Properties

Label 975.2.i.n.601.6
Level $975$
Weight $2$
Character 975.601
Analytic conductor $7.785$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(451,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.451");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 10x^{10} - 4x^{9} + 79x^{8} - 24x^{7} + 210x^{6} - 38x^{5} + 429x^{4} - 76x^{3} + 58x^{2} + 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 601.6
Root \(1.22736 - 2.12585i\) of defining polynomial
Character \(\chi\) \(=\) 975.601
Dual form 975.2.i.n.451.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22736 + 2.12585i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-2.01283 + 3.48633i) q^{4} +(1.22736 - 2.12585i) q^{6} +(2.09272 - 3.62470i) q^{7} -4.97244 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-2.69817 - 4.67337i) q^{11} +4.02566 q^{12} +(1.80423 - 3.12166i) q^{13} +10.2741 q^{14} +(-2.07731 - 3.59801i) q^{16} +(-1.04734 + 1.81405i) q^{17} -2.45472 q^{18} +(2.08635 - 3.61366i) q^{19} -4.18544 q^{21} +(6.62326 - 11.4718i) q^{22} +(-1.17897 - 2.04203i) q^{23} +(2.48622 + 4.30626i) q^{24} +(8.85063 + 0.00413129i) q^{26} +1.00000 q^{27} +(8.42458 + 14.5918i) q^{28} +(-3.58220 - 6.20455i) q^{29} +6.72862 q^{31} +(0.126792 - 0.219610i) q^{32} +(-2.69817 + 4.67337i) q^{33} -5.14188 q^{34} +(-2.01283 - 3.48633i) q^{36} +(3.82956 + 6.63298i) q^{37} +10.2428 q^{38} +(-3.60555 - 0.00168300i) q^{39} +(-1.04734 - 1.81405i) q^{41} +(-5.13705 - 8.89763i) q^{42} +(-4.38766 + 7.59966i) q^{43} +21.7239 q^{44} +(2.89404 - 5.01262i) q^{46} +6.99206 q^{47} +(-2.07731 + 3.59801i) q^{48} +(-5.25896 - 9.10878i) q^{49} +2.09469 q^{51} +(7.25150 + 12.5735i) q^{52} -5.85317 q^{53} +(1.22736 + 2.12585i) q^{54} +(-10.4059 + 18.0236i) q^{56} -4.17269 q^{57} +(8.79330 - 15.2304i) q^{58} +(2.66624 - 4.61805i) q^{59} +(-2.34951 + 4.06947i) q^{61} +(8.25845 + 14.3040i) q^{62} +(2.09272 + 3.62470i) q^{63} -7.68678 q^{64} -13.2465 q^{66} +(6.61043 + 11.4496i) q^{67} +(-4.21625 - 7.30276i) q^{68} +(-1.17897 + 2.04203i) q^{69} +(-0.698173 + 1.20927i) q^{71} +(2.48622 - 4.30626i) q^{72} +1.12598 q^{73} +(-9.40049 + 16.2821i) q^{74} +(8.39892 + 14.5474i) q^{76} -22.5861 q^{77} +(-4.42174 - 7.66693i) q^{78} +2.90483 q^{79} +(-0.500000 - 0.866025i) q^{81} +(2.57094 - 4.45300i) q^{82} -2.28874 q^{83} +(8.42458 - 14.5918i) q^{84} -21.5410 q^{86} +(-3.58220 + 6.20455i) q^{87} +(13.4165 + 23.2380i) q^{88} +(-6.98684 - 12.1016i) q^{89} +(-7.53931 - 13.0726i) q^{91} +9.49225 q^{92} +(-3.36431 - 5.82716i) q^{93} +(8.58179 + 14.8641i) q^{94} -0.253584 q^{96} +(-2.07351 + 3.59143i) q^{97} +(12.9093 - 22.3595i) q^{98} +5.39635 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{3} - 8 q^{4} + q^{7} + 12 q^{8} - 6 q^{9} - q^{11} + 16 q^{12} - 3 q^{13} + 30 q^{14} - 20 q^{16} + 8 q^{17} + 3 q^{19} - 2 q^{21} - 3 q^{22} - q^{23} - 6 q^{24} + 9 q^{26} + 12 q^{27} + 3 q^{28}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.22736 + 2.12585i 0.867875 + 1.50320i 0.864163 + 0.503211i \(0.167848\pi\)
0.00371189 + 0.999993i \(0.498818\pi\)
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) −2.01283 + 3.48633i −1.00642 + 1.74316i
\(5\) 0 0
\(6\) 1.22736 2.12585i 0.501068 0.867875i
\(7\) 2.09272 3.62470i 0.790974 1.37001i −0.134391 0.990928i \(-0.542908\pi\)
0.925365 0.379078i \(-0.123759\pi\)
\(8\) −4.97244 −1.75802
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) −2.69817 4.67337i −0.813530 1.40907i −0.910379 0.413776i \(-0.864210\pi\)
0.0968491 0.995299i \(-0.469124\pi\)
\(12\) 4.02566 1.16211
\(13\) 1.80423 3.12166i 0.500404 0.865792i
\(14\) 10.2741 2.74587
\(15\) 0 0
\(16\) −2.07731 3.59801i −0.519328 0.899503i
\(17\) −1.04734 + 1.81405i −0.254018 + 0.439973i −0.964628 0.263613i \(-0.915086\pi\)
0.710610 + 0.703586i \(0.248419\pi\)
\(18\) −2.45472 −0.578584
\(19\) 2.08635 3.61366i 0.478641 0.829030i −0.521060 0.853520i \(-0.674463\pi\)
0.999700 + 0.0244906i \(0.00779639\pi\)
\(20\) 0 0
\(21\) −4.18544 −0.913338
\(22\) 6.62326 11.4718i 1.41208 2.44580i
\(23\) −1.17897 2.04203i −0.245832 0.425793i 0.716533 0.697553i \(-0.245728\pi\)
−0.962365 + 0.271760i \(0.912394\pi\)
\(24\) 2.48622 + 4.30626i 0.507497 + 0.879011i
\(25\) 0 0
\(26\) 8.85063 + 0.00413129i 1.73575 + 0.000810212i
\(27\) 1.00000 0.192450
\(28\) 8.42458 + 14.5918i 1.59210 + 2.75759i
\(29\) −3.58220 6.20455i −0.665197 1.15216i −0.979232 0.202744i \(-0.935014\pi\)
0.314035 0.949412i \(-0.398319\pi\)
\(30\) 0 0
\(31\) 6.72862 1.20850 0.604248 0.796796i \(-0.293474\pi\)
0.604248 + 0.796796i \(0.293474\pi\)
\(32\) 0.126792 0.219610i 0.0224138 0.0388219i
\(33\) −2.69817 + 4.67337i −0.469692 + 0.813530i
\(34\) −5.14188 −0.881825
\(35\) 0 0
\(36\) −2.01283 3.48633i −0.335472 0.581054i
\(37\) 3.82956 + 6.63298i 0.629575 + 1.09046i 0.987637 + 0.156758i \(0.0501043\pi\)
−0.358062 + 0.933698i \(0.616562\pi\)
\(38\) 10.2428 1.66160
\(39\) −3.60555 0.00168300i −0.577350 0.000269495i
\(40\) 0 0
\(41\) −1.04734 1.81405i −0.163568 0.283308i 0.772578 0.634920i \(-0.218967\pi\)
−0.936146 + 0.351612i \(0.885634\pi\)
\(42\) −5.13705 8.89763i −0.792664 1.37293i
\(43\) −4.38766 + 7.59966i −0.669112 + 1.15894i 0.309040 + 0.951049i \(0.399992\pi\)
−0.978153 + 0.207888i \(0.933341\pi\)
\(44\) 21.7239 3.27500
\(45\) 0 0
\(46\) 2.89404 5.01262i 0.426703 0.739071i
\(47\) 6.99206 1.01990 0.509949 0.860205i \(-0.329664\pi\)
0.509949 + 0.860205i \(0.329664\pi\)
\(48\) −2.07731 + 3.59801i −0.299834 + 0.519328i
\(49\) −5.25896 9.10878i −0.751279 1.30125i
\(50\) 0 0
\(51\) 2.09469 0.293315
\(52\) 7.25150 + 12.5735i 1.00560 + 1.74363i
\(53\) −5.85317 −0.803994 −0.401997 0.915641i \(-0.631684\pi\)
−0.401997 + 0.915641i \(0.631684\pi\)
\(54\) 1.22736 + 2.12585i 0.167023 + 0.289292i
\(55\) 0 0
\(56\) −10.4059 + 18.0236i −1.39055 + 2.40850i
\(57\) −4.17269 −0.552686
\(58\) 8.79330 15.2304i 1.15462 1.99985i
\(59\) 2.66624 4.61805i 0.347114 0.601220i −0.638621 0.769521i \(-0.720495\pi\)
0.985736 + 0.168302i \(0.0538283\pi\)
\(60\) 0 0
\(61\) −2.34951 + 4.06947i −0.300824 + 0.521042i −0.976323 0.216319i \(-0.930595\pi\)
0.675499 + 0.737361i \(0.263928\pi\)
\(62\) 8.25845 + 14.3040i 1.04882 + 1.81662i
\(63\) 2.09272 + 3.62470i 0.263658 + 0.456669i
\(64\) −7.68678 −0.960847
\(65\) 0 0
\(66\) −13.2465 −1.63054
\(67\) 6.61043 + 11.4496i 0.807593 + 1.39879i 0.914526 + 0.404526i \(0.132564\pi\)
−0.106933 + 0.994266i \(0.534103\pi\)
\(68\) −4.21625 7.30276i −0.511296 0.885590i
\(69\) −1.17897 + 2.04203i −0.141931 + 0.245832i
\(70\) 0 0
\(71\) −0.698173 + 1.20927i −0.0828579 + 0.143514i −0.904476 0.426524i \(-0.859738\pi\)
0.821619 + 0.570038i \(0.193071\pi\)
\(72\) 2.48622 4.30626i 0.293004 0.507497i
\(73\) 1.12598 0.131786 0.0658932 0.997827i \(-0.479010\pi\)
0.0658932 + 0.997827i \(0.479010\pi\)
\(74\) −9.40049 + 16.2821i −1.09279 + 1.89276i
\(75\) 0 0
\(76\) 8.39892 + 14.5474i 0.963422 + 1.66870i
\(77\) −22.5861 −2.57392
\(78\) −4.42174 7.66693i −0.500663 0.868109i
\(79\) 2.90483 0.326819 0.163409 0.986558i \(-0.447751\pi\)
0.163409 + 0.986558i \(0.447751\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 2.57094 4.45300i 0.283913 0.491751i
\(83\) −2.28874 −0.251222 −0.125611 0.992080i \(-0.540089\pi\)
−0.125611 + 0.992080i \(0.540089\pi\)
\(84\) 8.42458 14.5918i 0.919197 1.59210i
\(85\) 0 0
\(86\) −21.5410 −2.32282
\(87\) −3.58220 + 6.20455i −0.384052 + 0.665197i
\(88\) 13.4165 + 23.2380i 1.43020 + 2.47718i
\(89\) −6.98684 12.1016i −0.740604 1.28276i −0.952221 0.305410i \(-0.901206\pi\)
0.211617 0.977353i \(-0.432127\pi\)
\(90\) 0 0
\(91\) −7.53931 13.0726i −0.790334 1.37038i
\(92\) 9.49225 0.989635
\(93\) −3.36431 5.82716i −0.348863 0.604248i
\(94\) 8.58179 + 14.8641i 0.885144 + 1.53311i
\(95\) 0 0
\(96\) −0.253584 −0.0258813
\(97\) −2.07351 + 3.59143i −0.210534 + 0.364655i −0.951882 0.306466i \(-0.900853\pi\)
0.741348 + 0.671121i \(0.234187\pi\)
\(98\) 12.9093 22.3595i 1.30403 2.25865i
\(99\) 5.39635 0.542353
\(100\) 0 0
\(101\) 7.62974 + 13.2151i 0.759187 + 1.31495i 0.943266 + 0.332039i \(0.107737\pi\)
−0.184078 + 0.982912i \(0.558930\pi\)
\(102\) 2.57094 + 4.45300i 0.254561 + 0.440912i
\(103\) 18.7116 1.84371 0.921857 0.387531i \(-0.126672\pi\)
0.921857 + 0.387531i \(0.126672\pi\)
\(104\) −8.97143 + 15.5222i −0.879721 + 1.52208i
\(105\) 0 0
\(106\) −7.18395 12.4430i −0.697767 1.20857i
\(107\) 0.497522 + 0.861734i 0.0480973 + 0.0833070i 0.889072 0.457768i \(-0.151351\pi\)
−0.840974 + 0.541075i \(0.818018\pi\)
\(108\) −2.01283 + 3.48633i −0.193685 + 0.335472i
\(109\) 14.3877 1.37809 0.689047 0.724716i \(-0.258029\pi\)
0.689047 + 0.724716i \(0.258029\pi\)
\(110\) 0 0
\(111\) 3.82956 6.63298i 0.363485 0.629575i
\(112\) −17.3889 −1.64310
\(113\) 3.41341 5.91221i 0.321107 0.556173i −0.659610 0.751608i \(-0.729278\pi\)
0.980717 + 0.195435i \(0.0626118\pi\)
\(114\) −5.12140 8.87052i −0.479663 0.830801i
\(115\) 0 0
\(116\) 28.8414 2.67786
\(117\) 1.80132 + 3.12334i 0.166532 + 0.288753i
\(118\) 13.0897 1.20501
\(119\) 4.38360 + 7.59261i 0.401844 + 0.696014i
\(120\) 0 0
\(121\) −9.06027 + 15.6929i −0.823661 + 1.42662i
\(122\) −11.5348 −1.04431
\(123\) −1.04734 + 1.81405i −0.0944358 + 0.163568i
\(124\) −13.5436 + 23.4582i −1.21625 + 2.10660i
\(125\) 0 0
\(126\) −5.13705 + 8.89763i −0.457645 + 0.792664i
\(127\) −10.3665 17.9553i −0.919876 1.59327i −0.799601 0.600531i \(-0.794956\pi\)
−0.120274 0.992741i \(-0.538377\pi\)
\(128\) −9.68804 16.7802i −0.856309 1.48317i
\(129\) 8.77533 0.772624
\(130\) 0 0
\(131\) −11.1331 −0.972703 −0.486352 0.873763i \(-0.661673\pi\)
−0.486352 + 0.873763i \(0.661673\pi\)
\(132\) −10.8619 18.8134i −0.945410 1.63750i
\(133\) −8.73228 15.1247i −0.757184 1.31148i
\(134\) −16.2268 + 28.1056i −1.40178 + 2.42795i
\(135\) 0 0
\(136\) 5.20785 9.02027i 0.446570 0.773481i
\(137\) 9.31018 16.1257i 0.795422 1.37771i −0.127148 0.991884i \(-0.540582\pi\)
0.922571 0.385828i \(-0.126084\pi\)
\(138\) −5.78808 −0.492714
\(139\) 4.88006 8.45250i 0.413921 0.716932i −0.581394 0.813622i \(-0.697492\pi\)
0.995315 + 0.0966904i \(0.0308257\pi\)
\(140\) 0 0
\(141\) −3.49603 6.05530i −0.294419 0.509949i
\(142\) −3.42764 −0.287641
\(143\) −19.4568 0.00908203i −1.62706 0.000759477i
\(144\) 4.15463 0.346219
\(145\) 0 0
\(146\) 1.38199 + 2.39367i 0.114374 + 0.198102i
\(147\) −5.25896 + 9.10878i −0.433751 + 0.751279i
\(148\) −30.8330 −2.53446
\(149\) −1.37129 + 2.37515i −0.112341 + 0.194580i −0.916714 0.399545i \(-0.869168\pi\)
0.804373 + 0.594125i \(0.202501\pi\)
\(150\) 0 0
\(151\) −5.81427 −0.473159 −0.236579 0.971612i \(-0.576026\pi\)
−0.236579 + 0.971612i \(0.576026\pi\)
\(152\) −10.3742 + 17.9687i −0.841460 + 1.45745i
\(153\) −1.04734 1.81405i −0.0846728 0.146658i
\(154\) −27.7213 48.0147i −2.23384 3.86913i
\(155\) 0 0
\(156\) 7.26323 12.5667i 0.581524 1.00614i
\(157\) −5.24558 −0.418643 −0.209321 0.977847i \(-0.567125\pi\)
−0.209321 + 0.977847i \(0.567125\pi\)
\(158\) 3.56527 + 6.17524i 0.283638 + 0.491275i
\(159\) 2.92658 + 5.06899i 0.232093 + 0.401997i
\(160\) 0 0
\(161\) −9.86900 −0.777786
\(162\) 1.22736 2.12585i 0.0964306 0.167023i
\(163\) −2.68701 + 4.65404i −0.210463 + 0.364533i −0.951860 0.306534i \(-0.900831\pi\)
0.741396 + 0.671067i \(0.234164\pi\)
\(164\) 8.43251 0.658468
\(165\) 0 0
\(166\) −2.80912 4.86553i −0.218030 0.377639i
\(167\) 9.54985 + 16.5408i 0.738989 + 1.27997i 0.952951 + 0.303125i \(0.0980300\pi\)
−0.213961 + 0.976842i \(0.568637\pi\)
\(168\) 20.8118 1.60567
\(169\) −6.48949 11.2644i −0.499191 0.866492i
\(170\) 0 0
\(171\) 2.08635 + 3.61366i 0.159547 + 0.276343i
\(172\) −17.6632 30.5936i −1.34681 2.33274i
\(173\) −6.25905 + 10.8410i −0.475867 + 0.824226i −0.999618 0.0276457i \(-0.991199\pi\)
0.523751 + 0.851872i \(0.324532\pi\)
\(174\) −17.5866 −1.33324
\(175\) 0 0
\(176\) −11.2099 + 19.4161i −0.844978 + 1.46355i
\(177\) −5.33247 −0.400813
\(178\) 17.1508 29.7060i 1.28550 2.22656i
\(179\) −2.78825 4.82938i −0.208403 0.360965i 0.742808 0.669504i \(-0.233493\pi\)
−0.951212 + 0.308539i \(0.900160\pi\)
\(180\) 0 0
\(181\) −15.9187 −1.18323 −0.591613 0.806222i \(-0.701509\pi\)
−0.591613 + 0.806222i \(0.701509\pi\)
\(182\) 18.5369 32.0722i 1.37404 2.37735i
\(183\) 4.69902 0.347362
\(184\) 5.86234 + 10.1539i 0.432178 + 0.748553i
\(185\) 0 0
\(186\) 8.25845 14.3040i 0.605539 1.04882i
\(187\) 11.3037 0.826606
\(188\) −14.0738 + 24.3766i −1.02644 + 1.77785i
\(189\) 2.09272 3.62470i 0.152223 0.263658i
\(190\) 0 0
\(191\) 3.46558 6.00257i 0.250761 0.434331i −0.712975 0.701190i \(-0.752653\pi\)
0.963736 + 0.266859i \(0.0859859\pi\)
\(192\) 3.84339 + 6.65694i 0.277373 + 0.480424i
\(193\) −2.03890 3.53148i −0.146763 0.254202i 0.783266 0.621687i \(-0.213552\pi\)
−0.930029 + 0.367485i \(0.880219\pi\)
\(194\) −10.1798 −0.730868
\(195\) 0 0
\(196\) 42.3415 3.02440
\(197\) 5.13810 + 8.89944i 0.366074 + 0.634059i 0.988948 0.148263i \(-0.0473683\pi\)
−0.622874 + 0.782322i \(0.714035\pi\)
\(198\) 6.62326 + 11.4718i 0.470695 + 0.815268i
\(199\) 3.16846 5.48794i 0.224606 0.389029i −0.731595 0.681740i \(-0.761224\pi\)
0.956201 + 0.292710i \(0.0945571\pi\)
\(200\) 0 0
\(201\) 6.61043 11.4496i 0.466264 0.807593i
\(202\) −18.7289 + 32.4394i −1.31776 + 2.28243i
\(203\) −29.9861 −2.10461
\(204\) −4.21625 + 7.30276i −0.295197 + 0.511296i
\(205\) 0 0
\(206\) 22.9659 + 39.7782i 1.60011 + 2.77148i
\(207\) 2.35794 0.163888
\(208\) −14.9797 0.00699222i −1.03866 0.000484823i
\(209\) −22.5173 −1.55755
\(210\) 0 0
\(211\) 5.57541 + 9.65690i 0.383827 + 0.664808i 0.991606 0.129298i \(-0.0412725\pi\)
−0.607779 + 0.794107i \(0.707939\pi\)
\(212\) 11.7814 20.4060i 0.809152 1.40149i
\(213\) 1.39635 0.0956760
\(214\) −1.22128 + 2.11532i −0.0834849 + 0.144600i
\(215\) 0 0
\(216\) −4.97244 −0.338331
\(217\) 14.0811 24.3892i 0.955889 1.65565i
\(218\) 17.6589 + 30.5862i 1.19601 + 2.07156i
\(219\) −0.562992 0.975130i −0.0380435 0.0658932i
\(220\) 0 0
\(221\) 3.77320 + 6.54242i 0.253813 + 0.440091i
\(222\) 18.8010 1.26184
\(223\) 4.46374 + 7.73143i 0.298914 + 0.517735i 0.975888 0.218273i \(-0.0700422\pi\)
−0.676973 + 0.736007i \(0.736709\pi\)
\(224\) −0.530679 0.919164i −0.0354575 0.0614142i
\(225\) 0 0
\(226\) 16.7580 1.11472
\(227\) −12.9762 + 22.4754i −0.861259 + 1.49174i 0.00945554 + 0.999955i \(0.496990\pi\)
−0.870714 + 0.491789i \(0.836343\pi\)
\(228\) 8.39892 14.5474i 0.556232 0.963422i
\(229\) 4.37335 0.288999 0.144499 0.989505i \(-0.453843\pi\)
0.144499 + 0.989505i \(0.453843\pi\)
\(230\) 0 0
\(231\) 11.2930 + 19.5601i 0.743028 + 1.28696i
\(232\) 17.8122 + 30.8517i 1.16943 + 2.02551i
\(233\) 22.1372 1.45026 0.725129 0.688613i \(-0.241780\pi\)
0.725129 + 0.688613i \(0.241780\pi\)
\(234\) −4.42889 + 7.66280i −0.289526 + 0.500933i
\(235\) 0 0
\(236\) 10.7334 + 18.5907i 0.698682 + 1.21015i
\(237\) −1.45241 2.51566i −0.0943445 0.163409i
\(238\) −10.7605 + 18.6378i −0.697500 + 1.20811i
\(239\) 8.14973 0.527162 0.263581 0.964637i \(-0.415096\pi\)
0.263581 + 0.964637i \(0.415096\pi\)
\(240\) 0 0
\(241\) 0.868798 1.50480i 0.0559642 0.0969328i −0.836686 0.547683i \(-0.815510\pi\)
0.892650 + 0.450750i \(0.148843\pi\)
\(242\) −44.4809 −2.85934
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) −9.45833 16.3823i −0.605508 1.04877i
\(245\) 0 0
\(246\) −5.14188 −0.327834
\(247\) −7.51634 13.0327i −0.478253 0.829253i
\(248\) −33.4576 −2.12456
\(249\) 1.14437 + 1.98211i 0.0725217 + 0.125611i
\(250\) 0 0
\(251\) 8.41637 14.5776i 0.531236 0.920128i −0.468099 0.883676i \(-0.655061\pi\)
0.999335 0.0364524i \(-0.0116057\pi\)
\(252\) −16.8492 −1.06140
\(253\) −6.36212 + 11.0195i −0.399983 + 0.692791i
\(254\) 25.4468 44.0752i 1.59668 2.76552i
\(255\) 0 0
\(256\) 16.0947 27.8768i 1.00592 1.74230i
\(257\) 8.03857 + 13.9232i 0.501432 + 0.868507i 0.999999 + 0.00165486i \(0.000526760\pi\)
−0.498566 + 0.866852i \(0.666140\pi\)
\(258\) 10.7705 + 18.6550i 0.670542 + 1.16141i
\(259\) 32.0567 1.99191
\(260\) 0 0
\(261\) 7.16439 0.443465
\(262\) −13.6643 23.6673i −0.844185 1.46217i
\(263\) 11.4754 + 19.8759i 0.707600 + 1.22560i 0.965745 + 0.259494i \(0.0835557\pi\)
−0.258144 + 0.966106i \(0.583111\pi\)
\(264\) 13.4165 23.2380i 0.825728 1.43020i
\(265\) 0 0
\(266\) 21.4353 37.1270i 1.31428 2.27641i
\(267\) −6.98684 + 12.1016i −0.427588 + 0.740604i
\(268\) −53.2227 −3.25110
\(269\) −14.2893 + 24.7497i −0.871231 + 1.50902i −0.0105078 + 0.999945i \(0.503345\pi\)
−0.860724 + 0.509072i \(0.829989\pi\)
\(270\) 0 0
\(271\) −8.96308 15.5245i −0.544468 0.943046i −0.998640 0.0521324i \(-0.983398\pi\)
0.454172 0.890914i \(-0.349935\pi\)
\(272\) 8.70265 0.527676
\(273\) −7.55151 + 13.0655i −0.457038 + 0.790761i
\(274\) 45.7078 2.76131
\(275\) 0 0
\(276\) −4.74612 8.22053i −0.285683 0.494818i
\(277\) 1.67873 2.90764i 0.100865 0.174703i −0.811176 0.584802i \(-0.801172\pi\)
0.912041 + 0.410098i \(0.134506\pi\)
\(278\) 23.9584 1.43693
\(279\) −3.36431 + 5.82716i −0.201416 + 0.348863i
\(280\) 0 0
\(281\) 1.73465 0.103480 0.0517401 0.998661i \(-0.483523\pi\)
0.0517401 + 0.998661i \(0.483523\pi\)
\(282\) 8.58179 14.8641i 0.511038 0.885144i
\(283\) 0.454383 + 0.787014i 0.0270103 + 0.0467832i 0.879215 0.476426i \(-0.158068\pi\)
−0.852204 + 0.523209i \(0.824735\pi\)
\(284\) −2.81061 4.86811i −0.166779 0.288869i
\(285\) 0 0
\(286\) −23.8612 41.3734i −1.41094 2.44646i
\(287\) −8.76719 −0.517511
\(288\) 0.126792 + 0.219610i 0.00747128 + 0.0129406i
\(289\) 6.30614 + 10.9226i 0.370949 + 0.642503i
\(290\) 0 0
\(291\) 4.14703 0.243103
\(292\) −2.26641 + 3.92554i −0.132632 + 0.229725i
\(293\) −6.70818 + 11.6189i −0.391896 + 0.678784i −0.992700 0.120613i \(-0.961514\pi\)
0.600804 + 0.799397i \(0.294847\pi\)
\(294\) −25.8185 −1.50577
\(295\) 0 0
\(296\) −19.0422 32.9821i −1.10681 1.91705i
\(297\) −2.69817 4.67337i −0.156564 0.271177i
\(298\) −6.73228 −0.389991
\(299\) −8.50166 0.00396839i −0.491663 0.000229498i
\(300\) 0 0
\(301\) 18.3643 + 31.8079i 1.05850 + 1.83338i
\(302\) −7.13621 12.3603i −0.410643 0.711254i
\(303\) 7.62974 13.2151i 0.438317 0.759187i
\(304\) −17.3360 −0.994287
\(305\) 0 0
\(306\) 2.57094 4.45300i 0.146971 0.254561i
\(307\) −19.4208 −1.10841 −0.554203 0.832382i \(-0.686977\pi\)
−0.554203 + 0.832382i \(0.686977\pi\)
\(308\) 45.4620 78.7424i 2.59044 4.48677i
\(309\) −9.35582 16.2048i −0.532234 0.921857i
\(310\) 0 0
\(311\) 20.3980 1.15666 0.578332 0.815802i \(-0.303704\pi\)
0.578332 + 0.815802i \(0.303704\pi\)
\(312\) 17.9284 + 0.00836859i 1.01499 + 0.000473778i
\(313\) −13.3674 −0.755568 −0.377784 0.925894i \(-0.623314\pi\)
−0.377784 + 0.925894i \(0.623314\pi\)
\(314\) −6.43822 11.1513i −0.363330 0.629305i
\(315\) 0 0
\(316\) −5.84693 + 10.1272i −0.328916 + 0.569698i
\(317\) 31.7412 1.78277 0.891383 0.453251i \(-0.149736\pi\)
0.891383 + 0.453251i \(0.149736\pi\)
\(318\) −7.18395 + 12.4430i −0.402856 + 0.697767i
\(319\) −19.3308 + 33.4819i −1.08232 + 1.87463i
\(320\) 0 0
\(321\) 0.497522 0.861734i 0.0277690 0.0480973i
\(322\) −12.1128 20.9800i −0.675021 1.16917i
\(323\) 4.37024 + 7.56948i 0.243167 + 0.421177i
\(324\) 4.02566 0.223648
\(325\) 0 0
\(326\) −13.1917 −0.730623
\(327\) −7.19386 12.4601i −0.397822 0.689047i
\(328\) 5.20785 + 9.02027i 0.287556 + 0.498061i
\(329\) 14.6324 25.3441i 0.806712 1.39727i
\(330\) 0 0
\(331\) −14.4245 + 24.9840i −0.792843 + 1.37324i 0.131357 + 0.991335i \(0.458067\pi\)
−0.924200 + 0.381909i \(0.875267\pi\)
\(332\) 4.60686 7.97931i 0.252834 0.437921i
\(333\) −7.65911 −0.419717
\(334\) −23.4422 + 40.6031i −1.28270 + 2.22170i
\(335\) 0 0
\(336\) 8.69447 + 15.0593i 0.474322 + 0.821550i
\(337\) 19.6071 1.06807 0.534034 0.845463i \(-0.320675\pi\)
0.534034 + 0.845463i \(0.320675\pi\)
\(338\) 15.9815 27.6212i 0.869278 1.50239i
\(339\) −6.82683 −0.370782
\(340\) 0 0
\(341\) −18.1550 31.4453i −0.983147 1.70286i
\(342\) −5.12140 + 8.87052i −0.276934 + 0.479663i
\(343\) −14.7240 −0.795022
\(344\) 21.8174 37.7888i 1.17631 2.03744i
\(345\) 0 0
\(346\) −30.7285 −1.65197
\(347\) −8.23242 + 14.2590i −0.441939 + 0.765461i −0.997833 0.0657918i \(-0.979043\pi\)
0.555894 + 0.831253i \(0.312376\pi\)
\(348\) −14.4207 24.9774i −0.773031 1.33893i
\(349\) 3.65816 + 6.33612i 0.195817 + 0.339165i 0.947168 0.320738i \(-0.103931\pi\)
−0.751351 + 0.659903i \(0.770597\pi\)
\(350\) 0 0
\(351\) 1.80423 3.12166i 0.0963028 0.166622i
\(352\) −1.36842 −0.0729373
\(353\) −4.46102 7.72672i −0.237436 0.411252i 0.722542 0.691327i \(-0.242974\pi\)
−0.959978 + 0.280076i \(0.909640\pi\)
\(354\) −6.54487 11.3360i −0.347856 0.602504i
\(355\) 0 0
\(356\) 56.2533 2.98142
\(357\) 4.38360 7.59261i 0.232005 0.401844i
\(358\) 6.84437 11.8548i 0.361736 0.626545i
\(359\) 13.2099 0.697193 0.348596 0.937273i \(-0.386658\pi\)
0.348596 + 0.937273i \(0.386658\pi\)
\(360\) 0 0
\(361\) 0.794323 + 1.37581i 0.0418065 + 0.0724110i
\(362\) −19.5380 33.8407i −1.02689 1.77863i
\(363\) 18.1205 0.951082
\(364\) 60.7505 + 0.0283571i 3.18419 + 0.00148631i
\(365\) 0 0
\(366\) 5.76740 + 9.98942i 0.301467 + 0.522156i
\(367\) 8.57120 + 14.8458i 0.447413 + 0.774942i 0.998217 0.0596926i \(-0.0190120\pi\)
−0.550804 + 0.834635i \(0.685679\pi\)
\(368\) −4.89817 + 8.48388i −0.255335 + 0.442253i
\(369\) 2.09469 0.109045
\(370\) 0 0
\(371\) −12.2490 + 21.2160i −0.635938 + 1.10148i
\(372\) 27.0871 1.40440
\(373\) −0.106510 + 0.184481i −0.00551489 + 0.00955207i −0.868770 0.495216i \(-0.835089\pi\)
0.863255 + 0.504768i \(0.168422\pi\)
\(374\) 13.8737 + 24.0299i 0.717391 + 1.24256i
\(375\) 0 0
\(376\) −34.7676 −1.79300
\(377\) −25.8316 0.0120576i −1.33039 0.000621000i
\(378\) 10.2741 0.528442
\(379\) −15.8405 27.4365i −0.813671 1.40932i −0.910278 0.413997i \(-0.864132\pi\)
0.0966073 0.995323i \(-0.469201\pi\)
\(380\) 0 0
\(381\) −10.3665 + 17.9553i −0.531091 + 0.919876i
\(382\) 17.0141 0.870517
\(383\) 0.573308 0.992998i 0.0292947 0.0507398i −0.851006 0.525155i \(-0.824007\pi\)
0.880301 + 0.474415i \(0.157341\pi\)
\(384\) −9.68804 + 16.7802i −0.494390 + 0.856309i
\(385\) 0 0
\(386\) 5.00494 8.66881i 0.254745 0.441231i
\(387\) −4.38766 7.59966i −0.223037 0.386312i
\(388\) −8.34727 14.4579i −0.423768 0.733988i
\(389\) −21.8539 −1.10804 −0.554019 0.832504i \(-0.686907\pi\)
−0.554019 + 0.832504i \(0.686907\pi\)
\(390\) 0 0
\(391\) 4.93914 0.249783
\(392\) 26.1498 + 45.2928i 1.32077 + 2.28763i
\(393\) 5.56655 + 9.64155i 0.280795 + 0.486352i
\(394\) −12.6126 + 21.8457i −0.635414 + 1.10057i
\(395\) 0 0
\(396\) −10.8619 + 18.8134i −0.545833 + 0.945410i
\(397\) 18.4697 31.9905i 0.926968 1.60556i 0.138603 0.990348i \(-0.455739\pi\)
0.788365 0.615208i \(-0.210928\pi\)
\(398\) 15.5554 0.779721
\(399\) −8.73228 + 15.1247i −0.437161 + 0.757184i
\(400\) 0 0
\(401\) 16.3844 + 28.3787i 0.818199 + 1.41716i 0.907008 + 0.421114i \(0.138361\pi\)
−0.0888083 + 0.996049i \(0.528306\pi\)
\(402\) 32.4536 1.61864
\(403\) 12.1400 21.0044i 0.604736 1.04631i
\(404\) −61.4295 −3.05623
\(405\) 0 0
\(406\) −36.8038 63.7461i −1.82654 3.16367i
\(407\) 20.6656 35.7939i 1.02436 1.77424i
\(408\) −10.4157 −0.515654
\(409\) −2.47333 + 4.28393i −0.122298 + 0.211827i −0.920674 0.390333i \(-0.872360\pi\)
0.798375 + 0.602160i \(0.205693\pi\)
\(410\) 0 0
\(411\) −18.6204 −0.918475
\(412\) −37.6634 + 65.2349i −1.85554 + 3.21389i
\(413\) −11.1594 19.3286i −0.549117 0.951098i
\(414\) 2.89404 + 5.01262i 0.142234 + 0.246357i
\(415\) 0 0
\(416\) −0.456785 0.792028i −0.0223957 0.0388324i
\(417\) −9.76011 −0.477955
\(418\) −27.6368 47.8684i −1.35176 2.34132i
\(419\) 6.48476 + 11.2319i 0.316801 + 0.548716i 0.979819 0.199888i \(-0.0640579\pi\)
−0.663018 + 0.748604i \(0.730725\pi\)
\(420\) 0 0
\(421\) −25.3303 −1.23452 −0.617262 0.786758i \(-0.711758\pi\)
−0.617262 + 0.786758i \(0.711758\pi\)
\(422\) −13.6861 + 23.7050i −0.666228 + 1.15394i
\(423\) −3.49603 + 6.05530i −0.169983 + 0.294419i
\(424\) 29.1045 1.41344
\(425\) 0 0
\(426\) 1.71382 + 2.96842i 0.0830349 + 0.143821i
\(427\) 9.83374 + 17.0325i 0.475888 + 0.824262i
\(428\) −4.00571 −0.193623
\(429\) 9.72053 + 16.8546i 0.469312 + 0.813749i
\(430\) 0 0
\(431\) −10.9118 18.8997i −0.525601 0.910368i −0.999555 0.0298183i \(-0.990507\pi\)
0.473954 0.880549i \(-0.342826\pi\)
\(432\) −2.07731 3.59801i −0.0999448 0.173109i
\(433\) −8.20200 + 14.2063i −0.394163 + 0.682710i −0.992994 0.118165i \(-0.962299\pi\)
0.598831 + 0.800875i \(0.295632\pi\)
\(434\) 69.1305 3.31837
\(435\) 0 0
\(436\) −28.9601 + 50.1603i −1.38694 + 2.40224i
\(437\) −9.83894 −0.470660
\(438\) 1.38199 2.39367i 0.0660340 0.114374i
\(439\) 8.32948 + 14.4271i 0.397545 + 0.688567i 0.993422 0.114508i \(-0.0365291\pi\)
−0.595878 + 0.803075i \(0.703196\pi\)
\(440\) 0 0
\(441\) 10.5179 0.500853
\(442\) −9.27715 + 16.0512i −0.441269 + 0.763477i
\(443\) 10.6646 0.506690 0.253345 0.967376i \(-0.418469\pi\)
0.253345 + 0.967376i \(0.418469\pi\)
\(444\) 15.4165 + 26.7021i 0.731634 + 1.26723i
\(445\) 0 0
\(446\) −10.9573 + 18.9785i −0.518841 + 0.898659i
\(447\) 2.74258 0.129720
\(448\) −16.0863 + 27.8622i −0.760005 + 1.31637i
\(449\) −7.63537 + 13.2249i −0.360335 + 0.624119i −0.988016 0.154352i \(-0.950671\pi\)
0.627681 + 0.778471i \(0.284004\pi\)
\(450\) 0 0
\(451\) −5.65183 + 9.78926i −0.266134 + 0.460958i
\(452\) 13.7412 + 23.8005i 0.646334 + 1.11948i
\(453\) 2.90714 + 5.03531i 0.136589 + 0.236579i
\(454\) −63.7058 −2.98986
\(455\) 0 0
\(456\) 20.7484 0.971635
\(457\) −11.9908 20.7687i −0.560907 0.971520i −0.997418 0.0718207i \(-0.977119\pi\)
0.436510 0.899699i \(-0.356214\pi\)
\(458\) 5.36768 + 9.29709i 0.250815 + 0.434424i
\(459\) −1.04734 + 1.81405i −0.0488858 + 0.0846728i
\(460\) 0 0
\(461\) −1.69922 + 2.94313i −0.0791405 + 0.137075i −0.902879 0.429894i \(-0.858551\pi\)
0.823739 + 0.566969i \(0.191884\pi\)
\(462\) −27.7213 + 48.0147i −1.28971 + 2.23384i
\(463\) 25.2215 1.17214 0.586072 0.810259i \(-0.300673\pi\)
0.586072 + 0.810259i \(0.300673\pi\)
\(464\) −14.8827 + 25.7776i −0.690912 + 1.19669i
\(465\) 0 0
\(466\) 27.1704 + 47.0605i 1.25864 + 2.18003i
\(467\) −14.8622 −0.687742 −0.343871 0.939017i \(-0.611738\pi\)
−0.343871 + 0.939017i \(0.611738\pi\)
\(468\) −14.5147 0.00677517i −0.670944 0.000313182i
\(469\) 55.3352 2.55514
\(470\) 0 0
\(471\) 2.62279 + 4.54280i 0.120852 + 0.209321i
\(472\) −13.2577 + 22.9630i −0.610234 + 1.05696i
\(473\) 47.3547 2.17737
\(474\) 3.56527 6.17524i 0.163758 0.283638i
\(475\) 0 0
\(476\) −35.2938 −1.61769
\(477\) 2.92658 5.06899i 0.133999 0.232093i
\(478\) 10.0027 + 17.3251i 0.457511 + 0.792432i
\(479\) 19.1931 + 33.2434i 0.876954 + 1.51893i 0.854666 + 0.519178i \(0.173762\pi\)
0.0222878 + 0.999752i \(0.492905\pi\)
\(480\) 0 0
\(481\) 27.6153 + 0.0128902i 1.25915 + 0.000587745i
\(482\) 4.26531 0.194280
\(483\) 4.93450 + 8.54680i 0.224527 + 0.388893i
\(484\) −36.4736 63.1741i −1.65789 2.87155i
\(485\) 0 0
\(486\) −2.45472 −0.111348
\(487\) −10.7380 + 18.5988i −0.486587 + 0.842794i −0.999881 0.0154192i \(-0.995092\pi\)
0.513294 + 0.858213i \(0.328425\pi\)
\(488\) 11.6828 20.2352i 0.528855 0.916004i
\(489\) 5.37403 0.243022
\(490\) 0 0
\(491\) −6.70317 11.6102i −0.302510 0.523962i 0.674194 0.738554i \(-0.264491\pi\)
−0.976704 + 0.214592i \(0.931158\pi\)
\(492\) −4.21625 7.30276i −0.190083 0.329234i
\(493\) 15.0072 0.675889
\(494\) 18.4804 31.9745i 0.831472 1.43860i
\(495\) 0 0
\(496\) −13.9775 24.2097i −0.627606 1.08705i
\(497\) 2.92216 + 5.06133i 0.131077 + 0.227032i
\(498\) −2.80912 + 4.86553i −0.125880 + 0.218030i
\(499\) 1.06797 0.0478089 0.0239045 0.999714i \(-0.492390\pi\)
0.0239045 + 0.999714i \(0.492390\pi\)
\(500\) 0 0
\(501\) 9.54985 16.5408i 0.426656 0.738989i
\(502\) 41.3197 1.84419
\(503\) −7.66505 + 13.2763i −0.341768 + 0.591959i −0.984761 0.173913i \(-0.944359\pi\)
0.642994 + 0.765872i \(0.277692\pi\)
\(504\) −10.4059 18.0236i −0.463516 0.802834i
\(505\) 0 0
\(506\) −31.2345 −1.38854
\(507\) −6.51051 + 11.2523i −0.289142 + 0.499730i
\(508\) 83.4638 3.70311
\(509\) −13.6334 23.6138i −0.604292 1.04666i −0.992163 0.124951i \(-0.960123\pi\)
0.387871 0.921714i \(-0.373211\pi\)
\(510\) 0 0
\(511\) 2.35637 4.08135i 0.104240 0.180548i
\(512\) 40.2637 1.77942
\(513\) 2.08635 3.61366i 0.0921144 0.159547i
\(514\) −19.7325 + 34.1776i −0.870362 + 1.50751i
\(515\) 0 0
\(516\) −17.6632 + 30.5936i −0.777581 + 1.34681i
\(517\) −18.8658 32.6765i −0.829717 1.43711i
\(518\) 39.3452 + 68.1479i 1.72873 + 2.99425i
\(519\) 12.5181 0.549484
\(520\) 0 0
\(521\) −0.508877 −0.0222943 −0.0111471 0.999938i \(-0.503548\pi\)
−0.0111471 + 0.999938i \(0.503548\pi\)
\(522\) 8.79330 + 15.2304i 0.384872 + 0.666618i
\(523\) 2.45015 + 4.24379i 0.107138 + 0.185568i 0.914610 0.404338i \(-0.132498\pi\)
−0.807472 + 0.589906i \(0.799165\pi\)
\(524\) 22.4090 38.8136i 0.978944 1.69558i
\(525\) 0 0
\(526\) −28.1688 + 48.7898i −1.22822 + 2.12734i
\(527\) −7.04718 + 12.2061i −0.306980 + 0.531705i
\(528\) 22.4198 0.975697
\(529\) 8.72007 15.1036i 0.379134 0.656679i
\(530\) 0 0
\(531\) 2.66624 + 4.61805i 0.115705 + 0.200407i
\(532\) 70.3064 3.04817
\(533\) −7.55251 0.00352535i −0.327135 0.000152700i
\(534\) −34.3015 −1.48437
\(535\) 0 0
\(536\) −32.8700 56.9324i −1.41977 2.45911i
\(537\) −2.78825 + 4.82938i −0.120322 + 0.208403i
\(538\) −70.1523 −3.02448
\(539\) −28.3791 + 49.1541i −1.22238 + 2.11722i
\(540\) 0 0
\(541\) 25.6457 1.10259 0.551297 0.834309i \(-0.314133\pi\)
0.551297 + 0.834309i \(0.314133\pi\)
\(542\) 22.0019 38.1083i 0.945061 1.63689i
\(543\) 7.95934 + 13.7860i 0.341568 + 0.591613i
\(544\) 0.265589 + 0.460014i 0.0113870 + 0.0197229i
\(545\) 0 0
\(546\) −37.0438 0.0172913i −1.58533 0.000739997i
\(547\) 22.3486 0.955558 0.477779 0.878480i \(-0.341442\pi\)
0.477779 + 0.878480i \(0.341442\pi\)
\(548\) 37.4796 + 64.9166i 1.60105 + 2.77310i
\(549\) −2.34951 4.06947i −0.100275 0.173681i
\(550\) 0 0
\(551\) −29.8948 −1.27356
\(552\) 5.86234 10.1539i 0.249518 0.432178i
\(553\) 6.07900 10.5291i 0.258505 0.447744i
\(554\) 8.24161 0.350153
\(555\) 0 0
\(556\) 19.6455 + 34.0269i 0.833153 + 1.44306i
\(557\) −10.1767 17.6265i −0.431199 0.746859i 0.565778 0.824558i \(-0.308576\pi\)
−0.996977 + 0.0776988i \(0.975243\pi\)
\(558\) −16.5169 −0.699216
\(559\) 15.8072 + 27.4083i 0.668571 + 1.15925i
\(560\) 0 0
\(561\) −5.65183 9.78926i −0.238621 0.413303i
\(562\) 2.12904 + 3.68760i 0.0898080 + 0.155552i
\(563\) 6.28428 10.8847i 0.264851 0.458735i −0.702674 0.711512i \(-0.748011\pi\)
0.967524 + 0.252777i \(0.0813440\pi\)
\(564\) 28.1477 1.18523
\(565\) 0 0
\(566\) −1.11538 + 1.93190i −0.0468831 + 0.0812039i
\(567\) −4.18544 −0.175772
\(568\) 3.47162 6.01302i 0.145666 0.252301i
\(569\) −6.60706 11.4438i −0.276982 0.479747i 0.693651 0.720311i \(-0.256001\pi\)
−0.970633 + 0.240564i \(0.922668\pi\)
\(570\) 0 0
\(571\) 29.1427 1.21958 0.609792 0.792562i \(-0.291253\pi\)
0.609792 + 0.792562i \(0.291253\pi\)
\(572\) 39.1949 67.8144i 1.63882 2.83546i
\(573\) −6.93117 −0.289554
\(574\) −10.7605 18.6378i −0.449135 0.777925i
\(575\) 0 0
\(576\) 3.84339 6.65694i 0.160141 0.277373i
\(577\) −19.3680 −0.806302 −0.403151 0.915133i \(-0.632085\pi\)
−0.403151 + 0.915133i \(0.632085\pi\)
\(578\) −15.4798 + 26.8118i −0.643876 + 1.11523i
\(579\) −2.03890 + 3.53148i −0.0847339 + 0.146763i
\(580\) 0 0
\(581\) −4.78970 + 8.29601i −0.198710 + 0.344176i
\(582\) 5.08990 + 8.81597i 0.210983 + 0.365434i
\(583\) 15.7929 + 27.3540i 0.654073 + 1.13289i
\(584\) −5.59888 −0.231683
\(585\) 0 0
\(586\) −32.9334 −1.36047
\(587\) 2.37400 + 4.11189i 0.0979855 + 0.169716i 0.910851 0.412736i \(-0.135427\pi\)
−0.812865 + 0.582452i \(0.802093\pi\)
\(588\) −21.1708 36.6689i −0.873068 1.51220i
\(589\) 14.0382 24.3149i 0.578435 1.00188i
\(590\) 0 0
\(591\) 5.13810 8.89944i 0.211353 0.366074i
\(592\) 15.9104 27.5576i 0.653912 1.13261i
\(593\) −35.2607 −1.44799 −0.723993 0.689808i \(-0.757695\pi\)
−0.723993 + 0.689808i \(0.757695\pi\)
\(594\) 6.62326 11.4718i 0.271756 0.470695i
\(595\) 0 0
\(596\) −5.52036 9.56154i −0.226123 0.391656i
\(597\) −6.33692 −0.259353
\(598\) −10.4262 18.0781i −0.426358 0.739270i
\(599\) −21.1497 −0.864155 −0.432078 0.901836i \(-0.642219\pi\)
−0.432078 + 0.901836i \(0.642219\pi\)
\(600\) 0 0
\(601\) 1.01691 + 1.76134i 0.0414805 + 0.0718464i 0.886020 0.463646i \(-0.153459\pi\)
−0.844540 + 0.535493i \(0.820126\pi\)
\(602\) −45.0793 + 78.0796i −1.83729 + 3.18229i
\(603\) −13.2209 −0.538395
\(604\) 11.7031 20.2704i 0.476194 0.824793i
\(605\) 0 0
\(606\) 37.4578 1.52162
\(607\) 4.02150 6.96544i 0.163228 0.282718i −0.772797 0.634653i \(-0.781143\pi\)
0.936024 + 0.351935i \(0.114476\pi\)
\(608\) −0.529063 0.916364i −0.0214563 0.0371635i
\(609\) 14.9931 + 25.9688i 0.607550 + 1.05231i
\(610\) 0 0
\(611\) 12.6153 21.8268i 0.510361 0.883019i
\(612\) 8.43251 0.340864
\(613\) −11.0515 19.1417i −0.446366 0.773128i 0.551781 0.833989i \(-0.313949\pi\)
−0.998146 + 0.0608614i \(0.980615\pi\)
\(614\) −23.8364 41.2858i −0.961957 1.66616i
\(615\) 0 0
\(616\) 112.308 4.52501
\(617\) 5.31943 9.21353i 0.214152 0.370923i −0.738858 0.673861i \(-0.764634\pi\)
0.953010 + 0.302939i \(0.0979678\pi\)
\(618\) 22.9659 39.7782i 0.923826 1.60011i
\(619\) −15.9640 −0.641648 −0.320824 0.947139i \(-0.603960\pi\)
−0.320824 + 0.947139i \(0.603960\pi\)
\(620\) 0 0
\(621\) −1.17897 2.04203i −0.0473103 0.0819439i
\(622\) 25.0357 + 43.3631i 1.00384 + 1.73870i
\(623\) −58.4860 −2.34319
\(624\) 7.48380 + 12.9763i 0.299592 + 0.519468i
\(625\) 0 0
\(626\) −16.4066 28.4170i −0.655739 1.13577i
\(627\) 11.2586 + 19.5005i 0.449627 + 0.778777i
\(628\) 10.5585 18.2878i 0.421328 0.729762i
\(629\) −16.0434 −0.639694
\(630\) 0 0
\(631\) −7.00197 + 12.1278i −0.278744 + 0.482799i −0.971073 0.238783i \(-0.923251\pi\)
0.692329 + 0.721582i \(0.256585\pi\)
\(632\) −14.4441 −0.574555
\(633\) 5.57541 9.65690i 0.221603 0.383827i
\(634\) 38.9580 + 67.4772i 1.54722 + 2.67986i
\(635\) 0 0
\(636\) −23.5629 −0.934328
\(637\) −37.9229 0.0177016i −1.50256 0.000701363i
\(638\) −94.9034 −3.75726
\(639\) −0.698173 1.20927i −0.0276193 0.0478380i
\(640\) 0 0
\(641\) −10.3747 + 17.9695i −0.409776 + 0.709752i −0.994864 0.101217i \(-0.967726\pi\)
0.585089 + 0.810969i \(0.301060\pi\)
\(642\) 2.44256 0.0964001
\(643\) −4.30119 + 7.44988i −0.169622 + 0.293794i −0.938287 0.345857i \(-0.887588\pi\)
0.768665 + 0.639652i \(0.220921\pi\)
\(644\) 19.8646 34.4065i 0.782776 1.35581i
\(645\) 0 0
\(646\) −10.7277 + 18.5810i −0.422077 + 0.731059i
\(647\) 5.34964 + 9.26586i 0.210316 + 0.364278i 0.951813 0.306678i \(-0.0992173\pi\)
−0.741497 + 0.670956i \(0.765884\pi\)
\(648\) 2.48622 + 4.30626i 0.0976679 + 0.169166i
\(649\) −28.7759 −1.12955
\(650\) 0 0
\(651\) −28.1622 −1.10377
\(652\) −10.8170 18.7356i −0.423627 0.733743i
\(653\) −0.590565 1.02289i −0.0231106 0.0400288i 0.854239 0.519881i \(-0.174024\pi\)
−0.877349 + 0.479852i \(0.840690\pi\)
\(654\) 17.6589 30.5862i 0.690519 1.19601i
\(655\) 0 0
\(656\) −4.35132 + 7.53672i −0.169891 + 0.294259i
\(657\) −0.562992 + 0.975130i −0.0219644 + 0.0380435i
\(658\) 71.8371 2.80050
\(659\) 17.0861 29.5940i 0.665580 1.15282i −0.313548 0.949572i \(-0.601518\pi\)
0.979128 0.203246i \(-0.0651491\pi\)
\(660\) 0 0
\(661\) −13.8148 23.9278i −0.537332 0.930685i −0.999047 0.0436572i \(-0.986099\pi\)
0.461715 0.887028i \(-0.347234\pi\)
\(662\) −70.8163 −2.75236
\(663\) 3.77931 6.53890i 0.146776 0.253950i
\(664\) 11.3806 0.441654
\(665\) 0 0
\(666\) −9.40049 16.2821i −0.364262 0.630920i
\(667\) −8.44659 + 14.6299i −0.327053 + 0.566473i
\(668\) −76.8889 −2.97492
\(669\) 4.46374 7.73143i 0.172578 0.298914i
\(670\) 0 0
\(671\) 25.3575 0.978917
\(672\) −0.530679 + 0.919164i −0.0204714 + 0.0354575i
\(673\) −2.06796 3.58181i −0.0797139 0.138068i 0.823413 0.567443i \(-0.192067\pi\)
−0.903126 + 0.429375i \(0.858734\pi\)
\(674\) 24.0650 + 41.6819i 0.926950 + 1.60552i
\(675\) 0 0
\(676\) 52.3336 + 0.0488564i 2.01283 + 0.00187909i
\(677\) 20.1697 0.775183 0.387591 0.921831i \(-0.373307\pi\)
0.387591 + 0.921831i \(0.373307\pi\)
\(678\) −8.37898 14.5128i −0.321793 0.557362i
\(679\) 8.67857 + 15.0317i 0.333053 + 0.576865i
\(680\) 0 0
\(681\) 25.9523 0.994496
\(682\) 44.5654 77.1896i 1.70650 2.95574i
\(683\) 9.98079 17.2872i 0.381904 0.661478i −0.609430 0.792840i \(-0.708602\pi\)
0.991334 + 0.131362i \(0.0419351\pi\)
\(684\) −16.7978 −0.642282
\(685\) 0 0
\(686\) −18.0717 31.3011i −0.689980 1.19508i
\(687\) −2.18667 3.78743i −0.0834268 0.144499i
\(688\) 36.4582 1.38996
\(689\) −10.5605 + 18.2716i −0.402322 + 0.696092i
\(690\) 0 0
\(691\) −6.43083 11.1385i −0.244640 0.423730i 0.717390 0.696672i \(-0.245337\pi\)
−0.962030 + 0.272942i \(0.912003\pi\)
\(692\) −25.1968 43.6422i −0.957840 1.65903i
\(693\) 11.2930 19.5601i 0.428987 0.743028i
\(694\) −40.4166 −1.53419
\(695\) 0 0
\(696\) 17.8122 30.8517i 0.675171 1.16943i
\(697\) 4.38772 0.166197
\(698\) −8.97977 + 15.5534i −0.339889 + 0.588706i
\(699\) −11.0686 19.1714i −0.418654 0.725129i
\(700\) 0 0
\(701\) 35.9501 1.35782 0.678908 0.734223i \(-0.262453\pi\)
0.678908 + 0.734223i \(0.262453\pi\)
\(702\) 8.85063 + 0.00413129i 0.334045 + 0.000155925i
\(703\) 31.9591 1.20536
\(704\) 20.7403 + 35.9232i 0.781678 + 1.35391i
\(705\) 0 0
\(706\) 10.9506 18.9670i 0.412130 0.713831i
\(707\) 63.8676 2.40199
\(708\) 10.7334 18.5907i 0.403384 0.698682i
\(709\) −0.575147 + 0.996184i −0.0216001 + 0.0374125i −0.876623 0.481177i \(-0.840209\pi\)
0.855023 + 0.518590i \(0.173543\pi\)
\(710\) 0 0
\(711\) −1.45241 + 2.51566i −0.0544698 + 0.0943445i
\(712\) 34.7416 + 60.1742i 1.30200 + 2.25513i
\(713\) −7.93282 13.7401i −0.297087 0.514569i
\(714\) 21.5210 0.805404
\(715\) 0 0
\(716\) 22.4491 0.838961
\(717\) −4.07486 7.05787i −0.152179 0.263581i
\(718\) 16.2133 + 28.0823i 0.605077 + 1.04802i
\(719\) 0.0185524 0.0321336i 0.000691886 0.00119838i −0.865679 0.500599i \(-0.833113\pi\)
0.866371 + 0.499401i \(0.166446\pi\)
\(720\) 0 0
\(721\) 39.1582 67.8241i 1.45833 2.52590i
\(722\) −1.94984 + 3.37723i −0.0725657 + 0.125687i
\(723\) −1.73760 −0.0646219
\(724\) 32.0416 55.4977i 1.19082 2.06255i
\(725\) 0 0
\(726\) 22.2405 + 38.5216i 0.825421 + 1.42967i
\(727\) 15.9912 0.593080 0.296540 0.955020i \(-0.404167\pi\)
0.296540 + 0.955020i \(0.404167\pi\)
\(728\) 37.4887 + 65.0024i 1.38942 + 2.40915i
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −9.19079 15.9189i −0.339934 0.588782i
\(732\) −9.45833 + 16.3823i −0.349590 + 0.605508i
\(733\) 9.99906 0.369324 0.184662 0.982802i \(-0.440881\pi\)
0.184662 + 0.982802i \(0.440881\pi\)
\(734\) −21.0399 + 36.4422i −0.776598 + 1.34511i
\(735\) 0 0
\(736\) −0.597934 −0.0220401
\(737\) 35.6722 61.7860i 1.31400 2.27592i
\(738\) 2.57094 + 4.45300i 0.0946376 + 0.163917i
\(739\) 4.89718 + 8.48216i 0.180146 + 0.312021i 0.941930 0.335809i \(-0.109010\pi\)
−0.761784 + 0.647831i \(0.775676\pi\)
\(740\) 0 0
\(741\) −7.52851 + 13.0257i −0.276567 + 0.478511i
\(742\) −60.1360 −2.20766
\(743\) 9.08281 + 15.7319i 0.333216 + 0.577147i 0.983140 0.182852i \(-0.0585329\pi\)
−0.649925 + 0.759999i \(0.725200\pi\)
\(744\) 16.7288 + 28.9752i 0.613308 + 1.06228i
\(745\) 0 0
\(746\) −0.522906 −0.0191449
\(747\) 1.14437 1.98211i 0.0418704 0.0725217i
\(748\) −22.7524 + 39.4082i −0.831909 + 1.44091i
\(749\) 4.16470 0.152175
\(750\) 0 0
\(751\) −12.1148 20.9835i −0.442076 0.765699i 0.555767 0.831338i \(-0.312425\pi\)
−0.997843 + 0.0656393i \(0.979091\pi\)
\(752\) −14.5247 25.1575i −0.529662 0.917401i
\(753\) −16.8327 −0.613419
\(754\) −31.6791 54.9289i −1.15368 2.00039i
\(755\) 0 0
\(756\) 8.42458 + 14.5918i 0.306399 + 0.530699i
\(757\) −16.1859 28.0348i −0.588287 1.01894i −0.994457 0.105146i \(-0.966469\pi\)
0.406170 0.913798i \(-0.366864\pi\)
\(758\) 38.8840 67.3490i 1.41233 2.44623i
\(759\) 12.7242 0.461860
\(760\) 0 0
\(761\) −20.1172 + 34.8441i −0.729250 + 1.26310i 0.227951 + 0.973673i \(0.426797\pi\)
−0.957201 + 0.289425i \(0.906536\pi\)
\(762\) −50.8936 −1.84368
\(763\) 30.1095 52.1512i 1.09004 1.88800i
\(764\) 13.9513 + 24.1643i 0.504739 + 0.874234i
\(765\) 0 0
\(766\) 2.81462 0.101696
\(767\) −9.60547 16.6551i −0.346834 0.601381i
\(768\) −32.1893 −1.16153
\(769\) −15.0436 26.0563i −0.542486 0.939613i −0.998761 0.0497738i \(-0.984150\pi\)
0.456275 0.889839i \(-0.349183\pi\)
\(770\) 0 0
\(771\) 8.03857 13.9232i 0.289502 0.501432i
\(772\) 16.4159 0.590820
\(773\) −6.45330 + 11.1774i −0.232109 + 0.402025i −0.958429 0.285332i \(-0.907896\pi\)
0.726319 + 0.687357i \(0.241229\pi\)
\(774\) 10.7705 18.6550i 0.387137 0.670542i
\(775\) 0 0
\(776\) 10.3104 17.8582i 0.370123 0.641071i
\(777\) −16.0284 27.7620i −0.575015 0.995955i
\(778\) −26.8227 46.4582i −0.961640 1.66561i
\(779\) −8.74049 −0.313160
\(780\) 0 0
\(781\) 7.53516 0.269629
\(782\) 6.06211 + 10.4999i 0.216781 + 0.375475i
\(783\) −3.58220 6.20455i −0.128017 0.221732i
\(784\) −21.8490 + 37.8436i −0.780321 + 1.35156i
\(785\) 0 0
\(786\) −13.6643 + 23.6673i −0.487391 + 0.844185i
\(787\) −17.8178 + 30.8613i −0.635136 + 1.10009i 0.351350 + 0.936244i \(0.385723\pi\)
−0.986486 + 0.163844i \(0.947611\pi\)
\(788\) −41.3685 −1.47369
\(789\) 11.4754 19.8759i 0.408533 0.707600i
\(790\) 0 0
\(791\) −14.2866 24.7452i −0.507974 0.879837i
\(792\) −26.8330 −0.953469
\(793\) 8.46443 + 14.6766i 0.300581 + 0.521183i
\(794\) 90.6760 3.21797
\(795\) 0 0
\(796\) 12.7552 + 22.0926i 0.452094 + 0.783050i
\(797\) −9.71289 + 16.8232i −0.344048 + 0.595909i −0.985180 0.171521i \(-0.945132\pi\)
0.641132 + 0.767431i \(0.278465\pi\)
\(798\) −42.8706 −1.51760
\(799\) −7.32310 + 12.6840i −0.259073 + 0.448727i
\(800\) 0 0
\(801\) 13.9737 0.493736
\(802\) −40.2192 + 69.6617i −1.42019 + 2.45984i
\(803\) −3.03810 5.26214i −0.107212 0.185697i
\(804\) 26.6114 + 46.0922i 0.938511 + 1.62555i
\(805\) 0 0
\(806\) 59.5525 + 0.0277979i 2.09765 + 0.000979138i
\(807\) 28.5785 1.00601
\(808\) −37.9384 65.7112i −1.33467 2.31171i
\(809\) −1.90800 3.30476i −0.0670819 0.116189i 0.830534 0.556968i \(-0.188036\pi\)
−0.897616 + 0.440779i \(0.854702\pi\)
\(810\) 0 0
\(811\) −51.4748 −1.80753 −0.903763 0.428034i \(-0.859206\pi\)
−0.903763 + 0.428034i \(0.859206\pi\)
\(812\) 60.3570 104.541i 2.11812 3.66869i
\(813\) −8.96308 + 15.5245i −0.314349 + 0.544468i
\(814\) 101.457 3.55605
\(815\) 0 0
\(816\) −4.35132 7.53672i −0.152327 0.263838i
\(817\) 18.3084 + 31.7110i 0.640529 + 1.10943i
\(818\) −12.1427 −0.424559
\(819\) 15.0908 + 0.00704408i 0.527316 + 0.000246140i
\(820\) 0 0
\(821\) −11.5513 20.0074i −0.403142 0.698262i 0.590961 0.806700i \(-0.298749\pi\)
−0.994103 + 0.108438i \(0.965415\pi\)
\(822\) −22.8539 39.5841i −0.797122 1.38065i
\(823\) −13.2905 + 23.0199i −0.463279 + 0.802423i −0.999122 0.0418949i \(-0.986661\pi\)
0.535843 + 0.844318i \(0.319994\pi\)
\(824\) −93.0425 −3.24129
\(825\) 0 0
\(826\) 27.3931 47.4463i 0.953130 1.65087i
\(827\) 25.7927 0.896899 0.448450 0.893808i \(-0.351976\pi\)
0.448450 + 0.893808i \(0.351976\pi\)
\(828\) −4.74612 + 8.22053i −0.164939 + 0.285683i
\(829\) −8.11655 14.0583i −0.281899 0.488264i 0.689953 0.723854i \(-0.257631\pi\)
−0.971853 + 0.235590i \(0.924298\pi\)
\(830\) 0 0
\(831\) −3.35745 −0.116469
\(832\) −13.8687 + 23.9955i −0.480812 + 0.831894i
\(833\) 22.0317 0.763355
\(834\) −11.9792 20.7485i −0.414805 0.718464i
\(835\) 0 0
\(836\) 45.3235 78.5026i 1.56755 2.71507i
\(837\) 6.72862 0.232575
\(838\) −15.9183 + 27.5713i −0.549888 + 0.952434i
\(839\) 3.01057 5.21447i 0.103937 0.180023i −0.809367 0.587304i \(-0.800189\pi\)
0.913303 + 0.407280i \(0.133523\pi\)
\(840\) 0 0
\(841\) −11.1643 + 19.3371i −0.384975 + 0.666796i
\(842\) −31.0894 53.8485i −1.07141 1.85574i
\(843\) −0.867323 1.50225i −0.0298722 0.0517401i
\(844\) −44.8894 −1.54516
\(845\) 0 0
\(846\) −17.1636 −0.590096
\(847\) 37.9212 + 65.6815i 1.30299 + 2.25684i
\(848\) 12.1589 + 21.0598i 0.417537 + 0.723195i
\(849\) 0.454383 0.787014i 0.0155944 0.0270103i
\(850\) 0 0
\(851\) 9.02984 15.6401i 0.309539 0.536137i
\(852\) −2.81061 + 4.86811i −0.0962898 + 0.166779i
\(853\) 44.4656 1.52247 0.761236 0.648474i \(-0.224593\pi\)
0.761236 + 0.648474i \(0.224593\pi\)
\(854\) −24.1391 + 41.8101i −0.826023 + 1.43071i
\(855\) 0 0
\(856\) −2.47390 4.28492i −0.0845561 0.146455i
\(857\) −17.2845 −0.590428 −0.295214 0.955431i \(-0.595391\pi\)
−0.295214 + 0.955431i \(0.595391\pi\)
\(858\) −23.8998 + 41.3511i −0.815927 + 1.41170i
\(859\) −10.8850 −0.371391 −0.185696 0.982607i \(-0.559454\pi\)
−0.185696 + 0.982607i \(0.559454\pi\)
\(860\) 0 0
\(861\) 4.38360 + 7.59261i 0.149393 + 0.258756i
\(862\) 26.7853 46.3936i 0.912312 1.58017i
\(863\) −33.7945 −1.15038 −0.575189 0.818021i \(-0.695071\pi\)
−0.575189 + 0.818021i \(0.695071\pi\)
\(864\) 0.126792 0.219610i 0.00431354 0.00747128i
\(865\) 0 0
\(866\) −40.2673 −1.36834
\(867\) 6.30614 10.9226i 0.214168 0.370949i
\(868\) 56.6858 + 98.1827i 1.92404 + 3.33254i
\(869\) −7.83773 13.5753i −0.265877 0.460512i
\(870\) 0 0
\(871\) 47.6685 + 0.0222507i 1.61519 + 0.000753935i
\(872\) −71.5421 −2.42272
\(873\) −2.07351 3.59143i −0.0701778 0.121552i
\(874\) −12.0759 20.9161i −0.408474 0.707498i
\(875\) 0 0
\(876\) 4.53283 0.153150
\(877\) 13.8321 23.9580i 0.467078 0.809003i −0.532214 0.846610i \(-0.678640\pi\)
0.999293 + 0.0376065i \(0.0119733\pi\)
\(878\) −20.4466 + 35.4145i −0.690038 + 1.19518i
\(879\) 13.4164 0.452523
\(880\) 0 0
\(881\) 10.6504 + 18.4470i 0.358820 + 0.621495i 0.987764 0.155956i \(-0.0498458\pi\)
−0.628944 + 0.777451i \(0.716512\pi\)
\(882\) 12.9093 + 22.3595i 0.434678 + 0.752884i
\(883\) −13.7397 −0.462379 −0.231190 0.972909i \(-0.574262\pi\)
−0.231190 + 0.972909i \(0.574262\pi\)
\(884\) −30.4038 0.0141919i −1.02259 0.000477324i
\(885\) 0 0
\(886\) 13.0893 + 22.6714i 0.439744 + 0.761659i
\(887\) 12.2511 + 21.2196i 0.411353 + 0.712483i 0.995038 0.0994964i \(-0.0317232\pi\)
−0.583685 + 0.811980i \(0.698390\pi\)
\(888\) −19.0422 + 32.9821i −0.639015 + 1.10681i
\(889\) −86.7765 −2.91039
\(890\) 0 0
\(891\) −2.69817 + 4.67337i −0.0903922 + 0.156564i
\(892\) −35.9390 −1.20333
\(893\) 14.5879 25.2669i 0.488164 0.845525i
\(894\) 3.36614 + 5.83033i 0.112581 + 0.194995i
\(895\) 0 0
\(896\) −81.0974 −2.70927
\(897\) 4.24739 + 7.36463i 0.141816 + 0.245898i
\(898\) −37.4854 −1.25091
\(899\) −24.1032 41.7480i −0.803888 1.39237i
\(900\) 0 0
\(901\) 6.13028 10.6180i 0.204229 0.353735i
\(902\) −27.7474 −0.923886
\(903\) 18.3643 31.8079i 0.611126 1.05850i
\(904\) −16.9730 + 29.3981i −0.564513 + 0.977765i
\(905\) 0 0
\(906\) −7.13621 + 12.3603i −0.237085 + 0.410643i
\(907\) −16.1004 27.8868i −0.534606 0.925965i −0.999182 0.0404320i \(-0.987127\pi\)
0.464576 0.885533i \(-0.346207\pi\)
\(908\) −52.2377 90.4783i −1.73357 3.00263i
\(909\) −15.2595 −0.506125
\(910\) 0 0
\(911\) 5.94165 0.196856 0.0984279 0.995144i \(-0.468619\pi\)
0.0984279 + 0.995144i \(0.468619\pi\)
\(912\) 8.66799 + 15.0134i 0.287026 + 0.497143i
\(913\) 6.17543 + 10.6962i 0.204377 + 0.353991i
\(914\) 29.4342 50.9815i 0.973595 1.68632i
\(915\) 0 0
\(916\) −8.80281 + 15.2469i −0.290853 + 0.503772i
\(917\) −23.2985 + 40.3541i −0.769383 + 1.33261i
\(918\) −5.14188 −0.169707
\(919\) 18.1234 31.3906i 0.597835 1.03548i −0.395305 0.918550i \(-0.629361\pi\)
0.993140 0.116931i \(-0.0373057\pi\)
\(920\) 0 0
\(921\) 9.71041 + 16.8189i 0.319969 + 0.554203i
\(922\) −8.34222 −0.274736
\(923\) 2.51526 + 4.36126i 0.0827909 + 0.143553i
\(924\) −90.9239 −2.99118
\(925\) 0 0
\(926\) 30.9559 + 53.6173i 1.01728 + 1.76197i
\(927\) −9.35582 + 16.2048i −0.307286 + 0.532234i
\(928\) −1.81677 −0.0596385
\(929\) 10.2148 17.6926i 0.335138 0.580476i −0.648373 0.761323i \(-0.724550\pi\)
0.983511 + 0.180846i \(0.0578837\pi\)
\(930\) 0 0
\(931\) −43.8880 −1.43837
\(932\) −44.5585 + 77.1776i −1.45956 + 2.52804i
\(933\) −10.1990 17.6652i −0.333900 0.578332i
\(934\) −18.2413 31.5949i −0.596874 1.03382i
\(935\) 0 0
\(936\) −8.95694 15.5306i −0.292767 0.507634i
\(937\) 5.03650 0.164535 0.0822676 0.996610i \(-0.473784\pi\)
0.0822676 + 0.996610i \(0.473784\pi\)
\(938\) 67.9162 + 117.634i 2.21754 + 3.84090i
\(939\) 6.68368 + 11.5765i 0.218114 + 0.377784i
\(940\) 0 0
\(941\) 16.7621 0.546429 0.273215 0.961953i \(-0.411913\pi\)
0.273215 + 0.961953i \(0.411913\pi\)
\(942\) −6.43822 + 11.1513i −0.209768 + 0.363330i
\(943\) −2.46957 + 4.27742i −0.0804203 + 0.139292i
\(944\) −22.1544 −0.721065
\(945\) 0 0
\(946\) 58.1213 + 100.669i 1.88969 + 3.27303i
\(947\) −19.0207 32.9448i −0.618089 1.07056i −0.989834 0.142227i \(-0.954574\pi\)
0.371745 0.928335i \(-0.378760\pi\)
\(948\) 11.6939 0.379799
\(949\) 2.03154 3.51493i 0.0659465 0.114100i
\(950\) 0 0
\(951\) −15.8706 27.4887i −0.514640 0.891383i
\(952\) −21.7972 37.7538i −0.706450 1.22361i
\(953\) 17.6171 30.5137i 0.570674 0.988437i −0.425823 0.904807i \(-0.640015\pi\)
0.996497 0.0836302i \(-0.0266514\pi\)
\(954\) 14.3679 0.465178
\(955\) 0 0
\(956\) −16.4040 + 28.4126i −0.530544 + 0.918929i
\(957\) 38.6615 1.24975
\(958\) −47.1137 + 81.6033i −1.52217 + 2.63648i
\(959\) −38.9672 67.4932i −1.25832 2.17947i
\(960\) 0 0
\(961\) 14.2743 0.460462
\(962\) 33.8666 + 58.7219i 1.09190 + 1.89327i
\(963\) −0.995045 −0.0320649
\(964\) 3.49749 + 6.05782i 0.112646 + 0.195109i
\(965\) 0 0
\(966\) −12.1128 + 20.9800i −0.389724 + 0.675021i
\(967\) 12.5190 0.402585 0.201292 0.979531i \(-0.435486\pi\)
0.201292 + 0.979531i \(0.435486\pi\)
\(968\) 45.0516 78.0317i 1.44801 2.50803i
\(969\) 4.37024 7.56948i 0.140392 0.243167i
\(970\) 0 0
\(971\) 16.3558 28.3291i 0.524883 0.909124i −0.474697 0.880149i \(-0.657442\pi\)
0.999580 0.0289746i \(-0.00922420\pi\)
\(972\) −2.01283 3.48633i −0.0645616 0.111824i
\(973\) −20.4252 35.3775i −0.654801 1.13415i
\(974\) −52.7178 −1.68919
\(975\) 0 0
\(976\) 19.5227 0.624906
\(977\) −4.80950 8.33031i −0.153870 0.266510i 0.778777 0.627301i \(-0.215840\pi\)
−0.932647 + 0.360791i \(0.882507\pi\)
\(978\) 6.59587 + 11.4244i 0.210913 + 0.365312i
\(979\) −37.7034 + 65.3042i −1.20501 + 2.08713i
\(980\) 0 0
\(981\) −7.19386 + 12.4601i −0.229682 + 0.397822i
\(982\) 16.4544 28.4999i 0.525082 0.909468i
\(983\) 37.0370 1.18130 0.590649 0.806929i \(-0.298872\pi\)
0.590649 + 0.806929i \(0.298872\pi\)
\(984\) 5.20785 9.02027i 0.166020 0.287556i
\(985\) 0 0
\(986\) 18.4192 + 31.9030i 0.586588 + 1.01600i
\(987\) −29.2649 −0.931511
\(988\) 60.5655 + 0.0282707i 1.92684 + 0.000899411i
\(989\) 20.6917 0.657956
\(990\) 0 0
\(991\) 24.0884 + 41.7224i 0.765195 + 1.32536i 0.940144 + 0.340778i \(0.110691\pi\)
−0.174949 + 0.984577i \(0.555976\pi\)
\(992\) 0.853134 1.47767i 0.0270870 0.0469161i
\(993\) 28.8490 0.915496
\(994\) −7.17309 + 12.4242i −0.227517 + 0.394070i
\(995\) 0 0
\(996\) −9.21371 −0.291948
\(997\) −18.9666 + 32.8511i −0.600677 + 1.04040i 0.392041 + 0.919948i \(0.371769\pi\)
−0.992719 + 0.120456i \(0.961564\pi\)
\(998\) 1.31079 + 2.27035i 0.0414922 + 0.0718666i
\(999\) 3.82956 + 6.63298i 0.121162 + 0.209858i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.i.n.601.6 yes 12
5.2 odd 4 975.2.bb.l.874.2 24
5.3 odd 4 975.2.bb.l.874.11 24
5.4 even 2 975.2.i.p.601.1 yes 12
13.9 even 3 inner 975.2.i.n.451.6 12
65.9 even 6 975.2.i.p.451.1 yes 12
65.22 odd 12 975.2.bb.l.724.11 24
65.48 odd 12 975.2.bb.l.724.2 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
975.2.i.n.451.6 12 13.9 even 3 inner
975.2.i.n.601.6 yes 12 1.1 even 1 trivial
975.2.i.p.451.1 yes 12 65.9 even 6
975.2.i.p.601.1 yes 12 5.4 even 2
975.2.bb.l.724.2 24 65.48 odd 12
975.2.bb.l.724.11 24 65.22 odd 12
975.2.bb.l.874.2 24 5.2 odd 4
975.2.bb.l.874.11 24 5.3 odd 4