 0
\(351\) 3.39041 + 1.22684i 0.180967 + 0.0654837i
\(352\) 19.8880 1.06003
\(353\) −0.711780 1.23284i −0.0378842 0.0656174i 0.846462 0.532450i \(-0.178728\pi\)
−0.884346 + 0.466832i \(0.845395\pi\)
\(354\) −0.983723 1.70386i −0.0522843 0.0905591i
\(355\) 0 0
\(356\) 25.3796 1.34512
\(357\) −11.7834 + 20.4094i −0.623641 + 1.08018i
\(358\) 0.149944 0.259711i 0.00792479 0.0137261i
\(359\) 7.01038 0.369994 0.184997 0.982739i \(-0.440773\pi\)
0.184997 + 0.982739i \(0.440773\pi\)
\(360\) 0 0
\(361\) 6.78499 + 11.7520i 0.357105 + 0.618524i
\(362\) 1.88841 + 3.27083i 0.0992527 + 0.171911i
\(363\) 8.12772 0.426595
\(364\) −4.68279 26.2702i −0.245445 1.37693i
\(365\) 0 0
\(366\) 2.56921 + 4.45001i 0.134295 + 0.232606i
\(367\) −11.8017 20.4412i −0.616044 1.06702i −0.990200 0.139654i \(-0.955401\pi\)
0.374156 0.927366i \(-0.377932\pi\)
\(368\) 11.6324 20.1478i 0.606378 1.05028i
\(369\) −5.77673 −0.300725
\(370\) 0 0
\(371\) −20.8767 + 36.1595i −1.08386 + 1.87731i
\(372\) 13.6579 0.708129
\(373\) 13.9540 24.1690i 0.722509 1.25142i −0.237482 0.971392i \(-0.576322\pi\)
0.959991 0.280031i \(-0.0903446\pi\)
\(374\) 5.44616 + 9.43303i 0.281614 + 0.487770i
\(375\) 0 0
\(376\) −9.87045 −0.509030
\(377\) −1.63399 9.16659i −0.0841546 0.472104i
\(378\) 1.75883 0.0904644
\(379\) 6.45018 + 11.1720i 0.331323 + 0.573869i 0.982772 0.184824i \(-0.0591716\pi\)
−0.651448 + 0.758693i \(0.725838\pi\)
\(380\) 0 0
\(381\) 0.862259 1.49348i 0.0441749 0.0765132i
\(382\) 5.46722 0.279727
\(383\) −0.141703 + 0.245438i −0.00724071 + 0.0125413i −0.869623 0.493716i \(-0.835638\pi\)
0.862382 + 0.506258i \(0.168971\pi\)
\(384\) −5.38335 + 9.32423i −0.274718 + 0.475825i
\(385\) 0 0
\(386\) 0.372476 0.645147i 0.0189585 0.0328371i
\(387\) 3.42280 + 5.92846i 0.173991 + 0.301360i
\(388\) 3.16011 + 5.47347i 0.160430 + 0.277873i
\(389\) 31.3460 1.58930 0.794652 0.607065i \(-0.207653\pi\)
0.794652 + 0.607065i \(0.207653\pi\)
\(390\) 0 0
\(391\) 46.0361 2.32815
\(392\) −7.92843 13.7325i −0.400446 0.693594i
\(393\) 1.90949 + 3.30733i 0.0963208 + 0.166833i
\(394\) −3.86634 + 6.69670i −0.194783 + 0.337375i
\(395\) 0 0
\(396\) −3.96707 + 6.87116i −0.199353 + 0.345289i
\(397\) 12.7611 22.1028i 0.640459 1.10931i −0.344872 0.938650i \(-0.612078\pi\)
0.985330 0.170657i \(-0.0545891\pi\)
\(398\) 5.98664 0.300083
\(399\) 4.75321 8.23281i 0.237958 0.412156i
\(400\) 0 0
\(401\) 1.36383 + 2.36222i 0.0681062 + 0.117963i 0.898068 0.439857i \(-0.144971\pi\)
−0.829961 + 0.557821i \(0.811638\pi\)
\(402\) 1.69372 0.0844751
\(403\) −25.5251 9.23640i −1.27150 0.460098i
\(404\) 18.5819 0.924482
\(405\) 0 0
\(406\) −2.27103 3.93353i −0.112709 0.195218i
\(407\) 13.4906 23.3664i 0.668704 1.15823i
\(408\) −9.49914 −0.470277
\(409\) 13.9097 24.0923i 0.687790 1.19129i −0.284762 0.958598i \(-0.591915\pi\)
0.972551 0.232688i \(-0.0747522\pi\)
\(410\) 0 0
\(411\) 9.33202 0.460315
\(412\) 14.3407 24.8388i 0.706515 1.22372i
\(413\) −9.30857 16.1229i −0.458045 0.793357i
\(414\) −1.71788 2.97546i −0.0844292 0.146236i
\(415\) 0 0
\(416\) 12.5401 10.5624i 0.614831 0.517866i
\(417\) −1.95342 −0.0956592
\(418\) −2.19689 3.80513i −0.107454 0.186115i
\(419\) −12.4959 21.6435i −0.610464 1.05735i −0.991162 0.132655i \(-0.957650\pi\)
0.380698 0.924699i \(-0.375684\pi\)
\(420\) 0 0
\(421\) 29.7327 1.44908 0.724541 0.689232i \(-0.242052\pi\)
0.724541 + 0.689232i \(0.242052\pi\)
\(422\) 3.23297 5.59966i 0.157378 0.272587i
\(423\) 3.00127 5.19835i 0.145927 0.252753i
\(424\) −16.8297 −0.817323
\(425\) 0 0
\(426\) −1.80503 3.12641i −0.0874541 0.151475i
\(427\) 24.3114 + 42.1086i 1.17651 + 2.03778i
\(428\) −4.09235 −0.197811
\(429\) 12.0608 10.1587i 0.582299 0.490464i
\(430\) 0 0
\(431\) 12.5345 + 21.7105i 0.603768 + 1.04576i 0.992245 + 0.124298i \(0.0396680\pi\)
−0.388477 + 0.921458i \(0.626999\pi\)
\(432\) −1.45966 2.52820i −0.0702279 0.121638i
\(433\) −10.8722 + 18.8312i −0.522485 + 0.904970i 0.477173 + 0.878809i \(0.341662\pi\)
−0.999658 + 0.0261608i \(0.991672\pi\)
\(434\) −13.2416 −0.635615
\(435\) 0 0
\(436\) −12.4248 + 21.5204i −0.595041 + 1.03064i
\(437\) −18.5702 −0.888333
\(438\) −0.865118 + 1.49843i −0.0413369 + 0.0715977i
\(439\) −3.50887 6.07754i −0.167469 0.290065i 0.770060 0.637971i \(-0.220226\pi\)
−0.937529 + 0.347906i \(0.886893\pi\)
\(440\) 0 0
\(441\) 9.64307 0.459194
\(442\) 8.44386 + 3.05545i 0.401633 + 0.145333i
\(443\) −4.44015 −0.210958 −0.105479 0.994422i \(-0.533638\pi\)
−0.105479 + 0.994422i \(0.533638\pi\)
\(444\) 5.59587 + 9.69233i 0.265568 + 0.459977i
\(445\) 0 0
\(446\) −1.35430 + 2.34571i −0.0641278 + 0.111073i
\(447\) 17.4887 0.827186
\(448\) −7.91062 + 13.7016i −0.373741 + 0.647339i
\(449\) −13.6990 + 23.7274i −0.646497 + 1.11977i 0.337457 + 0.941341i \(0.390433\pi\)
−0.983954 + 0.178424i \(0.942900\pi\)
\(450\) 0 0
\(451\) −12.6323 + 21.8799i −0.594834 + 1.03028i
\(452\) −10.6372 18.4242i −0.500331 0.866599i
\(453\) 4.01790 + 6.95921i 0.188777 + 0.326972i
\(454\) 1.88477 0.0884569
\(455\) 0 0
\(456\) 3.83180 0.179440
\(457\) −6.10188 10.5688i −0.285434 0.494386i 0.687280 0.726392i \(-0.258804\pi\)
−0.972714 + 0.232006i \(0.925471\pi\)
\(458\) −2.16635 3.75222i −0.101227 0.175330i
\(459\) 2.88837 5.00280i 0.134817 0.233511i
\(460\) 0 0
\(461\) −12.6371 + 21.8882i −0.588570 + 1.01943i 0.405850 + 0.913940i \(0.366976\pi\)
−0.994420 + 0.105494i \(0.966358\pi\)
\(462\) 3.84614 6.66171i 0.178939 0.309931i
\(463\) 21.2503 0.987587 0.493794 0.869579i \(-0.335610\pi\)
0.493794 + 0.869579i \(0.335610\pi\)
\(464\) −3.76947 + 6.52891i −0.174993 + 0.303097i
\(465\) 0 0
\(466\) 0.626105 + 1.08445i 0.0290038 + 0.0502360i
\(467\) 11.7763 0.544944 0.272472 0.962164i \(-0.412159\pi\)
0.272472 + 0.962164i \(0.412159\pi\)
\(468\) 1.14786 + 6.43943i 0.0530597 + 0.297663i
\(469\) 16.0270 0.740058
\(470\) 0 0
\(471\) 7.74711 + 13.4184i 0.356968 + 0.618287i
\(472\) 3.75205 6.49874i 0.172702 0.299129i
\(473\) 29.9394 1.37661
\(474\) 1.97749 3.42511i 0.0908290 0.157321i
\(475\) 0 0
\(476\) −42.7530 −1.95958
\(477\) 5.11735 8.86350i 0.234307 0.405832i
\(478\) 4.17031 + 7.22318i 0.190745 + 0.330381i
\(479\) 13.4407 + 23.2801i 0.614123 + 1.06369i 0.990538 + 0.137241i \(0.0438236\pi\)
−0.376414 + 0.926451i \(0.622843\pi\)
\(480\) 0 0
\(481\) −3.90345 21.8982i −0.177982 0.998472i
\(482\) −3.93169 −0.179083
\(483\) −16.2556 28.1555i −0.739655 1.28112i
\(484\) 7.37236 + 12.7693i 0.335107 + 0.580423i
\(485\) 0 0
\(486\) −0.431128 −0.0195564
\(487\) 10.8520 18.7963i 0.491752 0.851740i −0.508203 0.861238i \(-0.669690\pi\)
0.999955 + 0.00949761i \(0.00302323\pi\)
\(488\) −9.79932 + 16.9729i −0.443594 + 0.768328i
\(489\) −3.72789 −0.168581
\(490\) 0 0
\(491\) −12.9622 22.4512i −0.584977 1.01321i −0.994878 0.101080i \(-0.967770\pi\)
0.409901 0.912130i \(-0.365563\pi\)
\(492\) −5.23987 9.07572i −0.236231 0.409165i
\(493\) −14.9180 −0.671874
\(494\) −3.40611 1.23252i −0.153248 0.0554537i
\(495\) 0 0
\(496\) 10.9892 + 19.0339i 0.493431 + 0.854647i
\(497\) −17.0803 29.5839i −0.766155 1.32702i
\(498\) −2.72197 + 4.71458i −0.121974 + 0.211265i
\(499\) 39.5723 1.77150 0.885749 0.464164i \(-0.153645\pi\)
0.885749 + 0.464164i \(0.153645\pi\)
\(500\) 0 0
\(501\) 4.17457 7.23057i 0.186506 0.323038i
\(502\) −9.57508 −0.427357
\(503\) 18.3907 31.8536i 0.820000 1.42028i −0.0856806 0.996323i \(-0.527306\pi\)
0.905681 0.423960i \(-0.139360\pi\)
\(504\) 3.35420 + 5.80964i 0.149408 + 0.258782i
\(505\) 0 0
\(506\) −15.0264 −0.668004
\(507\) 2.20956 12.8108i 0.0981300 0.568950i
\(508\) 3.12850 0.138805
\(509\) −5.64492 9.77729i −0.250207 0.433371i 0.713376 0.700782i \(-0.247165\pi\)
−0.963583 + 0.267411i \(0.913832\pi\)
\(510\) 0 0
\(511\) −8.18626 + 14.1790i −0.362139 + 0.627243i
\(512\) −22.8761 −1.01099
\(513\) −1.16512 + 2.01805i −0.0514413 + 0.0890989i
\(514\) 4.32770 7.49580i 0.190887 0.330626i
\(515\) 0 0
\(516\) −6.20939 + 10.7550i −0.273353 + 0.473462i
\(517\) −13.1261 22.7351i −0.577286 0.999889i
\(518\) −5.42529 9.39687i −0.238373 0.412875i
\(519\) 15.3617 0.674302
\(520\) 0 0
\(521\) −23.9842 −1.05077 −0.525384 0.850865i \(-0.676078\pi\)
−0.525384 + 0.850865i \(0.676078\pi\)
\(522\) 0.556680 + 0.964198i 0.0243652 + 0.0422018i
\(523\) 8.04348 + 13.9317i 0.351717 + 0.609191i 0.986550 0.163458i \(-0.0522647\pi\)
−0.634834 + 0.772649i \(0.718931\pi\)
\(524\) −3.46405 + 5.99991i −0.151328 + 0.262107i
\(525\) 0 0
\(526\) −4.74401 + 8.21687i −0.206849 + 0.358272i
\(527\) −21.7454 + 37.6642i −0.947246 + 1.64068i
\(528\) −12.7677 −0.555643
\(529\) −20.2543 + 35.0815i −0.880622 + 1.52528i
\(530\) 0 0
\(531\) 2.28174 + 3.95209i 0.0990191 + 0.171506i
\(532\) 17.2459 0.747704
\(533\) 3.65512 + 20.5051i 0.158321 + 0.888174i
\(534\) 6.03147 0.261007
\(535\) 0 0
\(536\) 3.23004 + 5.59459i 0.139516 + 0.241649i
\(537\) −0.347795 + 0.602398i −0.0150084 + 0.0259954i
\(538\) −4.77464 −0.205849
\(539\) 21.0871 36.5240i 0.908286 1.57320i
\(540\) 0 0
\(541\) −21.7133 −0.933526 −0.466763 0.884382i \(-0.654580\pi\)
−0.466763 + 0.884382i \(0.654580\pi\)
\(542\) −5.13976 + 8.90232i −0.220772 + 0.382388i
\(543\) −4.38016 7.58666i −0.187971 0.325575i
\(544\) −13.1344 22.7495i −0.563134 0.975377i
\(545\) 0 0
\(546\) −1.11287 6.24313i −0.0476263 0.267181i
\(547\) 19.3261 0.826326 0.413163 0.910657i \(-0.364424\pi\)
0.413163 + 0.910657i \(0.364424\pi\)
\(548\) 8.46474 + 14.6614i 0.361596 + 0.626302i
\(549\) −5.95928 10.3218i −0.254336 0.440523i
\(550\) 0 0
\(551\) 6.01768 0.256362
\(552\) 6.55222 11.3488i 0.278881 0.483036i
\(553\) 18.7122 32.4104i 0.795722 1.37823i
\(554\) −3.69581 −0.157020
\(555\) 0 0
\(556\) −1.77187 3.06898i −0.0751442 0.130154i
\(557\) 4.07013 + 7.04967i 0.172457 + 0.298704i 0.939278 0.343156i \(-0.111496\pi\)
−0.766821 + 0.641861i \(0.778163\pi\)
\(558\) 3.24580 0.137406
\(559\) 18.8779 15.9007i 0.798451 0.672527i
\(560\) 0 0
\(561\) −12.6323 21.8799i −0.533338 0.923768i
\(562\) 0.751484 + 1.30161i 0.0316994 + 0.0549051i
\(563\) −2.65348 + 4.59595i −0.111831 + 0.193696i −0.916508 0.400015i \(-0.869005\pi\)
0.804678 + 0.593712i \(0.202338\pi\)
\(564\) 10.8894 0.458525
\(565\) 0 0
\(566\) 1.82357 3.15851i 0.0766503 0.132762i
\(567\) −4.07959 −0.171327
\(568\) 6.88462 11.9245i 0.288872 0.500342i
\(569\) −19.6823 34.0907i −0.825124 1.42916i −0.901824 0.432103i \(-0.857772\pi\)
0.0767005 0.997054i \(-0.475561\pi\)
\(570\) 0 0
\(571\) −13.7188 −0.574115 −0.287057 0.957913i \(-0.592677\pi\)
−0.287057 + 0.957913i \(0.592677\pi\)
\(572\) 26.9000 + 9.73389i 1.12474 + 0.406995i
\(573\) −12.6812 −0.529764
\(574\) 5.08014 + 8.79906i 0.212041 + 0.367266i
\(575\) 0 0
\(576\) 1.93907 3.35857i 0.0807946 0.139940i
\(577\) 2.55146 0.106219 0.0531093 0.998589i \(-0.483087\pi\)
0.0531093 + 0.998589i \(0.483087\pi\)
\(578\) 3.52892 6.11227i 0.146784 0.254237i
\(579\) −0.863956 + 1.49642i −0.0359048 + 0.0621889i
\(580\) 0 0
\(581\) −25.7568 + 44.6122i −1.06857 + 1.85082i
\(582\) 0.751002 + 1.30077i 0.0311300 + 0.0539188i
\(583\) −22.3808 38.7648i −0.926920 1.60547i
\(584\) −6.59934 −0.273083
\(585\) 0 0
\(586\) 0.622598 0.0257193
\(587\) −3.66291 6.34435i −0.151185 0.261860i 0.780479 0.625183i \(-0.214975\pi\)
−0.931663 + 0.363323i \(0.881642\pi\)
\(588\) 8.74689 + 15.1501i 0.360716 + 0.624778i
\(589\) 8.77175 15.1931i 0.361434 0.626021i
\(590\) 0 0
\(591\) 8.96796 15.5330i 0.368893 0.638941i
\(592\) −9.00494 + 15.5970i −0.370101 + 0.641033i
\(593\) −25.1001 −1.03074 −0.515368 0.856969i \(-0.672345\pi\)
−0.515368 + 0.856969i \(0.672345\pi\)
\(594\) −0.942775 + 1.63293i −0.0386825 + 0.0670001i
\(595\) 0 0
\(596\) 15.8633 + 27.4761i 0.649788 + 1.12547i
\(597\) −13.8860 −0.568315
\(598\) −9.47472 + 7.98045i −0.387450 + 0.326345i
\(599\) −3.86368 −0.157866 −0.0789329 0.996880i \(-0.525151\pi\)
−0.0789329 + 0.996880i \(0.525151\pi\)
\(600\) 0 0
\(601\) −7.78766 13.4886i −0.317665 0.550213i 0.662335 0.749208i \(-0.269566\pi\)
−0.980000 + 0.198995i \(0.936232\pi\)
\(602\) 6.02011 10.4271i 0.245361 0.424978i
\(603\) −3.92858 −0.159984
\(604\) −7.28899 + 12.6249i −0.296585 + 0.513700i
\(605\) 0 0
\(606\) 4.41599 0.179387
\(607\) −11.8159 + 20.4658i −0.479594 + 0.830681i −0.999726 0.0234047i \(-0.992549\pi\)
0.520132 + 0.854086i \(0.325883\pi\)
\(608\) 5.29822 + 9.17678i 0.214871 + 0.372168i
\(609\) 5.26763 + 9.12381i 0.213455 + 0.369715i
\(610\) 0 0
\(611\) −20.3511 7.36414i −0.823316 0.297921i
\(612\) 10.4797 0.423618
\(613\) −6.37334 11.0390i −0.257417 0.445859i 0.708132 0.706080i \(-0.249538\pi\)
−0.965549 + 0.260221i \(0.916205\pi\)
\(614\) −0.766818 1.32817i −0.0309463 0.0536005i
\(615\) 0 0
\(616\) 29.3393 1.18212
\(617\) 7.08690 12.2749i 0.285308 0.494168i −0.687376 0.726302i \(-0.741238\pi\)
0.972684 + 0.232134i \(0.0745709\pi\)
\(618\) 3.40807 5.90295i 0.137093 0.237451i
\(619\) 14.0510 0.564756 0.282378 0.959303i \(-0.408877\pi\)
0.282378 + 0.959303i \(0.408877\pi\)
\(620\) 0 0
\(621\) 3.98461 + 6.90155i 0.159897 + 0.276950i
\(622\) −4.04240 7.00165i −0.162086 0.280740i
\(623\) 57.0733 2.28659
\(624\) −8.05053 + 6.78088i −0.322279 + 0.271452i
\(625\) 0 0
\(626\) 2.99057 + 5.17982i 0.119527 + 0.207027i
\(627\) 5.09568 + 8.82598i 0.203502 + 0.352476i
\(628\) −14.0543 + 24.3427i −0.560826 + 0.971379i
\(629\) −35.6379 −1.42097
\(630\) 0 0
\(631\) 0.816528 1.41427i 0.0325055 0.0563012i −0.849315 0.527886i \(-0.822985\pi\)
0.881821 + 0.471585i \(0.156318\pi\)
\(632\) 15.0848 0.600041
\(633\) −7.49885 + 12.9884i −0.298052 + 0.516242i
\(634\) 1.58716 + 2.74904i 0.0630341 + 0.109178i
\(635\) 0 0
\(636\) 18.5670 0.736231
\(637\) −6.10148 34.2290i −0.241750 1.35620i
\(638\) 4.86931 0.192778
\(639\) 4.18676 + 7.25169i 0.165626 + 0.286872i
\(640\) 0 0
\(641\) 15.1744 26.2829i 0.599353 1.03811i −0.393563 0.919298i \(-0.628758\pi\)
0.992917 0.118813i \(-0.0379089\pi\)
\(642\) −0.972549 −0.0383834
\(643\) 24.2513 42.0045i 0.956378 1.65649i 0.225194 0.974314i \(-0.427698\pi\)
0.731184 0.682181i \(-0.238968\pi\)
\(644\) 29.4897 51.0777i 1.16206 2.01274i
\(645\) 0 0
\(646\) −2.90175 + 5.02597i −0.114168 + 0.197744i
\(647\) −7.71712 13.3664i −0.303391 0.525489i 0.673510 0.739178i \(-0.264786\pi\)
−0.976902 + 0.213688i \(0.931452\pi\)
\(648\) −0.822190 1.42407i −0.0322987 0.0559429i
\(649\) 19.9585 0.783440
\(650\) 0 0
\(651\) 30.7137 1.20377
\(652\) −3.38143 5.85682i −0.132427 0.229371i
\(653\) 9.60342 + 16.6336i 0.375811 + 0.650923i 0.990448 0.137887i \(-0.0440309\pi\)
−0.614637 + 0.788810i \(0.710698\pi\)
\(654\) −2.95276 + 5.11433i −0.115462 + 0.199986i
\(655\) 0 0
\(656\) 8.43206 14.6048i 0.329217 0.570220i
\(657\) 2.00664 3.47560i 0.0782863 0.135596i
\(658\) −10.5574 −0.411572
\(659\) −12.1660 + 21.0722i −0.473921 + 0.820855i −0.999554 0.0298565i \(-0.990495\pi\)
0.525634 + 0.850711i \(0.323828\pi\)
\(660\) 0 0
\(661\) 7.56031 + 13.0948i 0.294062 + 0.509330i 0.974766 0.223228i \(-0.0716594\pi\)
−0.680704 + 0.732558i \(0.738326\pi\)
\(662\) 2.26318 0.0879610
\(663\) −19.5855 7.08711i −0.760637 0.275241i
\(664\) −20.7638 −0.805794
\(665\) 0 0
\(666\) 1.32986 + 2.30339i 0.0515310 + 0.0892544i
\(667\) 10.2900 17.8228i 0.398430 0.690101i
\(668\) 15.1464 0.586032
\(669\) 3.14128 5.44086i 0.121449 0.210356i
\(670\) 0 0
\(671\) −52.1261 −2.01231
\(672\) −9.27569 + 16.0660i −0.357817 + 0.619758i
\(673\) 11.4920 + 19.9047i 0.442983 + 0.767269i 0.997909 0.0646304i \(-0.0205868\pi\)
−0.554926 + 0.831900i \(0.687254\pi\)
\(674\) −3.52341 6.10272i −0.135716 0.235068i
\(675\) 0 0
\(676\) 22.1311 8.14886i 0.851196 0.313418i
\(677\) −49.6667 −1.90885 −0.954424 0.298454i \(-0.903529\pi\)
−0.954424 + 0.298454i \(0.903529\pi\)
\(678\) −2.52793 4.37851i −0.0970847 0.168156i
\(679\) 7.10642 + 12.3087i 0.272720 + 0.472364i
\(680\) 0 0
\(681\) −4.37173 −0.167525
\(682\) 7.09780 12.2938i 0.271789 0.470752i
\(683\) −15.4972 + 26.8419i −0.592982 + 1.02708i 0.400846 + 0.916145i \(0.368716\pi\)
−0.993828 + 0.110930i \(0.964617\pi\)
\(684\) −4.22735 −0.161637
\(685\) 0 0
\(686\) −2.32436 4.02590i −0.0887443 0.153710i
\(687\) 5.02483 + 8.70326i 0.191709 + 0.332050i
\(688\) −19.9845 −0.761900
\(689\) −34.6998 12.5563i −1.32196 0.478357i
\(690\) 0 0
\(691\) 12.1961 + 21.1242i 0.463961 + 0.803604i 0.999154 0.0411261i \(-0.0130945\pi\)
−0.535193 + 0.844730i \(0.679761\pi\)
\(692\) 13.9340 + 24.1344i 0.529691 + 0.917453i
\(693\) −8.92110 + 15.4518i −0.338885 + 0.586965i
\(694\) 5.44163 0.206561
\(695\) 0 0
\(696\) −2.12325 + 3.67757i −0.0804815 + 0.139398i
\(697\) 33.3706 1.26400
\(698\) 2.23332 3.86823i 0.0845325 0.146415i
\(699\) −1.45225 2.51537i −0.0549291 0.0951399i
\(700\) 0 0
\(701\) 16.8858 0.637769 0.318885 0.947794i \(-0.396692\pi\)
0.318885 + 0.947794i \(0.396692\pi\)
\(702\) 0.272789 + 1.53033i 0.0102957 + 0.0577587i
\(703\) 14.3757 0.542191
\(704\) −8.48057 14.6888i −0.319624 0.553604i
\(705\) 0 0
\(706\) 0.306868 0.531512i 0.0115491 0.0200037i
\(707\) 41.7867 1.57155
\(708\) −4.13937 + 7.16960i −0.155567 + 0.269450i
\(709\) −25.7740 + 44.6419i −0.967962 + 1.67656i −0.266526 + 0.963828i \(0.585876\pi\)
−0.701436 + 0.712732i \(0.747457\pi\)
\(710\) 0 0
\(711\) −4.58677 + 7.94452i −0.172017 + 0.297943i
\(712\) 11.5024 + 19.9227i 0.431071 + 0.746636i
\(713\) −29.9987 51.9592i −1.12346 1.94589i
\(714\) −10.1603 −0.380239
\(715\) 0 0
\(716\) −1.26189 −0.0471590
\(717\) −9.67300 16.7541i −0.361245 0.625694i
\(718\) 1.51119 + 2.61745i 0.0563970 + 0.0976824i
\(719\) −8.30694 + 14.3880i −0.309796 + 0.536583i −0.978318 0.207110i \(-0.933594\pi\)
0.668521 + 0.743693i \(0.266928\pi\)
\(720\) 0 0
\(721\) 32.2492 55.8572i 1.20102 2.08023i
\(722\) −2.92520 + 5.06660i −0.108865 + 0.188559i
\(723\) 9.11953 0.339159
\(724\) 7.94617 13.7632i 0.295317 0.511504i
\(725\) 0 0
\(726\) 1.75205 + 3.03463i 0.0650245 + 0.112626i
\(727\) −27.8553 −1.03310 −0.516549 0.856258i \(-0.672783\pi\)
−0.516549 + 0.856258i \(0.672783\pi\)
\(728\) 18.4996 15.5820i 0.685640 0.577507i
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −19.7726 34.2471i −0.731315 1.26668i
\(732\) 10.8109 18.7250i 0.399582 0.692097i
\(733\) −21.6887 −0.801090 −0.400545 0.916277i \(-0.631179\pi\)
−0.400545 + 0.916277i \(0.631179\pi\)
\(734\) 5.08805 8.81277i 0.187803 0.325285i
\(735\) 0 0
\(736\) 36.2389 1.33579
\(737\) −8.59087 + 14.8798i −0.316449 + 0.548105i
\(738\) −1.24526 2.15685i −0.0458385 0.0793947i
\(739\) −3.94439 6.83188i −0.145097 0.251315i 0.784312 0.620366i \(-0.213016\pi\)
−0.929409 + 0.369051i \(0.879683\pi\)
\(740\) 0 0
\(741\) 7.90046 + 2.85882i 0.290231 + 0.105022i
\(742\) −18.0011 −0.660840
\(743\) 18.3130 + 31.7190i 0.671839 + 1.16366i 0.977382 + 0.211480i \(0.0678284\pi\)
−0.305544 + 0.952178i \(0.598838\pi\)
\(744\) 6.18996 + 10.7213i 0.226935 + 0.393063i
\(745\) 0 0
\(746\) 12.0319 0.440519
\(747\) 6.31358 10.9354i 0.231002 0.400107i
\(748\) 22.9167 39.6929i 0.837917 1.45131i
\(749\) −9.20283 −0.336264
\(750\) 0 0
\(751\) −21.8207 37.7945i −0.796247 1.37914i −0.922044 0.387085i \(-0.873482\pi\)
0.125797 0.992056i \(-0.459851\pi\)
\(752\) 8.76166 + 15.1756i 0.319505 + 0.553399i
\(753\) 22.2094 0.809354
\(754\) 3.07029 2.58607i 0.111813 0.0941791i
\(755\) 0 0
\(756\) −3.70045 6.40937i −0.134584 0.233107i
\(757\) 7.51652 + 13.0190i 0.273193 + 0.473184i 0.969678 0.244388i \(-0.0785870\pi\)
−0.696485 + 0.717571i \(0.745254\pi\)
\(758\) −2.78085 + 4.81658i −0.101005 + 0.174946i
\(759\) 34.8536 1.26511
\(760\) 0 0
\(761\) −23.1894 + 40.1652i −0.840614 + 1.45599i 0.0487618 + 0.998810i \(0.484472\pi\)
−0.889376 + 0.457176i \(0.848861\pi\)
\(762\) 0.743489 0.0269338
\(763\) −27.9408 + 48.3949i −1.01152 + 1.75201i
\(764\) −11.5026 19.9232i −0.416151 0.720795i
\(765\) 0 0
\(766\) −0.122185 −0.00441471
\(767\) 12.5846 10.5999i 0.454404 0.382739i
\(768\) 3.11445 0.112383
\(769\) −19.2871 33.4062i −0.695510 1.20466i −0.970008 0.243071i \(-0.921845\pi\)
0.274498 0.961588i \(-0.411488\pi\)
\(770\) 0 0
\(771\) −10.0381 + 17.3865i −0.361513 + 0.626159i
\(772\) −3.13465 −0.112819
\(773\) 6.42419 11.1270i 0.231062 0.400211i −0.727059 0.686575i \(-0.759113\pi\)
0.958121 + 0.286364i \(0.0924466\pi\)
\(774\) −1.47566 + 2.55593i −0.0530417 + 0.0918709i
\(775\) 0 0
\(776\) −2.86442 + 4.96132i −0.102827 + 0.178101i
\(777\) 12.5839 + 21.7960i 0.451446 + 0.781927i
\(778\) 6.75707 + 11.7036i 0.242253 + 0.419594i
\(779\) −13.4612 −0.482296
\(780\) 0 0
\(781\) 36.6218 1.31043
\(782\) 9.92373 + 17.1884i 0.354872 + 0.614656i
\(783\) −1.29122 2.23645i −0.0461443 0.0799242i
\(784\) −14.0756 + 24.3797i −0.502700 + 0.870702i
\(785\) 0 0
\(786\) −0.823233 + 1.42588i −0.0293638 + 0.0508595i
\(787\) −1.53008 + 2.65017i −0.0545413 + 0.0944683i −0.892007 0.452022i \(-0.850703\pi\)
0.837466 + 0.546490i \(0.184036\pi\)
\(788\) 32.5381 1.15912
\(789\) 11.0037 19.0590i 0.391742 0.678518i
\(790\) 0 0
\(791\) −23.9208 41.4320i −0.850526 1.47315i
\(792\) −7.19173 −0.255547
\(793\) −32.8675 + 27.6840i −1.16716 + 0.983087i
\(794\) 11.0033 0.390493
\(795\) 0 0
\(796\) −12.5955 21.8160i −0.446435 0.773248i
\(797\) −15.5423 + 26.9201i −0.550537 + 0.953559i 0.447698 + 0.894185i \(0.352244\pi\)
−0.998236 + 0.0593742i \(0.981089\pi\)
\(798\) 4.09849 0.145085
\(799\) −17.3375 + 30.0295i −0.613358 + 1.06237i
\(800\) 0 0
\(801\) −13.9900 −0.494311
\(802\) −0.587984 + 1.01842i −0.0207624 + 0.0359616i
\(803\) −8.77607 15.2006i −0.309701 0.536418i
\(804\) −3.56347 6.17211i −0.125674 0.217674i
\(805\) 0 0
\(806\) −2.05372 11.5213i −0.0723394 0.405821i
\(807\) 11.0747 0.389849
\(808\) 8.42157 + 14.5866i 0.296270 + 0.513155i
\(809\) 14.5887 + 25.2683i 0.512910 + 0.888386i 0.999888 + 0.0149717i \(0.00476581\pi\)
−0.486978 + 0.873414i \(0.661901\pi\)
\(810\) 0 0
\(811\) −38.1464 −1.33950 −0.669751 0.742586i \(-0.733599\pi\)
−0.669751 + 0.742586i \(0.733599\pi\)
\(812\) −9.55616 + 16.5518i −0.335356 + 0.580853i
\(813\) 11.9216 20.6489i 0.418110 0.724188i
\(814\) 11.6324 0.407714
\(815\) 0 0
\(816\) 8.43206 + 14.6048i 0.295181 + 0.511269i
\(817\) 7.97593 + 13.8147i 0.279043 + 0.483316i
\(818\) 11.9937 0.419351
\(819\) 2.58129 + 14.4809i 0.0901975 + 0.506004i
\(820\) 0 0
\(821\) 8.38745 + 14.5275i 0.292724 + 0.507013i 0.974453 0.224592i \(-0.0721049\pi\)
−0.681729 + 0.731605i \(0.738772\pi\)
\(822\) 2.01165 + 3.48428i 0.0701643 + 0.121528i
\(823\) 5.48404 9.49863i 0.191161 0.331101i −0.754474 0.656330i \(-0.772108\pi\)
0.945635 + 0.325229i \(0.105441\pi\)
\(824\) 25.9976 0.905670
\(825\) 0 0
\(826\) 4.01319 6.95105i 0.139637 0.241858i
\(827\) −44.1457 −1.53509 −0.767547 0.640992i \(-0.778523\pi\)
−0.767547 + 0.640992i \(0.778523\pi\)
\(828\) −7.22860 + 12.5203i −0.251211 + 0.435111i
\(829\) 5.30857 + 9.19472i 0.184374 + 0.319346i 0.943366 0.331755i \(-0.107641\pi\)
−0.758991 + 0.651101i \(0.774307\pi\)
\(830\) 0 0
\(831\) 8.57241 0.297374
\(832\) −13.1485 4.75785i −0.455842 0.164949i
\(833\) −55.7055 −1.93008
\(834\) −0.421087 0.729344i −0.0145810 0.0252551i
\(835\) 0 0
\(836\) −9.24422 + 16.0115i −0.319718 + 0.553768i
\(837\) −7.52862 −0.260227
\(838\) 5.38733 9.33113i 0.186102 0.322339i
\(839\) −26.2026 + 45.3843i −0.904616 + 1.56684i −0.0831833 + 0.996534i \(0.526509\pi\)
−0.821432 + 0.570306i \(0.806825\pi\)
\(840\) 0 0
\(841\) 11.1655 19.3393i 0.385018 0.666871i
\(842\) 6.40930 + 11.1012i 0.220879 + 0.382574i
\(843\) −1.74306 3.01907i −0.0600343 0.103982i
\(844\) −27.2077 −0.936529
\(845\) 0 0
\(846\) 2.58787 0.0889726
\(847\) 16.5789 + 28.7155i 0.569658 + 0.986676i
\(848\) 14.9392 + 25.8754i 0.513013 + 0.888564i
\(849\) −4.22976 + 7.32615i −0.145165 + 0.251433i
\(850\) 0 0
\(851\) 24.5819 42.5771i 0.842657 1.45952i
\(852\) −7.59532 + 13.1555i −0.260212 + 0.450700i
\(853\) 30.1487 1.03227 0.516136 0.856507i \(-0.327370\pi\)
0.516136 + 0.856507i \(0.327370\pi\)
\(854\) −10.4813 + 18.1542i −0.358664 + 0.621225i
\(855\) 0 0
\(856\) −1.85471 3.21246i −0.0633928 0.109799i
\(857\) −45.3756 −1.55000 −0.775001 0.631960i \(-0.782251\pi\)
−0.775001 + 0.631960i \(0.782251\pi\)
\(858\) 6.39279 + 2.31326i 0.218246 + 0.0789735i
\(859\) 8.14892 0.278038 0.139019 0.990290i \(-0.455605\pi\)
0.139019 + 0.990290i \(0.455605\pi\)
\(860\) 0 0
\(861\) −11.7834 20.4094i −0.401576 0.695550i
\(862\) −5.40400 + 9.36000i −0.184061 + 0.318803i
\(863\) −54.6860 −1.86153 −0.930767 0.365613i \(-0.880859\pi\)
−0.930767 + 0.365613i \(0.880859\pi\)
\(864\) 2.27368 3.93813i 0.0773521 0.133978i
\(865\) 0 0
\(866\) −9.37463 −0.318563
\(867\) −8.18532 + 14.1774i −0.277988 + 0.481489i
\(868\) 27.8593 + 48.2537i 0.945607 + 1.63784i
\(869\) 20.0604 + 34.7456i 0.680501 + 1.17866i
\(870\) 0 0
\(871\) 2.48574 + 13.9449i 0.0842260 + 0.472504i
\(872\) −22.5244 −0.762773
\(873\) −1.74194 3.01714i −0.0589559 0.102115i
\(874\) −4.00307 6.93352i −0.135406 0.234530i
\(875\) 0 0
\(876\) 7.28059 0.245988
\(877\) −15.9743 + 27.6684i −0.539415 + 0.934295i 0.459520 + 0.888167i \(0.348021\pi\)
−0.998936 + 0.0461276i \(0.985312\pi\)
\(878\) 1.51277 2.62020i 0.0510536 0.0884274i
\(879\) −1.44411 −0.0487087
\(880\) 0 0
\(881\) 5.03344 + 8.71818i 0.169581 + 0.293723i 0.938273 0.345897i \(-0.112425\pi\)
−0.768692 + 0.639620i \(0.779092\pi\)
\(882\) 2.07870 + 3.60042i 0.0699935 + 0.121232i
\(883\) 31.1293 1.04758 0.523791 0.851847i \(-0.324517\pi\)
0.523791 + 0.851847i \(0.324517\pi\)
\(884\) −6.63086 37.1988i −0.223020 1.25113i
\(885\) 0 0
\(886\) −0.957137 1.65781i −0.0321556 0.0556952i
\(887\) −14.7924 25.6212i −0.496681 0.860277i 0.503311 0.864105i \(-0.332115\pi\)
−0.999993 + 0.00382795i \(0.998782\pi\)
\(888\) −5.07226 + 8.78541i −0.170214 + 0.294819i
\(889\) 7.03533 0.235958
\(890\) 0 0
\(891\) 2.18676 3.78758i 0.0732593 0.126889i
\(892\) 11.3974 0.381613
\(893\) 6.99368 12.1134i 0.234034 0.405360i
\(894\) 3.76993 + 6.52971i 0.126085 + 0.218386i
\(895\) 0 0
\(896\) −43.9237 −1.46739
\(897\) 21.9766 18.5106i 0.733776 0.618051i
\(898\) −11.8121 −0.394174
\(899\) 9.72108 + 16.8374i 0.324216 + 0.561559i
\(900\) 0 0
\(901\) −29.5615 + 51.2021i −0.984838 + 1.70579i
\(902\) −10.8923 −0.362675
\(903\) −13.9636 + 24.1857i −0.464680 + 0.804849i
\(904\) 9.64186 16.7002i 0.320684 0.555440i
\(905\) 0 0
\(906\) −1.73223 + 3.00031i −0.0575495 + 0.0996787i
\(907\) −10.8827 18.8494i −0.361354 0.625883i 0.626830 0.779156i \(-0.284352\pi\)
−0.988184 + 0.153273i \(0.951019\pi\)
\(908\) −3.96544 6.86834i −0.131598 0.227934i
\(909\) −10.2429 −0.339734
\(910\) 0 0
\(911\) −45.7577 −1.51602 −0.758010 0.652243i \(-0.773828\pi\)
−0.758010 + 0.652243i \(0.773828\pi\)
\(912\) −3.40135 5.89132i −0.112630 0.195081i
\(913\) −27.6126 47.8265i −0.913844 1.58282i
\(914\) 2.63069 4.55650i 0.0870156 0.150715i
\(915\) 0 0
\(916\) −9.11568 + 15.7888i −0.301191 + 0.521677i
\(917\) −7.78992 + 13.4925i −0.257246 + 0.445563i
\(918\) 2.49051 0.0821992
\(919\) 20.2578 35.0875i 0.668242 1.15743i −0.310153 0.950687i \(-0.600380\pi\)
0.978395 0.206743i \(-0.0662863\pi\)
\(920\) 0 0
\(921\) 1.77863 + 3.08068i 0.0586078 + 0.101512i
\(922\) −10.8965 −0.358856
\(923\) 23.0915 19.4497i 0.760065 0.640195i
\(924\) −32.3680 −1.06483
\(925\) 0 0
\(926\) 4.58081 + 7.93420i 0.150535 + 0.260734i
\(927\) −7.90500 + 13.6919i −0.259634 + 0.449700i
\(928\) −11.7432 −0.385491
\(929\) −15.0862 + 26.1300i −0.494961 + 0.857298i −0.999983 0.00580842i \(-0.998151\pi\)
0.505022 + 0.863107i \(0.331484\pi\)
\(930\) 0 0
\(931\) 22.4707 0.736446
\(932\) 2.63456 4.56320i 0.0862980 0.149473i
\(933\) 9.37633 + 16.2403i 0.306967 + 0.531683i
\(934\) 2.53856 + 4.39691i 0.0830641 + 0.143871i
\(935\) 0 0
\(936\) −4.53467 + 3.81950i −0.148220 + 0.124844i
\(937\) −15.6637 −0.511709 −0.255855 0.966715i \(-0.582357\pi\)
−0.255855 + 0.966715i \(0.582357\pi\)
\(938\) 3.45485 + 5.98397i 0.112805 + 0.195384i
\(939\) −6.93661 12.0146i −0.226368 0.392081i
\(940\) 0 0
\(941\) 24.8149 0.808942 0.404471 0.914551i \(-0.367456\pi\)
0.404471 + 0.914551i \(0.367456\pi\)
\(942\) −3.34000 + 5.78505i −0.108823 + 0.188487i
\(943\) −23.0180 + 39.8684i −0.749571 + 1.29829i
\(944\) −13.3223 −0.433602
\(945\) 0 0
\(946\) 6.45386 + 11.1784i 0.209833 + 0.363441i
\(947\) 1.02809 + 1.78070i 0.0334084 + 0.0578651i 0.882246 0.470788i \(-0.156030\pi\)
−0.848838 + 0.528653i \(0.822697\pi\)
\(948\) −16.6420 −0.540507
\(949\) −13.6066 4.92363i −0.441690 0.159828i
\(950\) 0 0
\(951\) −3.68141 6.37638i −0.119378 0.206768i
\(952\) −19.3763 33.5607i −0.627990 1.08771i
\(953\) 18.4121 31.8908i 0.596428 1.03304i −0.396916 0.917855i \(-0.629920\pi\)
0.993344 0.115188i \(-0.0367471\pi\)
\(954\) 4.41247 0.142859
\(955\) 0 0
\(956\) 17.5481 30.3941i 0.567545 0.983017i
\(957\) −11.2943 −0.365094
\(958\) −5.79469 + 10.0367i −0.187218 + 0.324271i
\(959\) 19.0354 + 32.9703i 0.614686 + 1.06467i
\(960\) 0 0
\(961\) 25.6802 0.828393
\(962\) 7.33465 6.17790i 0.236479 0.199183i
\(963\) 2.25582 0.0726928
\(964\) 8.27200 + 14.3275i 0.266423 + 0.461458i
\(965\) 0 0
\(966\) 7.00825 12.1386i 0.225487 0.390555i
\(967\) 15.3768 0.494486 0.247243 0.968954i \(-0.420475\pi\)
0.247243 + 0.968954i \(0.420475\pi\)
\(968\) −6.68253 + 11.5745i −0.214785 + 0.372018i
\(969\) 6.73058 11.6577i 0.216217 0.374500i
\(970\) 0 0
\(971\) 3.72881 6.45849i 0.119663 0.207263i −0.799971 0.600039i \(-0.795152\pi\)
0.919634 + 0.392776i \(0.128485\pi\)
\(972\) 0.907064 + 1.57108i 0.0290941 + 0.0503925i
\(973\) −3.98457 6.90148i −0.127740 0.221251i
\(974\) 9.35723 0.299825
\(975\) 0 0
\(976\) 34.7941 1.11373
\(977\) −21.5217 37.2766i −0.688539 1.19259i −0.972310 0.233693i \(-0.924919\pi\)
0.283771 0.958892i \(-0.408414\pi\)
\(978\) −0.803599 1.39187i −0.0256963 0.0445072i
\(979\) −30.5927 + 52.9881i −0.977748 + 1.69351i
\(980\) 0 0
\(981\) 6.84892 11.8627i 0.218669 0.378746i
\(982\) 5.58838 9.67936i 0.178332 0.308881i
\(983\) −45.7988 −1.46076 −0.730378 0.683044i \(-0.760656\pi\)
−0.730378 + 0.683044i \(0.760656\pi\)
\(984\) 4.74957 8.22649i 0.151411 0.262251i
\(985\) 0 0
\(986\) −3.21579 5.56991i −0.102412 0.177382i
\(987\) 24.4879 0.779459
\(988\) 2.67478 + 15.0054i 0.0850961 + 0.477386i
\(989\) 54.5541 1.73472
\(990\) 0 0
\(991\) −28.8574 49.9824i −0.916684 1.58774i −0.804417 0.594065i \(-0.797522\pi\)
−0.112267 0.993678i \(-0.535811\pi\)
\(992\) −17.1177 + 29.6487i −0.543487 + 0.941347i
\(993\) −5.24943 −0.166586
\(994\) 7.36380 12.7545i 0.233565 0.404547i
\(995\) 0 0
\(996\) 22.9073 0.725846
\(997\) −18.8132 + 32.5854i −0.595820 + 1.03199i 0.397611 + 0.917554i \(0.369839\pi\)
−0.993431 + 0.114436i \(0.963494\pi\)
\(998\) 8.53037 + 14.7750i 0.270024 + 0.467695i
\(999\) −3.08460 5.34269i −0.0975925 0.169035i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.i.n.601.4 yes 12
5.2 odd 4 975.2.bb.l.874.5 24
5.3 odd 4 975.2.bb.l.874.8 24
5.4 even 2 975.2.i.p.601.3 yes 12
13.9 even 3 inner 975.2.i.n.451.4 12
65.9 even 6 975.2.i.p.451.3 yes 12
65.22 odd 12 975.2.bb.l.724.8 24
65.48 odd 12 975.2.bb.l.724.5 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
975.2.i.n.451.4 12 13.9 even 3 inner
975.2.i.n.601.4 yes 12 1.1 even 1 trivial
975.2.i.p.451.3 yes 12 65.9 even 6
975.2.i.p.601.3 yes 12 5.4 even 2
975.2.bb.l.724.5 24 65.48 odd 12
975.2.bb.l.724.8 24 65.22 odd 12
975.2.bb.l.874.5 24 5.2 odd 4
975.2.bb.l.874.8 24 5.3 odd 4