Properties

Label 975.2.o.m.476.3
Level $975$
Weight $2$
Character 975.476
Analytic conductor $7.785$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(476,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.476");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.o (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.619810816.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{5} + 14x^{4} - 8x^{3} + 2x^{2} + 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 476.3
Root \(-1.49094 - 1.49094i\) of defining polynomial
Character \(\chi\) \(=\) 975.476
Dual form 975.2.o.m.551.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.664640 + 0.664640i) q^{2} +(-1.15558 - 1.29021i) q^{3} +1.11651i q^{4} +(1.62557 + 0.0894818i) q^{6} +(2.20073 - 2.20073i) q^{7} +(-2.07136 - 2.07136i) q^{8} +(-0.329281 + 2.98187i) q^{9} +(-0.820218 - 0.820218i) q^{11} +(1.44053 - 1.29021i) q^{12} +(3.60136 + 0.173703i) q^{13} +2.92539i q^{14} +0.520402 q^{16} -0.688845 q^{17} +(-1.76302 - 2.20073i) q^{18} +(-1.82630 - 1.82630i) q^{19} +(-5.38251 - 0.296288i) q^{21} +1.09030 q^{22} -4.86537 q^{23} +(-0.278871 + 5.06610i) q^{24} +(-2.50906 + 2.27816i) q^{26} +(4.22775 - 3.02095i) q^{27} +(2.45713 + 2.45713i) q^{28} +1.93998i q^{29} +(-0.910518 - 0.910518i) q^{31} +(3.79683 - 3.79683i) q^{32} +(-0.110427 + 2.00608i) q^{33} +(0.457834 - 0.457834i) q^{34} +(-3.32928 - 0.367644i) q^{36} +(1.82630 - 1.82630i) q^{37} +2.42766 q^{38} +(-3.93754 - 4.84724i) q^{39} +(5.96093 - 5.96093i) q^{41} +(3.77436 - 3.38051i) q^{42} +2.50580i q^{43} +(0.915778 - 0.915778i) q^{44} +(3.23372 - 3.23372i) q^{46} +(-8.62839 - 8.62839i) q^{47} +(-0.601365 - 0.671427i) q^{48} -2.68640i q^{49} +(0.796014 + 0.888754i) q^{51} +(-0.193941 + 4.02095i) q^{52} -8.99159i q^{53} +(-0.802092 + 4.81778i) q^{54} -9.11698 q^{56} +(-0.245878 + 4.46673i) q^{57} +(-1.28939 - 1.28939i) q^{58} +(-3.46755 - 3.46755i) q^{59} +13.9094 q^{61} +1.21033 q^{62} +(5.83764 + 7.28695i) q^{63} +6.08786i q^{64} +(-1.25993 - 1.40672i) q^{66} +(-5.39820 - 5.39820i) q^{67} -0.769099i q^{68} +(5.62231 + 6.27734i) q^{69} +(5.58324 - 5.58324i) q^{71} +(6.85858 - 5.49447i) q^{72} +(9.43292 - 9.43292i) q^{73} +2.42766i q^{74} +(2.03907 - 2.03907i) q^{76} -3.61015 q^{77} +(5.83872 + 0.604623i) q^{78} -6.07461 q^{79} +(-8.78315 - 1.96375i) q^{81} +7.92375i q^{82} +(-3.93390 + 3.93390i) q^{83} +(0.330807 - 6.00961i) q^{84} +(-1.66546 - 1.66546i) q^{86} +(2.50298 - 2.24180i) q^{87} +3.39793i q^{88} +(1.07814 + 1.07814i) q^{89} +(8.30790 - 7.54335i) q^{91} -5.43221i q^{92} +(-0.122585 + 2.22693i) q^{93} +11.4696 q^{94} +(-9.28624 - 0.511175i) q^{96} +(-7.02377 - 7.02377i) q^{97} +(1.78549 + 1.78549i) q^{98} +(2.71587 - 2.17570i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{2} + 2 q^{3} + 4 q^{6} + 14 q^{7} + 12 q^{8} - 4 q^{9} + 4 q^{11} + 14 q^{12} - 2 q^{13} - 8 q^{16} - 28 q^{17} + 30 q^{18} - 2 q^{19} + 8 q^{21} + 24 q^{22} - 36 q^{23} - 18 q^{24} - 32 q^{26}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.664640 + 0.664640i −0.469972 + 0.469972i −0.901905 0.431934i \(-0.857831\pi\)
0.431934 + 0.901905i \(0.357831\pi\)
\(3\) −1.15558 1.29021i −0.667173 0.744903i
\(4\) 1.11651i 0.558253i
\(5\) 0 0
\(6\) 1.62557 + 0.0894818i 0.663636 + 0.0365308i
\(7\) 2.20073 2.20073i 0.831797 0.831797i −0.155966 0.987762i \(-0.549849\pi\)
0.987762 + 0.155966i \(0.0498489\pi\)
\(8\) −2.07136 2.07136i −0.732335 0.732335i
\(9\) −0.329281 + 2.98187i −0.109760 + 0.993958i
\(10\) 0 0
\(11\) −0.820218 0.820218i −0.247305 0.247305i 0.572559 0.819864i \(-0.305951\pi\)
−0.819864 + 0.572559i \(0.805951\pi\)
\(12\) 1.44053 1.29021i 0.415844 0.372451i
\(13\) 3.60136 + 0.173703i 0.998839 + 0.0481766i
\(14\) 2.92539i 0.781842i
\(15\) 0 0
\(16\) 0.520402 0.130100
\(17\) −0.688845 −0.167069 −0.0835347 0.996505i \(-0.526621\pi\)
−0.0835347 + 0.996505i \(0.526621\pi\)
\(18\) −1.76302 2.20073i −0.415548 0.518716i
\(19\) −1.82630 1.82630i −0.418981 0.418981i 0.465871 0.884852i \(-0.345741\pi\)
−0.884852 + 0.465871i \(0.845741\pi\)
\(20\) 0 0
\(21\) −5.38251 0.296288i −1.17456 0.0646554i
\(22\) 1.09030 0.232453
\(23\) −4.86537 −1.01450 −0.507250 0.861799i \(-0.669338\pi\)
−0.507250 + 0.861799i \(0.669338\pi\)
\(24\) −0.278871 + 5.06610i −0.0569242 + 1.03411i
\(25\) 0 0
\(26\) −2.50906 + 2.27816i −0.492068 + 0.446784i
\(27\) 4.22775 3.02095i 0.813631 0.581381i
\(28\) 2.45713 + 2.45713i 0.464353 + 0.464353i
\(29\) 1.93998i 0.360246i 0.983644 + 0.180123i \(0.0576495\pi\)
−0.983644 + 0.180123i \(0.942350\pi\)
\(30\) 0 0
\(31\) −0.910518 0.910518i −0.163534 0.163534i 0.620596 0.784130i \(-0.286891\pi\)
−0.784130 + 0.620596i \(0.786891\pi\)
\(32\) 3.79683 3.79683i 0.671191 0.671191i
\(33\) −0.110427 + 2.00608i −0.0192230 + 0.349213i
\(34\) 0.457834 0.457834i 0.0785179 0.0785179i
\(35\) 0 0
\(36\) −3.32928 0.367644i −0.554880 0.0612740i
\(37\) 1.82630 1.82630i 0.300241 0.300241i −0.540867 0.841108i \(-0.681904\pi\)
0.841108 + 0.540867i \(0.181904\pi\)
\(38\) 2.42766 0.393819
\(39\) −3.93754 4.84724i −0.630511 0.776180i
\(40\) 0 0
\(41\) 5.96093 5.96093i 0.930941 0.930941i −0.0668241 0.997765i \(-0.521287\pi\)
0.997765 + 0.0668241i \(0.0212866\pi\)
\(42\) 3.77436 3.38051i 0.582396 0.521624i
\(43\) 2.50580i 0.382132i 0.981577 + 0.191066i \(0.0611944\pi\)
−0.981577 + 0.191066i \(0.938806\pi\)
\(44\) 0.915778 0.915778i 0.138059 0.138059i
\(45\) 0 0
\(46\) 3.23372 3.23372i 0.476786 0.476786i
\(47\) −8.62839 8.62839i −1.25858 1.25858i −0.951771 0.306809i \(-0.900739\pi\)
−0.306809 0.951771i \(-0.599261\pi\)
\(48\) −0.601365 0.671427i −0.0867995 0.0969122i
\(49\) 2.68640i 0.383772i
\(50\) 0 0
\(51\) 0.796014 + 0.888754i 0.111464 + 0.124450i
\(52\) −0.193941 + 4.02095i −0.0268948 + 0.557605i
\(53\) 8.99159i 1.23509i −0.786536 0.617545i \(-0.788127\pi\)
0.786536 0.617545i \(-0.211873\pi\)
\(54\) −0.802092 + 4.81778i −0.109151 + 0.655617i
\(55\) 0 0
\(56\) −9.11698 −1.21831
\(57\) −0.245878 + 4.46673i −0.0325673 + 0.591633i
\(58\) −1.28939 1.28939i −0.169305 0.169305i
\(59\) −3.46755 3.46755i −0.451437 0.451437i 0.444394 0.895831i \(-0.353419\pi\)
−0.895831 + 0.444394i \(0.853419\pi\)
\(60\) 0 0
\(61\) 13.9094 1.78091 0.890456 0.455069i \(-0.150385\pi\)
0.890456 + 0.455069i \(0.150385\pi\)
\(62\) 1.21033 0.153713
\(63\) 5.83764 + 7.28695i 0.735473 + 0.918070i
\(64\) 6.08786i 0.760982i
\(65\) 0 0
\(66\) −1.25993 1.40672i −0.155086 0.173155i
\(67\) −5.39820 5.39820i −0.659495 0.659495i 0.295766 0.955260i \(-0.404425\pi\)
−0.955260 + 0.295766i \(0.904425\pi\)
\(68\) 0.769099i 0.0932670i
\(69\) 5.62231 + 6.27734i 0.676847 + 0.755703i
\(70\) 0 0
\(71\) 5.58324 5.58324i 0.662609 0.662609i −0.293386 0.955994i \(-0.594782\pi\)
0.955994 + 0.293386i \(0.0947820\pi\)
\(72\) 6.85858 5.49447i 0.808292 0.647529i
\(73\) 9.43292 9.43292i 1.10404 1.10404i 0.110122 0.993918i \(-0.464876\pi\)
0.993918 0.110122i \(-0.0351241\pi\)
\(74\) 2.42766i 0.282210i
\(75\) 0 0
\(76\) 2.03907 2.03907i 0.233898 0.233898i
\(77\) −3.61015 −0.411415
\(78\) 5.83872 + 0.604623i 0.661105 + 0.0684601i
\(79\) −6.07461 −0.683448 −0.341724 0.939800i \(-0.611011\pi\)
−0.341724 + 0.939800i \(0.611011\pi\)
\(80\) 0 0
\(81\) −8.78315 1.96375i −0.975905 0.218194i
\(82\) 7.92375i 0.875032i
\(83\) −3.93390 + 3.93390i −0.431802 + 0.431802i −0.889241 0.457439i \(-0.848767\pi\)
0.457439 + 0.889241i \(0.348767\pi\)
\(84\) 0.330807 6.00961i 0.0360941 0.655702i
\(85\) 0 0
\(86\) −1.66546 1.66546i −0.179591 0.179591i
\(87\) 2.50298 2.24180i 0.268348 0.240346i
\(88\) 3.39793i 0.362220i
\(89\) 1.07814 + 1.07814i 0.114283 + 0.114283i 0.761936 0.647653i \(-0.224249\pi\)
−0.647653 + 0.761936i \(0.724249\pi\)
\(90\) 0 0
\(91\) 8.30790 7.54335i 0.870904 0.790758i
\(92\) 5.43221i 0.566347i
\(93\) −0.122585 + 2.22693i −0.0127114 + 0.230922i
\(94\) 11.4696 1.18299
\(95\) 0 0
\(96\) −9.28624 0.511175i −0.947773 0.0521715i
\(97\) −7.02377 7.02377i −0.713155 0.713155i 0.254039 0.967194i \(-0.418241\pi\)
−0.967194 + 0.254039i \(0.918241\pi\)
\(98\) 1.78549 + 1.78549i 0.180362 + 0.180362i
\(99\) 2.71587 2.17570i 0.272955 0.218667i
\(100\) 0 0
\(101\) 19.0737 1.89791 0.948954 0.315415i \(-0.102144\pi\)
0.948954 + 0.315415i \(0.102144\pi\)
\(102\) −1.11976 0.0616391i −0.110873 0.00610318i
\(103\) 14.1165i 1.39094i −0.718555 0.695470i \(-0.755196\pi\)
0.718555 0.695470i \(-0.244804\pi\)
\(104\) −7.09991 7.81951i −0.696203 0.766766i
\(105\) 0 0
\(106\) 5.97618 + 5.97618i 0.580457 + 0.580457i
\(107\) 18.1484i 1.75447i −0.480064 0.877234i \(-0.659386\pi\)
0.480064 0.877234i \(-0.340614\pi\)
\(108\) 3.37290 + 4.72031i 0.324558 + 0.454212i
\(109\) −9.49294 9.49294i −0.909259 0.909259i 0.0869537 0.996212i \(-0.472287\pi\)
−0.996212 + 0.0869537i \(0.972287\pi\)
\(110\) 0 0
\(111\) −4.46673 0.245878i −0.423964 0.0233377i
\(112\) 1.14526 1.14526i 0.108217 0.108217i
\(113\) 7.29303i 0.686070i 0.939323 + 0.343035i \(0.111455\pi\)
−0.939323 + 0.343035i \(0.888545\pi\)
\(114\) −2.80535 3.13219i −0.262745 0.293357i
\(115\) 0 0
\(116\) −2.16600 −0.201108
\(117\) −1.70382 + 10.6816i −0.157518 + 0.987516i
\(118\) 4.60935 0.424325
\(119\) −1.51596 + 1.51596i −0.138968 + 0.138968i
\(120\) 0 0
\(121\) 9.65448i 0.877680i
\(122\) −9.24473 + 9.24473i −0.836979 + 0.836979i
\(123\) −14.5792 0.802531i −1.31456 0.0723618i
\(124\) 1.01660 1.01660i 0.0912933 0.0912933i
\(125\) 0 0
\(126\) −8.72313 0.963274i −0.777118 0.0858152i
\(127\) 12.1706i 1.07996i 0.841677 + 0.539981i \(0.181569\pi\)
−0.841677 + 0.539981i \(0.818431\pi\)
\(128\) 3.54743 + 3.54743i 0.313551 + 0.313551i
\(129\) 3.23301 2.89565i 0.284651 0.254948i
\(130\) 0 0
\(131\) 9.06213i 0.791762i 0.918302 + 0.395881i \(0.129561\pi\)
−0.918302 + 0.395881i \(0.870439\pi\)
\(132\) −2.23980 0.123293i −0.194949 0.0107313i
\(133\) −8.03836 −0.697014
\(134\) 7.17572 0.619888
\(135\) 0 0
\(136\) 1.42684 + 1.42684i 0.122351 + 0.122351i
\(137\) 13.0162 + 13.0162i 1.11205 + 1.11205i 0.992874 + 0.119172i \(0.0380240\pi\)
0.119172 + 0.992874i \(0.461976\pi\)
\(138\) −7.90899 0.435362i −0.673258 0.0370605i
\(139\) 5.96375 0.505839 0.252919 0.967487i \(-0.418609\pi\)
0.252919 + 0.967487i \(0.418609\pi\)
\(140\) 0 0
\(141\) −1.16166 + 21.1032i −0.0978291 + 1.77721i
\(142\) 7.42169i 0.622815i
\(143\) −2.81143 3.09638i −0.235104 0.258932i
\(144\) −0.171358 + 1.55177i −0.0142799 + 0.129314i
\(145\) 0 0
\(146\) 12.5390i 1.03774i
\(147\) −3.46602 + 3.10435i −0.285873 + 0.256042i
\(148\) 2.03907 + 2.03907i 0.167611 + 0.167611i
\(149\) −3.10679 + 3.10679i −0.254518 + 0.254518i −0.822820 0.568302i \(-0.807601\pi\)
0.568302 + 0.822820i \(0.307601\pi\)
\(150\) 0 0
\(151\) 0.0298443 0.0298443i 0.00242869 0.00242869i −0.705891 0.708320i \(-0.749453\pi\)
0.708320 + 0.705891i \(0.249453\pi\)
\(152\) 7.56582i 0.613669i
\(153\) 0.226823 2.05405i 0.0183376 0.166060i
\(154\) 2.39945 2.39945i 0.193353 0.193353i
\(155\) 0 0
\(156\) 5.41198 4.39629i 0.433305 0.351985i
\(157\) −18.6772 −1.49060 −0.745300 0.666729i \(-0.767694\pi\)
−0.745300 + 0.666729i \(0.767694\pi\)
\(158\) 4.03743 4.03743i 0.321201 0.321201i
\(159\) −11.6010 + 10.3905i −0.920022 + 0.824019i
\(160\) 0 0
\(161\) −10.7074 + 10.7074i −0.843857 + 0.843857i
\(162\) 7.14282 4.53245i 0.561193 0.356103i
\(163\) 2.74196 2.74196i 0.214767 0.214767i −0.591522 0.806289i \(-0.701473\pi\)
0.806289 + 0.591522i \(0.201473\pi\)
\(164\) 6.65541 + 6.65541i 0.519700 + 0.519700i
\(165\) 0 0
\(166\) 5.22926i 0.405870i
\(167\) 12.0831 + 12.0831i 0.935016 + 0.935016i 0.998014 0.0629973i \(-0.0200660\pi\)
−0.0629973 + 0.998014i \(0.520066\pi\)
\(168\) 10.5354 + 11.7628i 0.812822 + 0.907521i
\(169\) 12.9397 + 1.25114i 0.995358 + 0.0962414i
\(170\) 0 0
\(171\) 6.04715 4.84442i 0.462437 0.370462i
\(172\) −2.79775 −0.213326
\(173\) −24.0678 −1.82984 −0.914919 0.403637i \(-0.867746\pi\)
−0.914919 + 0.403637i \(0.867746\pi\)
\(174\) −0.173593 + 3.15358i −0.0131601 + 0.239072i
\(175\) 0 0
\(176\) −0.426843 0.426843i −0.0321745 0.0321745i
\(177\) −0.466843 + 8.48089i −0.0350901 + 0.637463i
\(178\) −1.43315 −0.107419
\(179\) −9.42733 −0.704632 −0.352316 0.935881i \(-0.614606\pi\)
−0.352316 + 0.935881i \(0.614606\pi\)
\(180\) 0 0
\(181\) 17.8034i 1.32332i 0.749806 + 0.661658i \(0.230147\pi\)
−0.749806 + 0.661658i \(0.769853\pi\)
\(182\) −0.508149 + 10.5354i −0.0376665 + 0.780934i
\(183\) −16.0734 17.9460i −1.18818 1.32661i
\(184\) 10.0779 + 10.0779i 0.742953 + 0.742953i
\(185\) 0 0
\(186\) −1.39864 1.56158i −0.102553 0.114501i
\(187\) 0.565003 + 0.565003i 0.0413171 + 0.0413171i
\(188\) 9.63365 9.63365i 0.702606 0.702606i
\(189\) 2.65585 15.9524i 0.193185 1.16037i
\(190\) 0 0
\(191\) 7.08269i 0.512486i −0.966612 0.256243i \(-0.917515\pi\)
0.966612 0.256243i \(-0.0824847\pi\)
\(192\) 7.85461 7.03499i 0.566858 0.507707i
\(193\) −4.47645 + 4.47645i −0.322222 + 0.322222i −0.849619 0.527397i \(-0.823168\pi\)
0.527397 + 0.849619i \(0.323168\pi\)
\(194\) 9.33656 0.670326
\(195\) 0 0
\(196\) 2.99939 0.214242
\(197\) −17.0750 + 17.0750i −1.21654 + 1.21654i −0.247708 + 0.968835i \(0.579677\pi\)
−0.968835 + 0.247708i \(0.920323\pi\)
\(198\) −0.359015 + 3.25114i −0.0255141 + 0.231048i
\(199\) 2.76666i 0.196123i −0.995180 0.0980616i \(-0.968736\pi\)
0.995180 0.0980616i \(-0.0312642\pi\)
\(200\) 0 0
\(201\) −0.726769 + 13.2028i −0.0512624 + 0.931256i
\(202\) −12.6772 + 12.6772i −0.891963 + 0.891963i
\(203\) 4.26937 + 4.26937i 0.299651 + 0.299651i
\(204\) −0.992299 + 0.888754i −0.0694749 + 0.0622252i
\(205\) 0 0
\(206\) 9.38240 + 9.38240i 0.653703 + 0.653703i
\(207\) 1.60207 14.5079i 0.111352 1.00837i
\(208\) 1.87416 + 0.0903955i 0.129949 + 0.00626780i
\(209\) 2.99592i 0.207232i
\(210\) 0 0
\(211\) −8.53412 −0.587513 −0.293757 0.955880i \(-0.594906\pi\)
−0.293757 + 0.955880i \(0.594906\pi\)
\(212\) 10.0392 0.689493
\(213\) −13.6554 0.751682i −0.935654 0.0515044i
\(214\) 12.0621 + 12.0621i 0.824550 + 0.824550i
\(215\) 0 0
\(216\) −15.0146 2.49973i −1.02162 0.170085i
\(217\) −4.00761 −0.272054
\(218\) 12.6188 0.854652
\(219\) −23.0709 1.26997i −1.55899 0.0858168i
\(220\) 0 0
\(221\) −2.48078 0.119655i −0.166875 0.00804884i
\(222\) 3.13219 2.80535i 0.210219 0.188283i
\(223\) 17.3123 + 17.3123i 1.15932 + 1.15932i 0.984622 + 0.174698i \(0.0558949\pi\)
0.174698 + 0.984622i \(0.444105\pi\)
\(224\) 16.7116i 1.11659i
\(225\) 0 0
\(226\) −4.84724 4.84724i −0.322434 0.322434i
\(227\) −7.27653 + 7.27653i −0.482960 + 0.482960i −0.906076 0.423116i \(-0.860936\pi\)
0.423116 + 0.906076i \(0.360936\pi\)
\(228\) −4.98713 0.274524i −0.330281 0.0181808i
\(229\) 15.2314 15.2314i 1.00652 1.00652i 0.00653900 0.999979i \(-0.497919\pi\)
0.999979 0.00653900i \(-0.00208144\pi\)
\(230\) 0 0
\(231\) 4.17181 + 4.65785i 0.274485 + 0.306464i
\(232\) 4.01840 4.01840i 0.263821 0.263821i
\(233\) 10.5507 0.691198 0.345599 0.938382i \(-0.387676\pi\)
0.345599 + 0.938382i \(0.387676\pi\)
\(234\) −5.96701 8.23187i −0.390075 0.538134i
\(235\) 0 0
\(236\) 3.87154 3.87154i 0.252016 0.252016i
\(237\) 7.01969 + 7.83753i 0.455978 + 0.509102i
\(238\) 2.01514i 0.130622i
\(239\) 10.7892 10.7892i 0.697897 0.697897i −0.266060 0.963957i \(-0.585722\pi\)
0.963957 + 0.266060i \(0.0857218\pi\)
\(240\) 0 0
\(241\) 4.73192 4.73192i 0.304810 0.304810i −0.538082 0.842892i \(-0.680851\pi\)
0.842892 + 0.538082i \(0.180851\pi\)
\(242\) 6.41676 + 6.41676i 0.412485 + 0.412485i
\(243\) 7.61596 + 13.6014i 0.488564 + 0.872528i
\(244\) 15.5299i 0.994200i
\(245\) 0 0
\(246\) 10.2233 9.15651i 0.651814 0.583798i
\(247\) −6.25993 6.89439i −0.398310 0.438680i
\(248\) 3.77201i 0.239523i
\(249\) 9.62149 + 0.529629i 0.609737 + 0.0335639i
\(250\) 0 0
\(251\) −23.8077 −1.50273 −0.751365 0.659887i \(-0.770604\pi\)
−0.751365 + 0.659887i \(0.770604\pi\)
\(252\) −8.13593 + 6.51776i −0.512515 + 0.410580i
\(253\) 3.99066 + 3.99066i 0.250891 + 0.250891i
\(254\) −8.08904 8.08904i −0.507552 0.507552i
\(255\) 0 0
\(256\) −16.8912 −1.05570
\(257\) 27.4019 1.70929 0.854643 0.519217i \(-0.173776\pi\)
0.854643 + 0.519217i \(0.173776\pi\)
\(258\) −0.224224 + 4.07336i −0.0139596 + 0.253596i
\(259\) 8.03836i 0.499480i
\(260\) 0 0
\(261\) −5.78478 0.638799i −0.358069 0.0395407i
\(262\) −6.02306 6.02306i −0.372106 0.372106i
\(263\) 21.4135i 1.32042i 0.751083 + 0.660208i \(0.229532\pi\)
−0.751083 + 0.660208i \(0.770468\pi\)
\(264\) 4.38404 3.92657i 0.269819 0.241664i
\(265\) 0 0
\(266\) 5.34262 5.34262i 0.327577 0.327577i
\(267\) 0.145152 2.63691i 0.00888318 0.161376i
\(268\) 6.02712 6.02712i 0.368165 0.368165i
\(269\) 2.04786i 0.124860i −0.998049 0.0624301i \(-0.980115\pi\)
0.998049 0.0624301i \(-0.0198851\pi\)
\(270\) 0 0
\(271\) −12.9996 + 12.9996i −0.789667 + 0.789667i −0.981439 0.191772i \(-0.938576\pi\)
0.191772 + 0.981439i \(0.438576\pi\)
\(272\) −0.358476 −0.0217358
\(273\) −19.3329 2.00200i −1.17008 0.121167i
\(274\) −17.3021 −1.04526
\(275\) 0 0
\(276\) −7.00869 + 6.27734i −0.421874 + 0.377852i
\(277\) 3.90482i 0.234618i 0.993095 + 0.117309i \(0.0374268\pi\)
−0.993095 + 0.117309i \(0.962573\pi\)
\(278\) −3.96375 + 3.96375i −0.237730 + 0.237730i
\(279\) 3.01487 2.41523i 0.180495 0.144596i
\(280\) 0 0
\(281\) −11.0540 11.0540i −0.659429 0.659429i 0.295816 0.955245i \(-0.404409\pi\)
−0.955245 + 0.295816i \(0.904409\pi\)
\(282\) −13.2540 14.7981i −0.789262 0.881216i
\(283\) 4.52473i 0.268967i 0.990916 + 0.134484i \(0.0429376\pi\)
−0.990916 + 0.134484i \(0.957062\pi\)
\(284\) 6.23372 + 6.23372i 0.369903 + 0.369903i
\(285\) 0 0
\(286\) 3.92657 + 0.189389i 0.232183 + 0.0111988i
\(287\) 26.2368i 1.54871i
\(288\) 10.0715 + 12.5719i 0.593466 + 0.740806i
\(289\) −16.5255 −0.972088
\(290\) 0 0
\(291\) −0.945623 + 17.1786i −0.0554334 + 1.00703i
\(292\) 10.5319 + 10.5319i 0.616334 + 0.616334i
\(293\) 7.37736 + 7.37736i 0.430990 + 0.430990i 0.888965 0.457975i \(-0.151425\pi\)
−0.457975 + 0.888965i \(0.651425\pi\)
\(294\) 0.240384 4.36694i 0.0140195 0.254685i
\(295\) 0 0
\(296\) −7.56582 −0.439754
\(297\) −5.94551 0.989844i −0.344994 0.0574366i
\(298\) 4.12980i 0.239233i
\(299\) −17.5220 0.845131i −1.01332 0.0488752i
\(300\) 0 0
\(301\) 5.51459 + 5.51459i 0.317856 + 0.317856i
\(302\) 0.0396715i 0.00228284i
\(303\) −22.0412 24.6091i −1.26623 1.41376i
\(304\) −0.950408 0.950408i −0.0545096 0.0545096i
\(305\) 0 0
\(306\) 1.21445 + 1.51596i 0.0694254 + 0.0866617i
\(307\) 1.80981 1.80981i 0.103291 0.103291i −0.653573 0.756864i \(-0.726731\pi\)
0.756864 + 0.653573i \(0.226731\pi\)
\(308\) 4.03076i 0.229674i
\(309\) −18.2132 + 16.3127i −1.03612 + 0.927998i
\(310\) 0 0
\(311\) 12.9697 0.735445 0.367723 0.929936i \(-0.380138\pi\)
0.367723 + 0.929936i \(0.380138\pi\)
\(312\) −1.88431 + 18.1964i −0.106678 + 1.03017i
\(313\) −25.7774 −1.45703 −0.728513 0.685032i \(-0.759788\pi\)
−0.728513 + 0.685032i \(0.759788\pi\)
\(314\) 12.4136 12.4136i 0.700540 0.700540i
\(315\) 0 0
\(316\) 6.78234i 0.381537i
\(317\) 1.18422 1.18422i 0.0665126 0.0665126i −0.673068 0.739581i \(-0.735024\pi\)
0.739581 + 0.673068i \(0.235024\pi\)
\(318\) 0.804584 14.6165i 0.0451188 0.819650i
\(319\) 1.59121 1.59121i 0.0890906 0.0890906i
\(320\) 0 0
\(321\) −23.4152 + 20.9718i −1.30691 + 1.17053i
\(322\) 14.2331i 0.793178i
\(323\) 1.25804 + 1.25804i 0.0699989 + 0.0699989i
\(324\) 2.19254 9.80644i 0.121808 0.544802i
\(325\) 0 0
\(326\) 3.64484i 0.201869i
\(327\) −1.27805 + 23.2177i −0.0706764 + 1.28394i
\(328\) −24.6944 −1.36352
\(329\) −37.9775 −2.09377
\(330\) 0 0
\(331\) 1.79656 + 1.79656i 0.0987480 + 0.0987480i 0.754755 0.656007i \(-0.227756\pi\)
−0.656007 + 0.754755i \(0.727756\pi\)
\(332\) −4.39223 4.39223i −0.241055 0.241055i
\(333\) 4.84442 + 6.04715i 0.265473 + 0.331382i
\(334\) −16.0618 −0.878863
\(335\) 0 0
\(336\) −2.80107 0.154189i −0.152811 0.00841169i
\(337\) 10.2757i 0.559753i −0.960036 0.279877i \(-0.909706\pi\)
0.960036 0.279877i \(-0.0902936\pi\)
\(338\) −9.43177 + 7.76866i −0.513021 + 0.422559i
\(339\) 9.40954 8.42766i 0.511056 0.457728i
\(340\) 0 0
\(341\) 1.49365i 0.0808855i
\(342\) −0.799383 + 7.23898i −0.0432257 + 0.391439i
\(343\) 9.49305 + 9.49305i 0.512576 + 0.512576i
\(344\) 5.19041 5.19041i 0.279848 0.279848i
\(345\) 0 0
\(346\) 15.9964 15.9964i 0.859972 0.859972i
\(347\) 16.8673i 0.905482i −0.891642 0.452741i \(-0.850446\pi\)
0.891642 0.452741i \(-0.149554\pi\)
\(348\) 2.50298 + 2.79460i 0.134174 + 0.149806i
\(349\) 14.9509 14.9509i 0.800302 0.800302i −0.182840 0.983143i \(-0.558529\pi\)
0.983143 + 0.182840i \(0.0585291\pi\)
\(350\) 0 0
\(351\) 15.7504 10.1452i 0.840695 0.541508i
\(352\) −6.22846 −0.331978
\(353\) 6.54324 6.54324i 0.348261 0.348261i −0.511200 0.859462i \(-0.670799\pi\)
0.859462 + 0.511200i \(0.170799\pi\)
\(354\) −5.32646 5.94703i −0.283098 0.316081i
\(355\) 0 0
\(356\) −1.20375 + 1.20375i −0.0637988 + 0.0637988i
\(357\) 3.70772 + 0.204097i 0.196233 + 0.0108019i
\(358\) 6.26579 6.26579i 0.331157 0.331157i
\(359\) 13.2705 + 13.2705i 0.700388 + 0.700388i 0.964494 0.264106i \(-0.0850767\pi\)
−0.264106 + 0.964494i \(0.585077\pi\)
\(360\) 0 0
\(361\) 12.3293i 0.648910i
\(362\) −11.8329 11.8329i −0.621921 0.621921i
\(363\) −12.4563 + 11.1565i −0.653787 + 0.585565i
\(364\) 8.42220 + 9.27582i 0.441443 + 0.486185i
\(365\) 0 0
\(366\) 22.6106 + 1.24464i 1.18188 + 0.0650581i
\(367\) 15.3590 0.801734 0.400867 0.916136i \(-0.368709\pi\)
0.400867 + 0.916136i \(0.368709\pi\)
\(368\) −2.53195 −0.131987
\(369\) 15.8119 + 19.7376i 0.823136 + 1.02750i
\(370\) 0 0
\(371\) −19.7880 19.7880i −1.02734 1.02734i
\(372\) −2.48639 0.136867i −0.128913 0.00709621i
\(373\) −8.55388 −0.442903 −0.221452 0.975171i \(-0.571080\pi\)
−0.221452 + 0.975171i \(0.571080\pi\)
\(374\) −0.751048 −0.0388357
\(375\) 0 0
\(376\) 35.7449i 1.84340i
\(377\) −0.336981 + 6.98659i −0.0173554 + 0.359827i
\(378\) 8.83743 + 12.3678i 0.454548 + 0.636131i
\(379\) −12.1073 12.1073i −0.621909 0.621909i 0.324110 0.946019i \(-0.394935\pi\)
−0.946019 + 0.324110i \(0.894935\pi\)
\(380\) 0 0
\(381\) 15.7026 14.0640i 0.804467 0.720522i
\(382\) 4.70745 + 4.70745i 0.240854 + 0.240854i
\(383\) 17.3280 17.3280i 0.885421 0.885421i −0.108658 0.994079i \(-0.534655\pi\)
0.994079 + 0.108658i \(0.0346555\pi\)
\(384\) 0.477597 8.67625i 0.0243723 0.442758i
\(385\) 0 0
\(386\) 5.95046i 0.302870i
\(387\) −7.47199 0.825113i −0.379823 0.0419429i
\(388\) 7.84208 7.84208i 0.398121 0.398121i
\(389\) 18.7474 0.950533 0.475267 0.879842i \(-0.342352\pi\)
0.475267 + 0.879842i \(0.342352\pi\)
\(390\) 0 0
\(391\) 3.35148 0.169492
\(392\) −5.56450 + 5.56450i −0.281050 + 0.281050i
\(393\) 11.6920 10.4720i 0.589786 0.528242i
\(394\) 22.6975i 1.14348i
\(395\) 0 0
\(396\) 2.42919 + 3.03228i 0.122071 + 0.152378i
\(397\) −18.5498 + 18.5498i −0.930988 + 0.930988i −0.997768 0.0667796i \(-0.978728\pi\)
0.0667796 + 0.997768i \(0.478728\pi\)
\(398\) 1.83883 + 1.83883i 0.0921724 + 0.0921724i
\(399\) 9.28895 + 10.3712i 0.465029 + 0.519208i
\(400\) 0 0
\(401\) 20.2282 + 20.2282i 1.01015 + 1.01015i 0.999948 + 0.0102015i \(0.00324729\pi\)
0.0102015 + 0.999948i \(0.496753\pi\)
\(402\) −8.29210 9.25818i −0.413572 0.461756i
\(403\) −3.12095 3.43727i −0.155465 0.171223i
\(404\) 21.2959i 1.05951i
\(405\) 0 0
\(406\) −5.67520 −0.281655
\(407\) −2.99592 −0.148502
\(408\) 0.192099 3.48975i 0.00951030 0.172769i
\(409\) −1.85494 1.85494i −0.0917210 0.0917210i 0.659758 0.751479i \(-0.270659\pi\)
−0.751479 + 0.659758i \(0.770659\pi\)
\(410\) 0 0
\(411\) 1.75239 31.8348i 0.0864390 1.57029i
\(412\) 15.7612 0.776497
\(413\) −15.2623 −0.751007
\(414\) 8.57775 + 10.7074i 0.421573 + 0.526238i
\(415\) 0 0
\(416\) 14.3333 13.0143i 0.702748 0.638076i
\(417\) −6.89157 7.69448i −0.337482 0.376801i
\(418\) −1.99121 1.99121i −0.0973933 0.0973933i
\(419\) 22.6906i 1.10851i 0.832347 + 0.554255i \(0.186997\pi\)
−0.832347 + 0.554255i \(0.813003\pi\)
\(420\) 0 0
\(421\) 0.559853 + 0.559853i 0.0272856 + 0.0272856i 0.720618 0.693332i \(-0.243858\pi\)
−0.693332 + 0.720618i \(0.743858\pi\)
\(422\) 5.67212 5.67212i 0.276115 0.276115i
\(423\) 28.5699 22.8876i 1.38912 1.11283i
\(424\) −18.6248 + 18.6248i −0.904500 + 0.904500i
\(425\) 0 0
\(426\) 9.57554 8.57634i 0.463936 0.415525i
\(427\) 30.6107 30.6107i 1.48136 1.48136i
\(428\) 20.2627 0.979437
\(429\) −0.746152 + 7.20544i −0.0360246 + 0.347882i
\(430\) 0 0
\(431\) 25.5824 25.5824i 1.23226 1.23226i 0.269165 0.963094i \(-0.413252\pi\)
0.963094 0.269165i \(-0.0867477\pi\)
\(432\) 2.20013 1.57211i 0.105854 0.0756380i
\(433\) 18.8544i 0.906087i −0.891488 0.453043i \(-0.850338\pi\)
0.891488 0.453043i \(-0.149662\pi\)
\(434\) 2.66362 2.66362i 0.127858 0.127858i
\(435\) 0 0
\(436\) 10.5989 10.5989i 0.507596 0.507596i
\(437\) 8.88561 + 8.88561i 0.425056 + 0.425056i
\(438\) 16.1779 14.4898i 0.773012 0.692349i
\(439\) 18.3463i 0.875620i 0.899068 + 0.437810i \(0.144246\pi\)
−0.899068 + 0.437810i \(0.855754\pi\)
\(440\) 0 0
\(441\) 8.01052 + 0.884582i 0.381453 + 0.0421229i
\(442\) 1.72836 1.56930i 0.0822095 0.0746440i
\(443\) 7.32597i 0.348067i −0.984740 0.174034i \(-0.944320\pi\)
0.984740 0.174034i \(-0.0556802\pi\)
\(444\) 0.274524 4.98713i 0.0130283 0.236679i
\(445\) 0 0
\(446\) −23.0130 −1.08970
\(447\) 7.59854 + 0.418273i 0.359399 + 0.0197836i
\(448\) 13.3977 + 13.3977i 0.632983 + 0.632983i
\(449\) 20.5433 + 20.5433i 0.969498 + 0.969498i 0.999548 0.0300506i \(-0.00956684\pi\)
−0.0300506 + 0.999548i \(0.509567\pi\)
\(450\) 0 0
\(451\) −9.77852 −0.460453
\(452\) −8.14271 −0.383001
\(453\) −0.0729928 0.00401799i −0.00342950 0.000188782i
\(454\) 9.67255i 0.453955i
\(455\) 0 0
\(456\) 9.76149 8.74289i 0.457124 0.409424i
\(457\) −12.2258 12.2258i −0.571898 0.571898i 0.360760 0.932659i \(-0.382517\pi\)
−0.932659 + 0.360760i \(0.882517\pi\)
\(458\) 20.2468i 0.946070i
\(459\) −2.91227 + 2.08096i −0.135933 + 0.0971310i
\(460\) 0 0
\(461\) −20.3228 + 20.3228i −0.946525 + 0.946525i −0.998641 0.0521156i \(-0.983404\pi\)
0.0521156 + 0.998641i \(0.483404\pi\)
\(462\) −5.86855 0.323043i −0.273030 0.0150293i
\(463\) 6.93836 6.93836i 0.322453 0.322453i −0.527254 0.849707i \(-0.676779\pi\)
0.849707 + 0.527254i \(0.176779\pi\)
\(464\) 1.00957i 0.0468681i
\(465\) 0 0
\(466\) −7.01241 + 7.01241i −0.324844 + 0.324844i
\(467\) −14.5021 −0.671075 −0.335538 0.942027i \(-0.608918\pi\)
−0.335538 + 0.942027i \(0.608918\pi\)
\(468\) −11.9261 1.90233i −0.551284 0.0879351i
\(469\) −23.7599 −1.09713
\(470\) 0 0
\(471\) 21.5829 + 24.0975i 0.994488 + 1.11035i
\(472\) 14.3651i 0.661206i
\(473\) 2.05531 2.05531i 0.0945031 0.0945031i
\(474\) −9.87471 0.543567i −0.453560 0.0249669i
\(475\) 0 0
\(476\) −1.69258 1.69258i −0.0775792 0.0775792i
\(477\) 26.8118 + 2.96076i 1.22763 + 0.135564i
\(478\) 14.3419i 0.655984i
\(479\) 12.9148 + 12.9148i 0.590095 + 0.590095i 0.937657 0.347562i \(-0.112990\pi\)
−0.347562 + 0.937657i \(0.612990\pi\)
\(480\) 0 0
\(481\) 6.89439 6.25993i 0.314357 0.285428i
\(482\) 6.29005i 0.286504i
\(483\) 26.1879 + 1.44155i 1.19159 + 0.0655928i
\(484\) 10.7793 0.489968
\(485\) 0 0
\(486\) −14.1019 3.97814i −0.639675 0.180452i
\(487\) −2.48442 2.48442i −0.112580 0.112580i 0.648573 0.761153i \(-0.275366\pi\)
−0.761153 + 0.648573i \(0.775366\pi\)
\(488\) −28.8113 28.8113i −1.30422 1.30422i
\(489\) −6.70626 0.369156i −0.303268 0.0166938i
\(490\) 0 0
\(491\) 16.8134 0.758780 0.379390 0.925237i \(-0.376134\pi\)
0.379390 + 0.925237i \(0.376134\pi\)
\(492\) 0.896031 16.2777i 0.0403962 0.733856i
\(493\) 1.33635i 0.0601860i
\(494\) 8.74289 + 0.421693i 0.393361 + 0.0189729i
\(495\) 0 0
\(496\) −0.473835 0.473835i −0.0212758 0.0212758i
\(497\) 24.5744i 1.10231i
\(498\) −6.74685 + 6.04282i −0.302333 + 0.270785i
\(499\) −11.5502 11.5502i −0.517060 0.517060i 0.399621 0.916681i \(-0.369142\pi\)
−0.916681 + 0.399621i \(0.869142\pi\)
\(500\) 0 0
\(501\) 1.62677 29.5526i 0.0726786 1.32031i
\(502\) 15.8236 15.8236i 0.706241 0.706241i
\(503\) 11.9608i 0.533304i −0.963793 0.266652i \(-0.914083\pi\)
0.963793 0.266652i \(-0.0859174\pi\)
\(504\) 3.00205 27.1857i 0.133722 1.21095i
\(505\) 0 0
\(506\) −5.30471 −0.235823
\(507\) −13.3385 18.1407i −0.592386 0.805655i
\(508\) −13.5885 −0.602892
\(509\) −1.50135 + 1.50135i −0.0665461 + 0.0665461i −0.739597 0.673050i \(-0.764984\pi\)
0.673050 + 0.739597i \(0.264984\pi\)
\(510\) 0 0
\(511\) 41.5186i 1.83667i
\(512\) 4.13175 4.13175i 0.182599 0.182599i
\(513\) −13.2383 2.20399i −0.584484 0.0973084i
\(514\) −18.2124 + 18.2124i −0.803316 + 0.803316i
\(515\) 0 0
\(516\) 3.23301 + 3.60968i 0.142325 + 0.158907i
\(517\) 14.1543i 0.622506i
\(518\) 5.34262 + 5.34262i 0.234741 + 0.234741i
\(519\) 27.8122 + 31.0525i 1.22082 + 1.36305i
\(520\) 0 0
\(521\) 8.71097i 0.381635i 0.981626 + 0.190817i \(0.0611138\pi\)
−0.981626 + 0.190817i \(0.938886\pi\)
\(522\) 4.26937 3.42023i 0.186865 0.149699i
\(523\) −5.25678 −0.229863 −0.114931 0.993373i \(-0.536665\pi\)
−0.114931 + 0.993373i \(0.536665\pi\)
\(524\) −10.1179 −0.442003
\(525\) 0 0
\(526\) −14.2323 14.2323i −0.620558 0.620558i
\(527\) 0.627206 + 0.627206i 0.0273215 + 0.0273215i
\(528\) −0.0574667 + 1.04397i −0.00250092 + 0.0454328i
\(529\) 0.671807 0.0292090
\(530\) 0 0
\(531\) 11.4816 9.19800i 0.498259 0.399159i
\(532\) 8.97488i 0.389110i
\(533\) 22.5029 20.4320i 0.974709 0.885010i
\(534\) 1.65612 + 1.84907i 0.0716674 + 0.0800171i
\(535\) 0 0
\(536\) 22.3632i 0.965942i
\(537\) 10.8940 + 12.1632i 0.470111 + 0.524882i
\(538\) 1.36109 + 1.36109i 0.0586808 + 0.0586808i
\(539\) −2.20344 + 2.20344i −0.0949088 + 0.0949088i
\(540\) 0 0
\(541\) −7.12828 + 7.12828i −0.306469 + 0.306469i −0.843538 0.537069i \(-0.819531\pi\)
0.537069 + 0.843538i \(0.319531\pi\)
\(542\) 17.2801i 0.742243i
\(543\) 22.9701 20.5732i 0.985741 0.882880i
\(544\) −2.61543 + 2.61543i −0.112136 + 0.112136i
\(545\) 0 0
\(546\) 14.1801 11.5188i 0.606850 0.492960i
\(547\) 34.7849 1.48730 0.743648 0.668571i \(-0.233094\pi\)
0.743648 + 0.668571i \(0.233094\pi\)
\(548\) −14.5326 + 14.5326i −0.620803 + 0.620803i
\(549\) −4.58009 + 41.4760i −0.195473 + 1.77015i
\(550\) 0 0
\(551\) 3.54298 3.54298i 0.150936 0.150936i
\(552\) 1.35681 24.6484i 0.0577496 1.04911i
\(553\) −13.3686 + 13.3686i −0.568490 + 0.568490i
\(554\) −2.59530 2.59530i −0.110264 0.110264i
\(555\) 0 0
\(556\) 6.65856i 0.282386i
\(557\) −7.60755 7.60755i −0.322342 0.322342i 0.527323 0.849665i \(-0.323196\pi\)
−0.849665 + 0.527323i \(0.823196\pi\)
\(558\) −0.398540 + 3.60907i −0.0168715 + 0.152784i
\(559\) −0.435267 + 9.02431i −0.0184098 + 0.381688i
\(560\) 0 0
\(561\) 0.0760674 1.38188i 0.00321157 0.0583429i
\(562\) 14.6939 0.619826
\(563\) −21.5401 −0.907807 −0.453903 0.891051i \(-0.649969\pi\)
−0.453903 + 0.891051i \(0.649969\pi\)
\(564\) −23.5619 1.29700i −0.992133 0.0546134i
\(565\) 0 0
\(566\) −3.00732 3.00732i −0.126407 0.126407i
\(567\) −23.6510 + 15.0076i −0.993248 + 0.630262i
\(568\) −23.1298 −0.970503
\(569\) 30.7745 1.29013 0.645067 0.764126i \(-0.276829\pi\)
0.645067 + 0.764126i \(0.276829\pi\)
\(570\) 0 0
\(571\) 25.0540i 1.04848i 0.851572 + 0.524238i \(0.175650\pi\)
−0.851572 + 0.524238i \(0.824350\pi\)
\(572\) 3.45713 3.13898i 0.144550 0.131247i
\(573\) −9.13816 + 8.18460i −0.381752 + 0.341917i
\(574\) 17.4380 + 17.4380i 0.727849 + 0.727849i
\(575\) 0 0
\(576\) −18.1532 2.00462i −0.756385 0.0835257i
\(577\) 13.6669 + 13.6669i 0.568959 + 0.568959i 0.931837 0.362878i \(-0.118206\pi\)
−0.362878 + 0.931837i \(0.618206\pi\)
\(578\) 10.9835 10.9835i 0.456854 0.456854i
\(579\) 10.9484 + 0.602673i 0.455002 + 0.0250462i
\(580\) 0 0
\(581\) 17.3149i 0.718343i
\(582\) −10.7891 12.0461i −0.447223 0.499328i
\(583\) −7.37507 + 7.37507i −0.305444 + 0.305444i
\(584\) −39.0779 −1.61705
\(585\) 0 0
\(586\) −9.80659 −0.405106
\(587\) 5.19514 5.19514i 0.214426 0.214426i −0.591718 0.806145i \(-0.701550\pi\)
0.806145 + 0.591718i \(0.201550\pi\)
\(588\) −3.46602 3.86984i −0.142936 0.159589i
\(589\) 3.32575i 0.137035i
\(590\) 0 0
\(591\) 41.7618 + 2.29884i 1.71785 + 0.0945616i
\(592\) 0.950408 0.950408i 0.0390615 0.0390615i
\(593\) 4.27083 + 4.27083i 0.175382 + 0.175382i 0.789339 0.613957i \(-0.210423\pi\)
−0.613957 + 0.789339i \(0.710423\pi\)
\(594\) 4.60952 3.29374i 0.189131 0.135144i
\(595\) 0 0
\(596\) −3.46875 3.46875i −0.142086 0.142086i
\(597\) −3.56957 + 3.19709i −0.146093 + 0.130848i
\(598\) 12.2075 11.0841i 0.499202 0.453262i
\(599\) 17.0139i 0.695171i −0.937648 0.347585i \(-0.887002\pi\)
0.937648 0.347585i \(-0.112998\pi\)
\(600\) 0 0
\(601\) −36.2957 −1.48053 −0.740266 0.672314i \(-0.765300\pi\)
−0.740266 + 0.672314i \(0.765300\pi\)
\(602\) −7.33044 −0.298767
\(603\) 17.8743 14.3192i 0.727896 0.583124i
\(604\) 0.0333213 + 0.0333213i 0.00135583 + 0.00135583i
\(605\) 0 0
\(606\) 31.0057 + 1.70675i 1.25952 + 0.0693321i
\(607\) 37.6421 1.52785 0.763924 0.645306i \(-0.223270\pi\)
0.763924 + 0.645306i \(0.223270\pi\)
\(608\) −13.8683 −0.562433
\(609\) 0.574794 10.4420i 0.0232918 0.423130i
\(610\) 0 0
\(611\) −29.5752 32.5728i −1.19648 1.31775i
\(612\) 2.29336 + 0.253250i 0.0927035 + 0.0102370i
\(613\) 10.7888 + 10.7888i 0.435755 + 0.435755i 0.890581 0.454826i \(-0.150298\pi\)
−0.454826 + 0.890581i \(0.650298\pi\)
\(614\) 2.40574i 0.0970879i
\(615\) 0 0
\(616\) 7.47791 + 7.47791i 0.301294 + 0.301294i
\(617\) −27.1551 + 27.1551i −1.09322 + 1.09322i −0.0980399 + 0.995182i \(0.531257\pi\)
−0.995182 + 0.0980399i \(0.968743\pi\)
\(618\) 1.26317 22.9474i 0.0508122 0.923078i
\(619\) 12.5227 12.5227i 0.503329 0.503329i −0.409142 0.912471i \(-0.634172\pi\)
0.912471 + 0.409142i \(0.134172\pi\)
\(620\) 0 0
\(621\) −20.5696 + 14.6980i −0.825428 + 0.589811i
\(622\) −8.62020 + 8.62020i −0.345638 + 0.345638i
\(623\) 4.74540 0.190120
\(624\) −2.04910 2.52251i −0.0820298 0.100981i
\(625\) 0 0
\(626\) 17.1327 17.1327i 0.684761 0.684761i
\(627\) 3.86537 3.46202i 0.154368 0.138260i
\(628\) 20.8532i 0.832132i
\(629\) −1.25804 + 1.25804i −0.0501611 + 0.0501611i
\(630\) 0 0
\(631\) −0.0650570 + 0.0650570i −0.00258988 + 0.00258988i −0.708401 0.705811i \(-0.750583\pi\)
0.705811 + 0.708401i \(0.250583\pi\)
\(632\) 12.5827 + 12.5827i 0.500513 + 0.500513i
\(633\) 9.86184 + 11.0108i 0.391973 + 0.437640i
\(634\) 1.57417i 0.0625181i
\(635\) 0 0
\(636\) −11.6010 12.9526i −0.460011 0.513605i
\(637\) 0.466637 9.67472i 0.0184888 0.383326i
\(638\) 2.11516i 0.0837401i
\(639\) 14.8101 + 18.4870i 0.585877 + 0.731333i
\(640\) 0 0
\(641\) 5.72335 0.226059 0.113029 0.993592i \(-0.463945\pi\)
0.113029 + 0.993592i \(0.463945\pi\)
\(642\) 1.62395 29.5014i 0.0640921 1.16433i
\(643\) 24.0577 + 24.0577i 0.948742 + 0.948742i 0.998749 0.0500069i \(-0.0159243\pi\)
−0.0500069 + 0.998749i \(0.515924\pi\)
\(644\) −11.9548 11.9548i −0.471086 0.471086i
\(645\) 0 0
\(646\) −1.67228 −0.0657951
\(647\) −33.6947 −1.32468 −0.662338 0.749205i \(-0.730436\pi\)
−0.662338 + 0.749205i \(0.730436\pi\)
\(648\) 14.1254 + 22.2606i 0.554898 + 0.874481i
\(649\) 5.68830i 0.223285i
\(650\) 0 0
\(651\) 4.63110 + 5.17065i 0.181507 + 0.202654i
\(652\) 3.06142 + 3.06142i 0.119894 + 0.119894i
\(653\) 6.47341i 0.253324i 0.991946 + 0.126662i \(0.0404264\pi\)
−0.991946 + 0.126662i \(0.959574\pi\)
\(654\) −14.5820 16.2809i −0.570201 0.636632i
\(655\) 0 0
\(656\) 3.10208 3.10208i 0.121116 0.121116i
\(657\) 25.0217 + 31.2339i 0.976190 + 1.21855i
\(658\) 25.2414 25.2414i 0.984011 0.984011i
\(659\) 0.908137i 0.0353760i −0.999844 0.0176880i \(-0.994369\pi\)
0.999844 0.0176880i \(-0.00563056\pi\)
\(660\) 0 0
\(661\) −22.4502 + 22.4502i −0.873210 + 0.873210i −0.992821 0.119610i \(-0.961835\pi\)
0.119610 + 0.992821i \(0.461835\pi\)
\(662\) −2.38814 −0.0928176
\(663\) 2.71236 + 3.33900i 0.105339 + 0.129676i
\(664\) 16.2970 0.632448
\(665\) 0 0
\(666\) −7.23898 0.799383i −0.280505 0.0309754i
\(667\) 9.43873i 0.365469i
\(668\) −13.4908 + 13.4908i −0.521976 + 0.521976i
\(669\) 2.33079 42.3423i 0.0901137 1.63705i
\(670\) 0 0
\(671\) −11.4087 11.4087i −0.440429 0.440429i
\(672\) −21.5614 + 19.3115i −0.831751 + 0.744959i
\(673\) 40.5282i 1.56225i 0.624377 + 0.781123i \(0.285353\pi\)
−0.624377 + 0.781123i \(0.714647\pi\)
\(674\) 6.82965 + 6.82965i 0.263068 + 0.263068i
\(675\) 0 0
\(676\) −1.39690 + 14.4472i −0.0537270 + 0.555662i
\(677\) 16.4579i 0.632527i 0.948671 + 0.316264i \(0.102428\pi\)
−0.948671 + 0.316264i \(0.897572\pi\)
\(678\) −0.652593 + 11.8553i −0.0250627 + 0.455301i
\(679\) −30.9148 −1.18640
\(680\) 0 0
\(681\) 17.7968 + 0.979652i 0.681976 + 0.0375404i
\(682\) −0.992738 0.992738i −0.0380139 0.0380139i
\(683\) −8.30681 8.30681i −0.317851 0.317851i 0.530090 0.847941i \(-0.322158\pi\)
−0.847941 + 0.530090i \(0.822158\pi\)
\(684\) 5.40883 + 6.75168i 0.206812 + 0.258157i
\(685\) 0 0
\(686\) −12.6189 −0.481793
\(687\) −37.2527 2.05063i −1.42128 0.0782364i
\(688\) 1.30402i 0.0497155i
\(689\) 1.56187 32.3820i 0.0595025 1.23366i
\(690\) 0 0
\(691\) 24.4080 + 24.4080i 0.928524 + 0.928524i 0.997611 0.0690863i \(-0.0220084\pi\)
−0.0690863 + 0.997611i \(0.522008\pi\)
\(692\) 26.8718i 1.02151i
\(693\) 1.18875 10.7650i 0.0451570 0.408929i
\(694\) 11.2107 + 11.2107i 0.425551 + 0.425551i
\(695\) 0 0
\(696\) −9.82814 0.541004i −0.372535 0.0205067i
\(697\) −4.10615 + 4.10615i −0.155532 + 0.155532i
\(698\) 19.8739i 0.752239i
\(699\) −12.1921 13.6126i −0.461149 0.514876i
\(700\) 0 0
\(701\) 25.2071 0.952058 0.476029 0.879430i \(-0.342076\pi\)
0.476029 + 0.879430i \(0.342076\pi\)
\(702\) −3.72549 + 17.2112i −0.140610 + 0.649597i
\(703\) −6.67072 −0.251591
\(704\) 4.99337 4.99337i 0.188195 0.188195i
\(705\) 0 0
\(706\) 8.69780i 0.327346i
\(707\) 41.9761 41.9761i 1.57867 1.57867i
\(708\) −9.46897 0.521233i −0.355866 0.0195891i
\(709\) 3.27176 3.27176i 0.122873 0.122873i −0.642996 0.765869i \(-0.722309\pi\)
0.765869 + 0.642996i \(0.222309\pi\)
\(710\) 0 0
\(711\) 2.00025 18.1137i 0.0750154 0.679318i
\(712\) 4.46644i 0.167387i
\(713\) 4.43001 + 4.43001i 0.165905 + 0.165905i
\(714\) −2.59995 + 2.32865i −0.0973006 + 0.0871474i
\(715\) 0 0
\(716\) 10.5257i 0.393363i
\(717\) −26.3882 1.45257i −0.985484 0.0542474i
\(718\) −17.6402 −0.658325
\(719\) −12.3985 −0.462385 −0.231192 0.972908i \(-0.574263\pi\)
−0.231192 + 0.972908i \(0.574263\pi\)
\(720\) 0 0
\(721\) −31.0666 31.0666i −1.15698 1.15698i
\(722\) 8.19454 + 8.19454i 0.304969 + 0.304969i
\(723\) −11.5733 0.637067i −0.430414 0.0236928i
\(724\) −19.8776 −0.738745
\(725\) 0 0
\(726\) 0.863901 15.6940i 0.0320624 0.582460i
\(727\) 14.6064i 0.541722i −0.962619 0.270861i \(-0.912692\pi\)
0.962619 0.270861i \(-0.0873083\pi\)
\(728\) −32.8336 1.58365i −1.21689 0.0586940i
\(729\) 8.74777 25.5436i 0.323992 0.946060i
\(730\) 0 0
\(731\) 1.72611i 0.0638425i
\(732\) 20.0368 17.9460i 0.740582 0.663303i
\(733\) −24.5952 24.5952i −0.908445 0.908445i 0.0877014 0.996147i \(-0.472048\pi\)
−0.996147 + 0.0877014i \(0.972048\pi\)
\(734\) −10.2082 + 10.2082i −0.376792 + 0.376792i
\(735\) 0 0
\(736\) −18.4730 + 18.4730i −0.680923 + 0.680923i
\(737\) 8.85540i 0.326193i
\(738\) −23.6276 2.60914i −0.869745 0.0960437i
\(739\) −32.1016 + 32.1016i −1.18088 + 1.18088i −0.201357 + 0.979518i \(0.564535\pi\)
−0.979518 + 0.201357i \(0.935465\pi\)
\(740\) 0 0
\(741\) −1.66138 + 16.0436i −0.0610324 + 0.589377i
\(742\) 26.3039 0.965645
\(743\) 31.6922 31.6922i 1.16268 1.16268i 0.178788 0.983888i \(-0.442782\pi\)
0.983888 0.178788i \(-0.0572177\pi\)
\(744\) 4.86669 4.35886i 0.178421 0.159803i
\(745\) 0 0
\(746\) 5.68526 5.68526i 0.208152 0.208152i
\(747\) −10.4350 13.0258i −0.381798 0.476588i
\(748\) −0.630829 + 0.630829i −0.0230654 + 0.0230654i
\(749\) −39.9396 39.9396i −1.45936 1.45936i
\(750\) 0 0
\(751\) 8.44360i 0.308111i 0.988062 + 0.154056i \(0.0492335\pi\)
−0.988062 + 0.154056i \(0.950766\pi\)
\(752\) −4.49023 4.49023i −0.163742 0.163742i
\(753\) 27.5117 + 30.7169i 1.00258 + 1.11939i
\(754\) −4.41960 4.86754i −0.160952 0.177265i
\(755\) 0 0
\(756\) 17.8110 + 2.96528i 0.647778 + 0.107846i
\(757\) −33.4040 −1.21409 −0.607045 0.794667i \(-0.707645\pi\)
−0.607045 + 0.794667i \(0.707645\pi\)
\(758\) 16.0940 0.584559
\(759\) 0.537270 9.76031i 0.0195017 0.354277i
\(760\) 0 0
\(761\) 2.45709 + 2.45709i 0.0890694 + 0.0890694i 0.750238 0.661168i \(-0.229939\pi\)
−0.661168 + 0.750238i \(0.729939\pi\)
\(762\) −1.08904 + 19.7841i −0.0394519 + 0.716701i
\(763\) −41.7827 −1.51264
\(764\) 7.90787 0.286097
\(765\) 0 0
\(766\) 23.0338i 0.832245i
\(767\) −11.8856 13.0902i −0.429164 0.472661i
\(768\) 19.5191 + 21.7932i 0.704336 + 0.786396i
\(769\) 10.9256 + 10.9256i 0.393987 + 0.393987i 0.876106 0.482119i \(-0.160133\pi\)
−0.482119 + 0.876106i \(0.660133\pi\)
\(770\) 0 0
\(771\) −31.6651 35.3542i −1.14039 1.27325i
\(772\) −4.99798 4.99798i −0.179881 0.179881i
\(773\) −28.7466 + 28.7466i −1.03394 + 1.03394i −0.0345388 + 0.999403i \(0.510996\pi\)
−0.999403 + 0.0345388i \(0.989004\pi\)
\(774\) 5.51459 4.41779i 0.198218 0.158794i
\(775\) 0 0
\(776\) 29.0974i 1.04454i
\(777\) −10.3712 + 9.28895i −0.372064 + 0.333239i
\(778\) −12.4603 + 12.4603i −0.446724 + 0.446724i
\(779\) −21.7728 −0.780093
\(780\) 0 0
\(781\) −9.15895 −0.327733
\(782\) −2.22753 + 2.22753i −0.0796564 + 0.0796564i
\(783\) 5.86058 + 8.20177i 0.209440 + 0.293107i
\(784\) 1.39801i 0.0499289i
\(785\) 0 0
\(786\) −0.810896 + 14.7311i −0.0289237 + 0.525442i
\(787\) 17.0605 17.0605i 0.608141 0.608141i −0.334319 0.942460i \(-0.608506\pi\)
0.942460 + 0.334319i \(0.108506\pi\)
\(788\) −19.0643 19.0643i −0.679139 0.679139i
\(789\) 27.6280 24.7450i 0.983581 0.880946i
\(790\) 0 0
\(791\) 16.0500 + 16.0500i 0.570671 + 0.570671i
\(792\) −10.1322 1.11887i −0.360032 0.0397574i
\(793\) 50.0927 + 2.41610i 1.77884 + 0.0857984i
\(794\) 24.6579i 0.875076i
\(795\) 0 0
\(796\) 3.08899 0.109486
\(797\) 43.7007 1.54796 0.773979 0.633212i \(-0.218264\pi\)
0.773979 + 0.633212i \(0.218264\pi\)
\(798\) −13.0669 0.719287i −0.462564 0.0254625i
\(799\) 5.94362 + 5.94362i 0.210270 + 0.210270i
\(800\) 0 0
\(801\) −3.56990 + 2.85987i −0.126136 + 0.101049i
\(802\) −26.8890 −0.949483
\(803\) −15.4741 −0.546069
\(804\) −14.7411 0.811442i −0.519877 0.0286174i
\(805\) 0 0
\(806\) 4.35886 + 0.210239i 0.153534 + 0.00740536i
\(807\) −2.64217 + 2.36646i −0.0930087 + 0.0833034i
\(808\) −39.5085 39.5085i −1.38990 1.38990i
\(809\) 37.8152i 1.32951i −0.747060 0.664757i \(-0.768535\pi\)
0.747060 0.664757i \(-0.231465\pi\)
\(810\) 0 0
\(811\) −33.4507 33.4507i −1.17461 1.17461i −0.981098 0.193514i \(-0.938012\pi\)
−0.193514 0.981098i \(-0.561988\pi\)
\(812\) −4.76678 + 4.76678i −0.167281 + 0.167281i
\(813\) 31.7942 + 1.75016i 1.11507 + 0.0613806i
\(814\) 1.99121 1.99121i 0.0697919 0.0697919i
\(815\) 0 0
\(816\) 0.414247 + 0.462509i 0.0145015 + 0.0161911i
\(817\) 4.57634 4.57634i 0.160106 0.160106i
\(818\) 2.46574 0.0862126
\(819\) 19.7577 + 27.2570i 0.690389 + 0.952436i
\(820\) 0 0
\(821\) 9.07369 9.07369i 0.316674 0.316674i −0.530814 0.847488i \(-0.678114\pi\)
0.847488 + 0.530814i \(0.178114\pi\)
\(822\) 19.9940 + 22.3234i 0.697369 + 0.778617i
\(823\) 45.6468i 1.59115i 0.605856 + 0.795574i \(0.292831\pi\)
−0.605856 + 0.795574i \(0.707169\pi\)
\(824\) −29.2403 + 29.2403i −1.01863 + 1.01863i
\(825\) 0 0
\(826\) 10.1439 10.1439i 0.352952 0.352952i
\(827\) 4.08085 + 4.08085i 0.141905 + 0.141905i 0.774491 0.632585i \(-0.218006\pi\)
−0.632585 + 0.774491i \(0.718006\pi\)
\(828\) 16.1982 + 1.78872i 0.562926 + 0.0621625i
\(829\) 33.3484i 1.15824i −0.815243 0.579119i \(-0.803397\pi\)
0.815243 0.579119i \(-0.196603\pi\)
\(830\) 0 0
\(831\) 5.03803 4.51232i 0.174767 0.156531i
\(832\) −1.05748 + 21.9246i −0.0366616 + 0.760099i
\(833\) 1.85052i 0.0641166i
\(834\) 9.69448 + 0.533647i 0.335693 + 0.0184787i
\(835\) 0 0
\(836\) −3.34497 −0.115688
\(837\) −6.60007 1.09882i −0.228132 0.0379807i
\(838\) −15.0811 15.0811i −0.520968 0.520968i
\(839\) 24.9303 + 24.9303i 0.860690 + 0.860690i 0.991418 0.130728i \(-0.0417315\pi\)
−0.130728 + 0.991418i \(0.541732\pi\)
\(840\) 0 0
\(841\) 25.2365 0.870223
\(842\) −0.744202 −0.0256469
\(843\) −1.48823 + 27.0358i −0.0512573 + 0.931164i
\(844\) 9.52840i 0.327981i
\(845\) 0 0
\(846\) −3.77670 + 34.2008i −0.129846 + 1.17585i
\(847\) −21.2469 21.2469i −0.730052 0.730052i
\(848\) 4.67924i 0.160686i
\(849\) 5.83785 5.22868i 0.200355 0.179448i
\(850\) 0 0
\(851\) −8.88561 + 8.88561i −0.304595 + 0.304595i
\(852\) 0.839258 15.2464i 0.0287525 0.522331i
\(853\) −15.5260 + 15.5260i −0.531602 + 0.531602i −0.921049 0.389447i \(-0.872666\pi\)
0.389447 + 0.921049i \(0.372666\pi\)
\(854\) 40.6903i 1.39239i
\(855\) 0 0
\(856\) −37.5917 + 37.5917i −1.28486 + 1.28486i
\(857\) −7.92513 −0.270717 −0.135359 0.990797i \(-0.543219\pi\)
−0.135359 + 0.990797i \(0.543219\pi\)
\(858\) −4.29310 5.28495i −0.146564 0.180425i
\(859\) 28.7269 0.980148 0.490074 0.871681i \(-0.336970\pi\)
0.490074 + 0.871681i \(0.336970\pi\)
\(860\) 0 0
\(861\) −33.8509 + 30.3186i −1.15364 + 1.03326i
\(862\) 34.0061i 1.15825i
\(863\) −3.03332 + 3.03332i −0.103255 + 0.103255i −0.756847 0.653592i \(-0.773261\pi\)
0.653592 + 0.756847i \(0.273261\pi\)
\(864\) 4.58204 27.5221i 0.155884 0.936320i
\(865\) 0 0
\(866\) 12.5314 + 12.5314i 0.425835 + 0.425835i
\(867\) 19.0965 + 21.3213i 0.648551 + 0.724111i
\(868\) 4.47452i 0.151875i
\(869\) 4.98251 + 4.98251i 0.169020 + 0.169020i
\(870\) 0 0
\(871\) −18.5032 20.3786i −0.626957 0.690501i
\(872\) 39.3265i 1.33176i
\(873\) 23.2568 18.6312i 0.787123 0.630570i
\(874\) −11.8115 −0.399529
\(875\) 0 0
\(876\) 1.41793 25.7588i 0.0479075 0.870310i
\(877\) 0.402259 + 0.402259i 0.0135833 + 0.0135833i 0.713866 0.700283i \(-0.246943\pi\)
−0.700283 + 0.713866i \(0.746943\pi\)
\(878\) −12.1937 12.1937i −0.411517 0.411517i
\(879\) 0.993228 18.0435i 0.0335007 0.608591i
\(880\) 0 0
\(881\) −38.6903 −1.30351 −0.651755 0.758430i \(-0.725967\pi\)
−0.651755 + 0.758430i \(0.725967\pi\)
\(882\) −5.91204 + 4.73619i −0.199069 + 0.159476i
\(883\) 23.4454i 0.789000i −0.918896 0.394500i \(-0.870918\pi\)
0.918896 0.394500i \(-0.129082\pi\)
\(884\) 0.133595 2.76981i 0.00449329 0.0931587i
\(885\) 0 0
\(886\) 4.86914 + 4.86914i 0.163582 + 0.163582i
\(887\) 37.0936i 1.24548i 0.782429 + 0.622740i \(0.213981\pi\)
−0.782429 + 0.622740i \(0.786019\pi\)
\(888\) 8.74289 + 9.76149i 0.293392 + 0.327574i
\(889\) 26.7841 + 26.7841i 0.898309 + 0.898309i
\(890\) 0 0
\(891\) 5.59339 + 8.81480i 0.187386 + 0.295307i
\(892\) −19.3293 + 19.3293i −0.647194 + 0.647194i
\(893\) 31.5160i 1.05464i
\(894\) −5.32830 + 4.77230i −0.178205 + 0.159610i
\(895\) 0 0
\(896\) 15.6138 0.521622
\(897\) 19.1576 + 23.5836i 0.639653 + 0.787434i
\(898\) −27.3078 −0.911273
\(899\) 1.76639 1.76639i 0.0589124 0.0589124i
\(900\) 0 0
\(901\) 6.19381i 0.206346i
\(902\) 6.49920 6.49920i 0.216400 0.216400i
\(903\) 0.742440 13.4875i 0.0247069 0.448837i
\(904\) 15.1065 15.1065i 0.502433 0.502433i
\(905\) 0 0
\(906\) 0.0511845 0.0458435i 0.00170049 0.00152305i
\(907\) 23.1351i 0.768189i 0.923294 + 0.384094i \(0.125486\pi\)
−0.923294 + 0.384094i \(0.874514\pi\)
\(908\) −8.12429 8.12429i −0.269614 0.269614i
\(909\) −6.28062 + 56.8755i −0.208315 + 1.88644i
\(910\) 0 0
\(911\) 51.2489i 1.69795i 0.528432 + 0.848976i \(0.322780\pi\)
−0.528432 + 0.848976i \(0.677220\pi\)
\(912\) −0.127955 + 2.32450i −0.00423702 + 0.0769717i
\(913\) 6.45332 0.213574
\(914\) 16.2515 0.537552
\(915\) 0 0
\(916\) 17.0059 + 17.0059i 0.561892 + 0.561892i
\(917\) 19.9433 + 19.9433i 0.658585 + 0.658585i
\(918\) 0.552517 3.31870i 0.0182358 0.109533i
\(919\) −52.3805 −1.72787 −0.863936 0.503602i \(-0.832008\pi\)
−0.863936 + 0.503602i \(0.832008\pi\)
\(920\) 0 0
\(921\) −4.42640 0.243658i −0.145855 0.00802880i
\(922\) 27.0147i 0.889680i
\(923\) 21.0771 19.1375i 0.693761 0.629917i
\(924\) −5.20052 + 4.65785i −0.171085 + 0.153232i
\(925\) 0 0
\(926\) 9.22303i 0.303088i
\(927\) 42.0936 + 4.64830i 1.38254 + 0.152670i
\(928\) 7.36579 + 7.36579i 0.241794 + 0.241794i
\(929\) −35.5168 + 35.5168i −1.16527 + 1.16527i −0.181963 + 0.983305i \(0.558245\pi\)
−0.983305 + 0.181963i \(0.941755\pi\)
\(930\) 0 0
\(931\) −4.90617 + 4.90617i −0.160793 + 0.160793i
\(932\) 11.7799i 0.385864i
\(933\) −14.9875 16.7337i −0.490669 0.547835i
\(934\) 9.63865 9.63865i 0.315386 0.315386i
\(935\) 0 0
\(936\) 25.6547 18.5962i 0.838549 0.607836i
\(937\) −28.4360 −0.928962 −0.464481 0.885583i \(-0.653759\pi\)
−0.464481 + 0.885583i \(0.653759\pi\)
\(938\) 15.7918 15.7918i 0.515621 0.515621i
\(939\) 29.7878 + 33.2583i 0.972089 + 1.08534i
\(940\) 0 0
\(941\) 7.42076 7.42076i 0.241910 0.241910i −0.575730 0.817640i \(-0.695282\pi\)
0.817640 + 0.575730i \(0.195282\pi\)
\(942\) −30.3610 1.67127i −0.989215 0.0544528i
\(943\) −29.0021 + 29.0021i −0.944439 + 0.944439i
\(944\) −1.80452 1.80452i −0.0587321 0.0587321i
\(945\) 0 0
\(946\) 2.73208i 0.0888275i
\(947\) −0.253519 0.253519i −0.00823827 0.00823827i 0.702976 0.711214i \(-0.251854\pi\)
−0.711214 + 0.702976i \(0.751854\pi\)
\(948\) −8.75065 + 7.83753i −0.284208 + 0.254551i
\(949\) 35.6099 32.3329i 1.15595 1.04957i
\(950\) 0 0
\(951\) −2.89636 0.159434i −0.0939209 0.00517001i
\(952\) 6.28019 0.203542
\(953\) 52.1909 1.69063 0.845315 0.534268i \(-0.179413\pi\)
0.845315 + 0.534268i \(0.179413\pi\)
\(954\) −19.7880 + 15.8524i −0.640662 + 0.513239i
\(955\) 0 0
\(956\) 12.0462 + 12.0462i 0.389603 + 0.389603i
\(957\) −3.89176 0.214227i −0.125803 0.00692499i
\(958\) −17.1675 −0.554656
\(959\) 57.2900 1.84999
\(960\) 0 0
\(961\) 29.3419i 0.946513i
\(962\) −0.421693 + 8.74289i −0.0135959 + 0.281882i
\(963\) 54.1161 + 5.97591i 1.74387 + 0.192571i
\(964\) 5.28322 + 5.28322i 0.170161 + 0.170161i
\(965\) 0 0
\(966\) −18.3636 + 16.4474i −0.590841 + 0.529187i
\(967\) 18.9172 + 18.9172i 0.608336 + 0.608336i 0.942511 0.334175i \(-0.108458\pi\)
−0.334175 + 0.942511i \(0.608458\pi\)
\(968\) −19.9979 + 19.9979i −0.642756 + 0.642756i
\(969\) 0.169372 3.07689i 0.00544100 0.0988438i
\(970\) 0 0
\(971\) 30.9230i 0.992367i 0.868218 + 0.496183i \(0.165266\pi\)
−0.868218 + 0.496183i \(0.834734\pi\)
\(972\) −15.1860 + 8.50327i −0.487091 + 0.272742i
\(973\) 13.1246 13.1246i 0.420755 0.420755i
\(974\) 3.30249 0.105819
\(975\) 0 0
\(976\) 7.23846 0.231698
\(977\) −14.2630 + 14.2630i −0.456313 + 0.456313i −0.897443 0.441130i \(-0.854578\pi\)
0.441130 + 0.897443i \(0.354578\pi\)
\(978\) 4.70261 4.21190i 0.150373 0.134682i
\(979\) 1.76862i 0.0565255i
\(980\) 0 0
\(981\) 31.4326 25.1809i 1.00357 0.803964i
\(982\) −11.1749 + 11.1749i −0.356605 + 0.356605i
\(983\) −23.7893 23.7893i −0.758760 0.758760i 0.217337 0.976097i \(-0.430263\pi\)
−0.976097 + 0.217337i \(0.930263\pi\)
\(984\) 28.5363 + 31.8610i 0.909704 + 1.01569i
\(985\) 0 0
\(986\) 0.888190 + 0.888190i 0.0282857 + 0.0282857i
\(987\) 43.8859 + 48.9989i 1.39690 + 1.55965i
\(988\) 7.69763 6.98925i 0.244894 0.222358i
\(989\) 12.1917i 0.387672i
\(990\) 0 0
\(991\) −47.6939 −1.51505 −0.757523 0.652809i \(-0.773591\pi\)
−0.757523 + 0.652809i \(0.773591\pi\)
\(992\) −6.91417 −0.219525
\(993\) 0.241875 4.39401i 0.00767566 0.139440i
\(994\) 16.3331 + 16.3331i 0.518055 + 0.518055i
\(995\) 0 0
\(996\) −0.591334 + 10.7425i −0.0187371 + 0.340388i
\(997\) −51.2235 −1.62226 −0.811132 0.584863i \(-0.801148\pi\)
−0.811132 + 0.584863i \(0.801148\pi\)
\(998\) 15.3535 0.486007
\(999\) 2.20399 13.2383i 0.0697310 0.418840i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.o.m.476.3 yes 8
3.2 odd 2 975.2.o.o.476.2 yes 8
5.2 odd 4 975.2.n.n.749.3 8
5.3 odd 4 975.2.n.p.749.2 8
5.4 even 2 975.2.o.n.476.2 yes 8
13.5 odd 4 975.2.o.o.551.2 yes 8
15.2 even 4 975.2.n.o.749.2 8
15.8 even 4 975.2.n.m.749.3 8
15.14 odd 2 975.2.o.l.476.3 8
39.5 even 4 inner 975.2.o.m.551.3 yes 8
65.18 even 4 975.2.n.o.824.2 8
65.44 odd 4 975.2.o.l.551.3 yes 8
65.57 even 4 975.2.n.m.824.3 8
195.44 even 4 975.2.o.n.551.2 yes 8
195.83 odd 4 975.2.n.n.824.3 8
195.122 odd 4 975.2.n.p.824.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
975.2.n.m.749.3 8 15.8 even 4
975.2.n.m.824.3 8 65.57 even 4
975.2.n.n.749.3 8 5.2 odd 4
975.2.n.n.824.3 8 195.83 odd 4
975.2.n.o.749.2 8 15.2 even 4
975.2.n.o.824.2 8 65.18 even 4
975.2.n.p.749.2 8 5.3 odd 4
975.2.n.p.824.2 8 195.122 odd 4
975.2.o.l.476.3 8 15.14 odd 2
975.2.o.l.551.3 yes 8 65.44 odd 4
975.2.o.m.476.3 yes 8 1.1 even 1 trivial
975.2.o.m.551.3 yes 8 39.5 even 4 inner
975.2.o.n.476.2 yes 8 5.4 even 2
975.2.o.n.551.2 yes 8 195.44 even 4
975.2.o.o.476.2 yes 8 3.2 odd 2
975.2.o.o.551.2 yes 8 13.5 odd 4