Properties

Label 975.2.n.o.824.2
Level $975$
Weight $2$
Character 975.824
Analytic conductor $7.785$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(749,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.749");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.n (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.619810816.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{5} + 14x^{4} - 8x^{3} + 2x^{2} + 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 824.2
Root \(-1.49094 - 1.49094i\) of defining polynomial
Character \(\chi\) \(=\) 975.824
Dual form 975.2.n.o.749.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.664640 - 0.664640i) q^{2} +(1.29021 - 1.15558i) q^{3} +1.11651i q^{4} +(0.0894818 - 1.62557i) q^{6} +(2.20073 - 2.20073i) q^{7} +(2.07136 + 2.07136i) q^{8} +(0.329281 - 2.98187i) q^{9} +(0.820218 - 0.820218i) q^{11} +(1.29021 + 1.44053i) q^{12} +(0.173703 + 3.60136i) q^{13} -2.92539i q^{14} +0.520402 q^{16} -0.688845i q^{17} +(-1.76302 - 2.20073i) q^{18} +(1.82630 - 1.82630i) q^{19} +(0.296288 - 5.38251i) q^{21} -1.09030i q^{22} +4.86537i q^{23} +(5.06610 + 0.278871i) q^{24} +(2.50906 + 2.27816i) q^{26} +(-3.02095 - 4.22775i) q^{27} +(2.45713 + 2.45713i) q^{28} -1.93998i q^{29} +(-0.910518 + 0.910518i) q^{31} +(-3.79683 + 3.79683i) q^{32} +(0.110427 - 2.00608i) q^{33} +(-0.457834 - 0.457834i) q^{34} +(3.32928 + 0.367644i) q^{36} +(1.82630 - 1.82630i) q^{37} -2.42766i q^{38} +(4.38577 + 4.44579i) q^{39} +(-5.96093 - 5.96093i) q^{41} +(-3.38051 - 3.77436i) q^{42} +2.50580 q^{43} +(0.915778 + 0.915778i) q^{44} +(3.23372 + 3.23372i) q^{46} +(-8.62839 - 8.62839i) q^{47} +(0.671427 - 0.601365i) q^{48} -2.68640i q^{49} +(-0.796014 - 0.888754i) q^{51} +(-4.02095 + 0.193941i) q^{52} +8.99159 q^{53} +(-4.81778 - 0.802092i) q^{54} +9.11698 q^{56} +(0.245878 - 4.46673i) q^{57} +(-1.28939 - 1.28939i) q^{58} +(-3.46755 + 3.46755i) q^{59} +13.9094 q^{61} +1.21033i q^{62} +(-5.83764 - 7.28695i) q^{63} +6.08786i q^{64} +(-1.25993 - 1.40672i) q^{66} +(5.39820 + 5.39820i) q^{67} +0.769099 q^{68} +(5.62231 + 6.27734i) q^{69} +(-5.58324 - 5.58324i) q^{71} +(6.85858 - 5.49447i) q^{72} +(-9.43292 + 9.43292i) q^{73} -2.42766i q^{74} +(2.03907 + 2.03907i) q^{76} -3.61015i q^{77} +(5.86981 + 0.0398898i) q^{78} +6.07461 q^{79} +(-8.78315 - 1.96375i) q^{81} -7.92375 q^{82} +(-3.93390 + 3.93390i) q^{83} +(6.00961 + 0.330807i) q^{84} +(1.66546 - 1.66546i) q^{86} +(-2.24180 - 2.50298i) q^{87} +3.39793 q^{88} +(1.07814 - 1.07814i) q^{89} +(8.30790 + 7.54335i) q^{91} -5.43221 q^{92} +(-0.122585 + 2.22693i) q^{93} -11.4696 q^{94} +(-0.511175 + 9.28624i) q^{96} +(7.02377 + 7.02377i) q^{97} +(-1.78549 - 1.78549i) q^{98} +(-2.17570 - 2.71587i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{2} + 2 q^{3} - 4 q^{6} + 14 q^{7} - 12 q^{8} + 4 q^{9} - 4 q^{11} + 2 q^{12} + 14 q^{13} - 8 q^{16} + 30 q^{18} + 2 q^{19} - 8 q^{21} + 34 q^{24} + 32 q^{26} - 10 q^{27} - 24 q^{28} - 12 q^{31}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.664640 0.664640i 0.469972 0.469972i −0.431934 0.901905i \(-0.642169\pi\)
0.901905 + 0.431934i \(0.142169\pi\)
\(3\) 1.29021 1.15558i 0.744903 0.667173i
\(4\) 1.11651i 0.558253i
\(5\) 0 0
\(6\) 0.0894818 1.62557i 0.0365308 0.663636i
\(7\) 2.20073 2.20073i 0.831797 0.831797i −0.155966 0.987762i \(-0.549849\pi\)
0.987762 + 0.155966i \(0.0498489\pi\)
\(8\) 2.07136 + 2.07136i 0.732335 + 0.732335i
\(9\) 0.329281 2.98187i 0.109760 0.993958i
\(10\) 0 0
\(11\) 0.820218 0.820218i 0.247305 0.247305i −0.572559 0.819864i \(-0.694049\pi\)
0.819864 + 0.572559i \(0.194049\pi\)
\(12\) 1.29021 + 1.44053i 0.372451 + 0.415844i
\(13\) 0.173703 + 3.60136i 0.0481766 + 0.998839i
\(14\) 2.92539i 0.781842i
\(15\) 0 0
\(16\) 0.520402 0.130100
\(17\) 0.688845i 0.167069i −0.996505 0.0835347i \(-0.973379\pi\)
0.996505 0.0835347i \(-0.0266209\pi\)
\(18\) −1.76302 2.20073i −0.415548 0.518716i
\(19\) 1.82630 1.82630i 0.418981 0.418981i −0.465871 0.884852i \(-0.654259\pi\)
0.884852 + 0.465871i \(0.154259\pi\)
\(20\) 0 0
\(21\) 0.296288 5.38251i 0.0646554 1.17456i
\(22\) 1.09030i 0.232453i
\(23\) 4.86537i 1.01450i 0.861799 + 0.507250i \(0.169338\pi\)
−0.861799 + 0.507250i \(0.830662\pi\)
\(24\) 5.06610 + 0.278871i 1.03411 + 0.0569242i
\(25\) 0 0
\(26\) 2.50906 + 2.27816i 0.492068 + 0.446784i
\(27\) −3.02095 4.22775i −0.581381 0.813631i
\(28\) 2.45713 + 2.45713i 0.464353 + 0.464353i
\(29\) 1.93998i 0.360246i −0.983644 0.180123i \(-0.942350\pi\)
0.983644 0.180123i \(-0.0576495\pi\)
\(30\) 0 0
\(31\) −0.910518 + 0.910518i −0.163534 + 0.163534i −0.784130 0.620596i \(-0.786891\pi\)
0.620596 + 0.784130i \(0.286891\pi\)
\(32\) −3.79683 + 3.79683i −0.671191 + 0.671191i
\(33\) 0.110427 2.00608i 0.0192230 0.349213i
\(34\) −0.457834 0.457834i −0.0785179 0.0785179i
\(35\) 0 0
\(36\) 3.32928 + 0.367644i 0.554880 + 0.0612740i
\(37\) 1.82630 1.82630i 0.300241 0.300241i −0.540867 0.841108i \(-0.681904\pi\)
0.841108 + 0.540867i \(0.181904\pi\)
\(38\) 2.42766i 0.393819i
\(39\) 4.38577 + 4.44579i 0.702285 + 0.711896i
\(40\) 0 0
\(41\) −5.96093 5.96093i −0.930941 0.930941i 0.0668241 0.997765i \(-0.478713\pi\)
−0.997765 + 0.0668241i \(0.978713\pi\)
\(42\) −3.38051 3.77436i −0.521624 0.582396i
\(43\) 2.50580 0.382132 0.191066 0.981577i \(-0.438806\pi\)
0.191066 + 0.981577i \(0.438806\pi\)
\(44\) 0.915778 + 0.915778i 0.138059 + 0.138059i
\(45\) 0 0
\(46\) 3.23372 + 3.23372i 0.476786 + 0.476786i
\(47\) −8.62839 8.62839i −1.25858 1.25858i −0.951771 0.306809i \(-0.900739\pi\)
−0.306809 0.951771i \(-0.599261\pi\)
\(48\) 0.671427 0.601365i 0.0969122 0.0867995i
\(49\) 2.68640i 0.383772i
\(50\) 0 0
\(51\) −0.796014 0.888754i −0.111464 0.124450i
\(52\) −4.02095 + 0.193941i −0.557605 + 0.0268948i
\(53\) 8.99159 1.23509 0.617545 0.786536i \(-0.288127\pi\)
0.617545 + 0.786536i \(0.288127\pi\)
\(54\) −4.81778 0.802092i −0.655617 0.109151i
\(55\) 0 0
\(56\) 9.11698 1.21831
\(57\) 0.245878 4.46673i 0.0325673 0.591633i
\(58\) −1.28939 1.28939i −0.169305 0.169305i
\(59\) −3.46755 + 3.46755i −0.451437 + 0.451437i −0.895831 0.444394i \(-0.853419\pi\)
0.444394 + 0.895831i \(0.353419\pi\)
\(60\) 0 0
\(61\) 13.9094 1.78091 0.890456 0.455069i \(-0.150385\pi\)
0.890456 + 0.455069i \(0.150385\pi\)
\(62\) 1.21033i 0.153713i
\(63\) −5.83764 7.28695i −0.735473 0.918070i
\(64\) 6.08786i 0.760982i
\(65\) 0 0
\(66\) −1.25993 1.40672i −0.155086 0.173155i
\(67\) 5.39820 + 5.39820i 0.659495 + 0.659495i 0.955260 0.295766i \(-0.0955748\pi\)
−0.295766 + 0.955260i \(0.595575\pi\)
\(68\) 0.769099 0.0932670
\(69\) 5.62231 + 6.27734i 0.676847 + 0.755703i
\(70\) 0 0
\(71\) −5.58324 5.58324i −0.662609 0.662609i 0.293386 0.955994i \(-0.405218\pi\)
−0.955994 + 0.293386i \(0.905218\pi\)
\(72\) 6.85858 5.49447i 0.808292 0.647529i
\(73\) −9.43292 + 9.43292i −1.10404 + 1.10404i −0.110122 + 0.993918i \(0.535124\pi\)
−0.993918 + 0.110122i \(0.964876\pi\)
\(74\) 2.42766i 0.282210i
\(75\) 0 0
\(76\) 2.03907 + 2.03907i 0.233898 + 0.233898i
\(77\) 3.61015i 0.411415i
\(78\) 5.86981 + 0.0398898i 0.664625 + 0.00451663i
\(79\) 6.07461 0.683448 0.341724 0.939800i \(-0.388989\pi\)
0.341724 + 0.939800i \(0.388989\pi\)
\(80\) 0 0
\(81\) −8.78315 1.96375i −0.975905 0.218194i
\(82\) −7.92375 −0.875032
\(83\) −3.93390 + 3.93390i −0.431802 + 0.431802i −0.889241 0.457439i \(-0.848767\pi\)
0.457439 + 0.889241i \(0.348767\pi\)
\(84\) 6.00961 + 0.330807i 0.655702 + 0.0360941i
\(85\) 0 0
\(86\) 1.66546 1.66546i 0.179591 0.179591i
\(87\) −2.24180 2.50298i −0.240346 0.268348i
\(88\) 3.39793 0.362220
\(89\) 1.07814 1.07814i 0.114283 0.114283i −0.647653 0.761936i \(-0.724249\pi\)
0.761936 + 0.647653i \(0.224249\pi\)
\(90\) 0 0
\(91\) 8.30790 + 7.54335i 0.870904 + 0.790758i
\(92\) −5.43221 −0.566347
\(93\) −0.122585 + 2.22693i −0.0127114 + 0.230922i
\(94\) −11.4696 −1.18299
\(95\) 0 0
\(96\) −0.511175 + 9.28624i −0.0521715 + 0.947773i
\(97\) 7.02377 + 7.02377i 0.713155 + 0.713155i 0.967194 0.254039i \(-0.0817591\pi\)
−0.254039 + 0.967194i \(0.581759\pi\)
\(98\) −1.78549 1.78549i −0.180362 0.180362i
\(99\) −2.17570 2.71587i −0.218667 0.272955i
\(100\) 0 0
\(101\) −19.0737 −1.89791 −0.948954 0.315415i \(-0.897856\pi\)
−0.948954 + 0.315415i \(0.897856\pi\)
\(102\) −1.11976 0.0616391i −0.110873 0.00610318i
\(103\) −14.1165 −1.39094 −0.695470 0.718555i \(-0.744804\pi\)
−0.695470 + 0.718555i \(0.744804\pi\)
\(104\) −7.09991 + 7.81951i −0.696203 + 0.766766i
\(105\) 0 0
\(106\) 5.97618 5.97618i 0.580457 0.580457i
\(107\) −18.1484 −1.75447 −0.877234 0.480064i \(-0.840614\pi\)
−0.877234 + 0.480064i \(0.840614\pi\)
\(108\) 4.72031 3.37290i 0.454212 0.324558i
\(109\) 9.49294 9.49294i 0.909259 0.909259i −0.0869537 0.996212i \(-0.527713\pi\)
0.996212 + 0.0869537i \(0.0277132\pi\)
\(110\) 0 0
\(111\) 0.245878 4.46673i 0.0233377 0.423964i
\(112\) 1.14526 1.14526i 0.108217 0.108217i
\(113\) −7.29303 −0.686070 −0.343035 0.939323i \(-0.611455\pi\)
−0.343035 + 0.939323i \(0.611455\pi\)
\(114\) −2.80535 3.13219i −0.262745 0.293357i
\(115\) 0 0
\(116\) 2.16600 0.201108
\(117\) 10.7960 + 0.667899i 0.998092 + 0.0617473i
\(118\) 4.60935i 0.424325i
\(119\) −1.51596 1.51596i −0.138968 0.138968i
\(120\) 0 0
\(121\) 9.65448i 0.877680i
\(122\) 9.24473 9.24473i 0.836979 0.836979i
\(123\) −14.5792 0.802531i −1.31456 0.0723618i
\(124\) −1.01660 1.01660i −0.0912933 0.0912933i
\(125\) 0 0
\(126\) −8.72313 0.963274i −0.777118 0.0858152i
\(127\) −12.1706 −1.07996 −0.539981 0.841677i \(-0.681569\pi\)
−0.539981 + 0.841677i \(0.681569\pi\)
\(128\) −3.54743 3.54743i −0.313551 0.313551i
\(129\) 3.23301 2.89565i 0.284651 0.254948i
\(130\) 0 0
\(131\) 9.06213i 0.791762i 0.918302 + 0.395881i \(0.129561\pi\)
−0.918302 + 0.395881i \(0.870439\pi\)
\(132\) 2.23980 + 0.123293i 0.194949 + 0.0107313i
\(133\) 8.03836i 0.697014i
\(134\) 7.17572 0.619888
\(135\) 0 0
\(136\) 1.42684 1.42684i 0.122351 0.122351i
\(137\) 13.0162 + 13.0162i 1.11205 + 1.11205i 0.992874 + 0.119172i \(0.0380240\pi\)
0.119172 + 0.992874i \(0.461976\pi\)
\(138\) 7.90899 + 0.435362i 0.673258 + 0.0370605i
\(139\) −5.96375 −0.505839 −0.252919 0.967487i \(-0.581391\pi\)
−0.252919 + 0.967487i \(0.581391\pi\)
\(140\) 0 0
\(141\) −21.1032 1.16166i −1.77721 0.0978291i
\(142\) −7.42169 −0.622815
\(143\) 3.09638 + 2.81143i 0.258932 + 0.235104i
\(144\) 0.171358 1.55177i 0.0142799 0.129314i
\(145\) 0 0
\(146\) 12.5390i 1.03774i
\(147\) −3.10435 3.46602i −0.256042 0.285873i
\(148\) 2.03907 + 2.03907i 0.167611 + 0.167611i
\(149\) −3.10679 3.10679i −0.254518 0.254518i 0.568302 0.822820i \(-0.307601\pi\)
−0.822820 + 0.568302i \(0.807601\pi\)
\(150\) 0 0
\(151\) 0.0298443 + 0.0298443i 0.00242869 + 0.00242869i 0.708320 0.705891i \(-0.249453\pi\)
−0.705891 + 0.708320i \(0.749453\pi\)
\(152\) 7.56582 0.613669
\(153\) −2.05405 0.226823i −0.166060 0.0183376i
\(154\) −2.39945 2.39945i −0.193353 0.193353i
\(155\) 0 0
\(156\) −4.96375 + 4.89674i −0.397418 + 0.392053i
\(157\) 18.6772i 1.49060i 0.666729 + 0.745300i \(0.267694\pi\)
−0.666729 + 0.745300i \(0.732306\pi\)
\(158\) 4.03743 4.03743i 0.321201 0.321201i
\(159\) 11.6010 10.3905i 0.920022 0.824019i
\(160\) 0 0
\(161\) 10.7074 + 10.7074i 0.843857 + 0.843857i
\(162\) −7.14282 + 4.53245i −0.561193 + 0.356103i
\(163\) −2.74196 + 2.74196i −0.214767 + 0.214767i −0.806289 0.591522i \(-0.798527\pi\)
0.591522 + 0.806289i \(0.298527\pi\)
\(164\) 6.65541 6.65541i 0.519700 0.519700i
\(165\) 0 0
\(166\) 5.22926i 0.405870i
\(167\) 12.0831 + 12.0831i 0.935016 + 0.935016i 0.998014 0.0629973i \(-0.0200660\pi\)
−0.0629973 + 0.998014i \(0.520066\pi\)
\(168\) 11.7628 10.5354i 0.907521 0.812822i
\(169\) −12.9397 + 1.25114i −0.995358 + 0.0962414i
\(170\) 0 0
\(171\) −4.84442 6.04715i −0.370462 0.462437i
\(172\) 2.79775i 0.213326i
\(173\) 24.0678i 1.82984i 0.403637 + 0.914919i \(0.367746\pi\)
−0.403637 + 0.914919i \(0.632254\pi\)
\(174\) −3.15358 0.173593i −0.239072 0.0131601i
\(175\) 0 0
\(176\) 0.426843 0.426843i 0.0321745 0.0321745i
\(177\) −0.466843 + 8.48089i −0.0350901 + 0.637463i
\(178\) 1.43315i 0.107419i
\(179\) −9.42733 −0.704632 −0.352316 0.935881i \(-0.614606\pi\)
−0.352316 + 0.935881i \(0.614606\pi\)
\(180\) 0 0
\(181\) 17.8034i 1.32332i −0.749806 0.661658i \(-0.769853\pi\)
0.749806 0.661658i \(-0.230147\pi\)
\(182\) 10.5354 0.508149i 0.780934 0.0376665i
\(183\) 17.9460 16.0734i 1.32661 1.18818i
\(184\) −10.0779 + 10.0779i −0.742953 + 0.742953i
\(185\) 0 0
\(186\) 1.39864 + 1.56158i 0.102553 + 0.114501i
\(187\) −0.565003 0.565003i −0.0413171 0.0413171i
\(188\) 9.63365 9.63365i 0.702606 0.702606i
\(189\) −15.9524 2.65585i −1.16037 0.193185i
\(190\) 0 0
\(191\) 7.08269i 0.512486i −0.966612 0.256243i \(-0.917515\pi\)
0.966612 0.256243i \(-0.0824847\pi\)
\(192\) 7.03499 + 7.85461i 0.507707 + 0.566858i
\(193\) 4.47645 4.47645i 0.322222 0.322222i −0.527397 0.849619i \(-0.676832\pi\)
0.849619 + 0.527397i \(0.176832\pi\)
\(194\) 9.33656 0.670326
\(195\) 0 0
\(196\) 2.99939 0.214242
\(197\) 17.0750 17.0750i 1.21654 1.21654i 0.247708 0.968835i \(-0.420323\pi\)
0.968835 0.247708i \(-0.0796775\pi\)
\(198\) −3.25114 0.359015i −0.231048 0.0255141i
\(199\) 2.76666i 0.196123i −0.995180 0.0980616i \(-0.968736\pi\)
0.995180 0.0980616i \(-0.0312642\pi\)
\(200\) 0 0
\(201\) 13.2028 + 0.726769i 0.931256 + 0.0512624i
\(202\) −12.6772 + 12.6772i −0.891963 + 0.891963i
\(203\) −4.26937 4.26937i −0.299651 0.299651i
\(204\) 0.992299 0.888754i 0.0694749 0.0622252i
\(205\) 0 0
\(206\) −9.38240 + 9.38240i −0.653703 + 0.653703i
\(207\) 14.5079 + 1.60207i 1.00837 + 0.111352i
\(208\) 0.0903955 + 1.87416i 0.00626780 + 0.129949i
\(209\) 2.99592i 0.207232i
\(210\) 0 0
\(211\) −8.53412 −0.587513 −0.293757 0.955880i \(-0.594906\pi\)
−0.293757 + 0.955880i \(0.594906\pi\)
\(212\) 10.0392i 0.689493i
\(213\) −13.6554 0.751682i −0.935654 0.0515044i
\(214\) −12.0621 + 12.0621i −0.824550 + 0.824550i
\(215\) 0 0
\(216\) 2.49973 15.0146i 0.170085 1.02162i
\(217\) 4.00761i 0.272054i
\(218\) 12.6188i 0.854652i
\(219\) −1.26997 + 23.0709i −0.0858168 + 1.55899i
\(220\) 0 0
\(221\) 2.48078 0.119655i 0.166875 0.00804884i
\(222\) −2.80535 3.13219i −0.188283 0.210219i
\(223\) 17.3123 + 17.3123i 1.15932 + 1.15932i 0.984622 + 0.174698i \(0.0558949\pi\)
0.174698 + 0.984622i \(0.444105\pi\)
\(224\) 16.7116i 1.11659i
\(225\) 0 0
\(226\) −4.84724 + 4.84724i −0.322434 + 0.322434i
\(227\) 7.27653 7.27653i 0.482960 0.482960i −0.423116 0.906076i \(-0.639064\pi\)
0.906076 + 0.423116i \(0.139064\pi\)
\(228\) 4.98713 + 0.274524i 0.330281 + 0.0181808i
\(229\) −15.2314 15.2314i −1.00652 1.00652i −0.999979 0.00653900i \(-0.997919\pi\)
−0.00653900 0.999979i \(-0.502081\pi\)
\(230\) 0 0
\(231\) −4.17181 4.65785i −0.274485 0.306464i
\(232\) 4.01840 4.01840i 0.263821 0.263821i
\(233\) 10.5507i 0.691198i −0.938382 0.345599i \(-0.887676\pi\)
0.938382 0.345599i \(-0.112324\pi\)
\(234\) 7.61938 6.73155i 0.498094 0.440055i
\(235\) 0 0
\(236\) −3.87154 3.87154i −0.252016 0.252016i
\(237\) 7.83753 7.01969i 0.509102 0.455978i
\(238\) −2.01514 −0.130622
\(239\) 10.7892 + 10.7892i 0.697897 + 0.697897i 0.963957 0.266060i \(-0.0857218\pi\)
−0.266060 + 0.963957i \(0.585722\pi\)
\(240\) 0 0
\(241\) 4.73192 + 4.73192i 0.304810 + 0.304810i 0.842892 0.538082i \(-0.180851\pi\)
−0.538082 + 0.842892i \(0.680851\pi\)
\(242\) 6.41676 + 6.41676i 0.412485 + 0.412485i
\(243\) −13.6014 + 7.61596i −0.872528 + 0.488564i
\(244\) 15.5299i 0.994200i
\(245\) 0 0
\(246\) −10.2233 + 9.15651i −0.651814 + 0.583798i
\(247\) 6.89439 + 6.25993i 0.438680 + 0.398310i
\(248\) −3.77201 −0.239523
\(249\) −0.529629 + 9.62149i −0.0335639 + 0.609737i
\(250\) 0 0
\(251\) 23.8077 1.50273 0.751365 0.659887i \(-0.229396\pi\)
0.751365 + 0.659887i \(0.229396\pi\)
\(252\) 8.13593 6.51776i 0.512515 0.410580i
\(253\) 3.99066 + 3.99066i 0.250891 + 0.250891i
\(254\) −8.08904 + 8.08904i −0.507552 + 0.507552i
\(255\) 0 0
\(256\) −16.8912 −1.05570
\(257\) 27.4019i 1.70929i 0.519217 + 0.854643i \(0.326224\pi\)
−0.519217 + 0.854643i \(0.673776\pi\)
\(258\) 0.224224 4.07336i 0.0139596 0.253596i
\(259\) 8.03836i 0.499480i
\(260\) 0 0
\(261\) −5.78478 0.638799i −0.358069 0.0395407i
\(262\) 6.02306 + 6.02306i 0.372106 + 0.372106i
\(263\) −21.4135 −1.32042 −0.660208 0.751083i \(-0.729532\pi\)
−0.660208 + 0.751083i \(0.729532\pi\)
\(264\) 4.38404 3.92657i 0.269819 0.241664i
\(265\) 0 0
\(266\) −5.34262 5.34262i −0.327577 0.327577i
\(267\) 0.145152 2.63691i 0.00888318 0.161376i
\(268\) −6.02712 + 6.02712i −0.368165 + 0.368165i
\(269\) 2.04786i 0.124860i 0.998049 + 0.0624301i \(0.0198851\pi\)
−0.998049 + 0.0624301i \(0.980115\pi\)
\(270\) 0 0
\(271\) −12.9996 12.9996i −0.789667 0.789667i 0.191772 0.981439i \(-0.438576\pi\)
−0.981439 + 0.191772i \(0.938576\pi\)
\(272\) 0.358476i 0.0217358i
\(273\) 19.4359 + 0.132081i 1.17631 + 0.00799393i
\(274\) 17.3021 1.04526
\(275\) 0 0
\(276\) −7.00869 + 6.27734i −0.421874 + 0.377852i
\(277\) −3.90482 −0.234618 −0.117309 0.993095i \(-0.537427\pi\)
−0.117309 + 0.993095i \(0.537427\pi\)
\(278\) −3.96375 + 3.96375i −0.237730 + 0.237730i
\(279\) 2.41523 + 3.01487i 0.144596 + 0.180495i
\(280\) 0 0
\(281\) 11.0540 11.0540i 0.659429 0.659429i −0.295816 0.955245i \(-0.595591\pi\)
0.955245 + 0.295816i \(0.0955914\pi\)
\(282\) −14.7981 + 13.2540i −0.881216 + 0.789262i
\(283\) 4.52473 0.268967 0.134484 0.990916i \(-0.457062\pi\)
0.134484 + 0.990916i \(0.457062\pi\)
\(284\) 6.23372 6.23372i 0.369903 0.369903i
\(285\) 0 0
\(286\) 3.92657 0.189389i 0.232183 0.0111988i
\(287\) −26.2368 −1.54871
\(288\) 10.0715 + 12.5719i 0.593466 + 0.740806i
\(289\) 16.5255 0.972088
\(290\) 0 0
\(291\) 17.1786 + 0.945623i 1.00703 + 0.0554334i
\(292\) −10.5319 10.5319i −0.616334 0.616334i
\(293\) −7.37736 7.37736i −0.430990 0.430990i 0.457975 0.888965i \(-0.348575\pi\)
−0.888965 + 0.457975i \(0.848575\pi\)
\(294\) −4.36694 0.240384i −0.254685 0.0140195i
\(295\) 0 0
\(296\) 7.56582 0.439754
\(297\) −5.94551 0.989844i −0.344994 0.0574366i
\(298\) −4.12980 −0.239233
\(299\) −17.5220 + 0.845131i −1.01332 + 0.0488752i
\(300\) 0 0
\(301\) 5.51459 5.51459i 0.317856 0.317856i
\(302\) 0.0396715 0.00228284
\(303\) −24.6091 + 22.0412i −1.41376 + 1.26623i
\(304\) 0.950408 0.950408i 0.0545096 0.0545096i
\(305\) 0 0
\(306\) −1.51596 + 1.21445i −0.0866617 + 0.0694254i
\(307\) 1.80981 1.80981i 0.103291 0.103291i −0.653573 0.756864i \(-0.726731\pi\)
0.756864 + 0.653573i \(0.226731\pi\)
\(308\) 4.03076 0.229674
\(309\) −18.2132 + 16.3127i −1.03612 + 0.927998i
\(310\) 0 0
\(311\) −12.9697 −0.735445 −0.367723 0.929936i \(-0.619862\pi\)
−0.367723 + 0.929936i \(0.619862\pi\)
\(312\) −0.124317 + 18.2933i −0.00703806 + 1.03565i
\(313\) 25.7774i 1.45703i −0.685032 0.728513i \(-0.740212\pi\)
0.685032 0.728513i \(-0.259788\pi\)
\(314\) 12.4136 + 12.4136i 0.700540 + 0.700540i
\(315\) 0 0
\(316\) 6.78234i 0.381537i
\(317\) −1.18422 + 1.18422i −0.0665126 + 0.0665126i −0.739581 0.673068i \(-0.764976\pi\)
0.673068 + 0.739581i \(0.264976\pi\)
\(318\) 0.804584 14.6165i 0.0451188 0.819650i
\(319\) −1.59121 1.59121i −0.0890906 0.0890906i
\(320\) 0 0
\(321\) −23.4152 + 20.9718i −1.30691 + 1.17053i
\(322\) 14.2331 0.793178
\(323\) −1.25804 1.25804i −0.0699989 0.0699989i
\(324\) 2.19254 9.80644i 0.121808 0.544802i
\(325\) 0 0
\(326\) 3.64484i 0.201869i
\(327\) 1.27805 23.2177i 0.0706764 1.28394i
\(328\) 24.6944i 1.36352i
\(329\) −37.9775 −2.09377
\(330\) 0 0
\(331\) 1.79656 1.79656i 0.0987480 0.0987480i −0.656007 0.754755i \(-0.727756\pi\)
0.754755 + 0.656007i \(0.227756\pi\)
\(332\) −4.39223 4.39223i −0.241055 0.241055i
\(333\) −4.84442 6.04715i −0.265473 0.331382i
\(334\) 16.0618 0.878863
\(335\) 0 0
\(336\) 0.154189 2.80107i 0.00841169 0.152811i
\(337\) 10.2757 0.559753 0.279877 0.960036i \(-0.409706\pi\)
0.279877 + 0.960036i \(0.409706\pi\)
\(338\) −7.76866 + 9.43177i −0.422559 + 0.513021i
\(339\) −9.40954 + 8.42766i −0.511056 + 0.457728i
\(340\) 0 0
\(341\) 1.49365i 0.0808855i
\(342\) −7.23898 0.799383i −0.391439 0.0432257i
\(343\) 9.49305 + 9.49305i 0.512576 + 0.512576i
\(344\) 5.19041 + 5.19041i 0.279848 + 0.279848i
\(345\) 0 0
\(346\) 15.9964 + 15.9964i 0.859972 + 0.859972i
\(347\) −16.8673 −0.905482 −0.452741 0.891642i \(-0.649554\pi\)
−0.452741 + 0.891642i \(0.649554\pi\)
\(348\) 2.79460 2.50298i 0.149806 0.134174i
\(349\) −14.9509 14.9509i −0.800302 0.800302i 0.182840 0.983143i \(-0.441471\pi\)
−0.983143 + 0.182840i \(0.941471\pi\)
\(350\) 0 0
\(351\) 14.7009 11.6139i 0.784677 0.619904i
\(352\) 6.22846i 0.331978i
\(353\) 6.54324 6.54324i 0.348261 0.348261i −0.511200 0.859462i \(-0.670799\pi\)
0.859462 + 0.511200i \(0.170799\pi\)
\(354\) 5.32646 + 5.94703i 0.283098 + 0.316081i
\(355\) 0 0
\(356\) 1.20375 + 1.20375i 0.0637988 + 0.0637988i
\(357\) −3.70772 0.204097i −0.196233 0.0108019i
\(358\) −6.26579 + 6.26579i −0.331157 + 0.331157i
\(359\) 13.2705 13.2705i 0.700388 0.700388i −0.264106 0.964494i \(-0.585077\pi\)
0.964494 + 0.264106i \(0.0850767\pi\)
\(360\) 0 0
\(361\) 12.3293i 0.648910i
\(362\) −11.8329 11.8329i −0.621921 0.621921i
\(363\) 11.1565 + 12.4563i 0.585565 + 0.653787i
\(364\) −8.42220 + 9.27582i −0.441443 + 0.486185i
\(365\) 0 0
\(366\) 1.24464 22.6106i 0.0650581 1.18188i
\(367\) 15.3590i 0.801734i −0.916136 0.400867i \(-0.868709\pi\)
0.916136 0.400867i \(-0.131291\pi\)
\(368\) 2.53195i 0.131987i
\(369\) −19.7376 + 15.8119i −1.02750 + 0.823136i
\(370\) 0 0
\(371\) 19.7880 19.7880i 1.02734 1.02734i
\(372\) −2.48639 0.136867i −0.128913 0.00709621i
\(373\) 8.55388i 0.442903i −0.975171 0.221452i \(-0.928920\pi\)
0.975171 0.221452i \(-0.0710795\pi\)
\(374\) −0.751048 −0.0388357
\(375\) 0 0
\(376\) 35.7449i 1.84340i
\(377\) 6.98659 0.336981i 0.359827 0.0173554i
\(378\) −12.3678 + 8.83743i −0.636131 + 0.454548i
\(379\) 12.1073 12.1073i 0.621909 0.621909i −0.324110 0.946019i \(-0.605065\pi\)
0.946019 + 0.324110i \(0.105065\pi\)
\(380\) 0 0
\(381\) −15.7026 + 14.0640i −0.804467 + 0.720522i
\(382\) −4.70745 4.70745i −0.240854 0.240854i
\(383\) 17.3280 17.3280i 0.885421 0.885421i −0.108658 0.994079i \(-0.534655\pi\)
0.994079 + 0.108658i \(0.0346555\pi\)
\(384\) −8.67625 0.477597i −0.442758 0.0243723i
\(385\) 0 0
\(386\) 5.95046i 0.302870i
\(387\) 0.825113 7.47199i 0.0419429 0.379823i
\(388\) −7.84208 + 7.84208i −0.398121 + 0.398121i
\(389\) 18.7474 0.950533 0.475267 0.879842i \(-0.342352\pi\)
0.475267 + 0.879842i \(0.342352\pi\)
\(390\) 0 0
\(391\) 3.35148 0.169492
\(392\) 5.56450 5.56450i 0.281050 0.281050i
\(393\) 10.4720 + 11.6920i 0.528242 + 0.589786i
\(394\) 22.6975i 1.14348i
\(395\) 0 0
\(396\) 3.03228 2.42919i 0.152378 0.122071i
\(397\) −18.5498 + 18.5498i −0.930988 + 0.930988i −0.997768 0.0667796i \(-0.978728\pi\)
0.0667796 + 0.997768i \(0.478728\pi\)
\(398\) −1.83883 1.83883i −0.0921724 0.0921724i
\(399\) −9.28895 10.3712i −0.465029 0.519208i
\(400\) 0 0
\(401\) −20.2282 + 20.2282i −1.01015 + 1.01015i −0.0102015 + 0.999948i \(0.503247\pi\)
−0.999948 + 0.0102015i \(0.996753\pi\)
\(402\) 9.25818 8.29210i 0.461756 0.413572i
\(403\) −3.43727 3.12095i −0.171223 0.155465i
\(404\) 21.2959i 1.05951i
\(405\) 0 0
\(406\) −5.67520 −0.281655
\(407\) 2.99592i 0.148502i
\(408\) 0.192099 3.48975i 0.00951030 0.172769i
\(409\) 1.85494 1.85494i 0.0917210 0.0917210i −0.659758 0.751479i \(-0.729341\pi\)
0.751479 + 0.659758i \(0.229341\pi\)
\(410\) 0 0
\(411\) 31.8348 + 1.75239i 1.57029 + 0.0864390i
\(412\) 15.7612i 0.776497i
\(413\) 15.2623i 0.751007i
\(414\) 10.7074 8.57775i 0.526238 0.421573i
\(415\) 0 0
\(416\) −14.3333 13.0143i −0.702748 0.638076i
\(417\) −7.69448 + 6.89157i −0.376801 + 0.337482i
\(418\) −1.99121 1.99121i −0.0973933 0.0973933i
\(419\) 22.6906i 1.10851i −0.832347 0.554255i \(-0.813003\pi\)
0.832347 0.554255i \(-0.186997\pi\)
\(420\) 0 0
\(421\) 0.559853 0.559853i 0.0272856 0.0272856i −0.693332 0.720618i \(-0.743858\pi\)
0.720618 + 0.693332i \(0.243858\pi\)
\(422\) −5.67212 + 5.67212i −0.276115 + 0.276115i
\(423\) −28.5699 + 22.8876i −1.38912 + 1.11283i
\(424\) 18.6248 + 18.6248i 0.904500 + 0.904500i
\(425\) 0 0
\(426\) −9.57554 + 8.57634i −0.463936 + 0.415525i
\(427\) 30.6107 30.6107i 1.48136 1.48136i
\(428\) 20.2627i 0.979437i
\(429\) 7.24380 + 0.0492271i 0.349734 + 0.00237671i
\(430\) 0 0
\(431\) −25.5824 25.5824i −1.23226 1.23226i −0.963094 0.269165i \(-0.913252\pi\)
−0.269165 0.963094i \(-0.586748\pi\)
\(432\) −1.57211 2.20013i −0.0756380 0.105854i
\(433\) −18.8544 −0.906087 −0.453043 0.891488i \(-0.649662\pi\)
−0.453043 + 0.891488i \(0.649662\pi\)
\(434\) 2.66362 + 2.66362i 0.127858 + 0.127858i
\(435\) 0 0
\(436\) 10.5989 + 10.5989i 0.507596 + 0.507596i
\(437\) 8.88561 + 8.88561i 0.425056 + 0.425056i
\(438\) 14.4898 + 16.1779i 0.692349 + 0.773012i
\(439\) 18.3463i 0.875620i 0.899068 + 0.437810i \(0.144246\pi\)
−0.899068 + 0.437810i \(0.855754\pi\)
\(440\) 0 0
\(441\) −8.01052 0.884582i −0.381453 0.0421229i
\(442\) 1.56930 1.72836i 0.0746440 0.0822095i
\(443\) 7.32597 0.348067 0.174034 0.984740i \(-0.444320\pi\)
0.174034 + 0.984740i \(0.444320\pi\)
\(444\) 4.98713 + 0.274524i 0.236679 + 0.0130283i
\(445\) 0 0
\(446\) 23.0130 1.08970
\(447\) −7.59854 0.418273i −0.359399 0.0197836i
\(448\) 13.3977 + 13.3977i 0.632983 + 0.632983i
\(449\) 20.5433 20.5433i 0.969498 0.969498i −0.0300506 0.999548i \(-0.509567\pi\)
0.999548 + 0.0300506i \(0.00956684\pi\)
\(450\) 0 0
\(451\) −9.77852 −0.460453
\(452\) 8.14271i 0.383001i
\(453\) 0.0729928 + 0.00401799i 0.00342950 + 0.000188782i
\(454\) 9.67255i 0.453955i
\(455\) 0 0
\(456\) 9.76149 8.74289i 0.457124 0.409424i
\(457\) 12.2258 + 12.2258i 0.571898 + 0.571898i 0.932659 0.360760i \(-0.117483\pi\)
−0.360760 + 0.932659i \(0.617483\pi\)
\(458\) −20.2468 −0.946070
\(459\) −2.91227 + 2.08096i −0.135933 + 0.0971310i
\(460\) 0 0
\(461\) 20.3228 + 20.3228i 0.946525 + 0.946525i 0.998641 0.0521156i \(-0.0165964\pi\)
−0.0521156 + 0.998641i \(0.516596\pi\)
\(462\) −5.86855 0.323043i −0.273030 0.0150293i
\(463\) −6.93836 + 6.93836i −0.322453 + 0.322453i −0.849707 0.527254i \(-0.823221\pi\)
0.527254 + 0.849707i \(0.323221\pi\)
\(464\) 1.00957i 0.0468681i
\(465\) 0 0
\(466\) −7.01241 7.01241i −0.324844 0.324844i
\(467\) 14.5021i 0.671075i −0.942027 0.335538i \(-0.891082\pi\)
0.942027 0.335538i \(-0.108918\pi\)
\(468\) −0.745713 + 12.0538i −0.0344706 + 0.557188i
\(469\) 23.7599 1.09713
\(470\) 0 0
\(471\) 21.5829 + 24.0975i 0.994488 + 1.11035i
\(472\) −14.3651 −0.661206
\(473\) 2.05531 2.05531i 0.0945031 0.0945031i
\(474\) 0.543567 9.87471i 0.0249669 0.453560i
\(475\) 0 0
\(476\) 1.69258 1.69258i 0.0775792 0.0775792i
\(477\) 2.96076 26.8118i 0.135564 1.22763i
\(478\) 14.3419 0.655984
\(479\) 12.9148 12.9148i 0.590095 0.590095i −0.347562 0.937657i \(-0.612990\pi\)
0.937657 + 0.347562i \(0.112990\pi\)
\(480\) 0 0
\(481\) 6.89439 + 6.25993i 0.314357 + 0.285428i
\(482\) 6.29005 0.286504
\(483\) 26.1879 + 1.44155i 1.19159 + 0.0655928i
\(484\) −10.7793 −0.489968
\(485\) 0 0
\(486\) −3.97814 + 14.1019i −0.180452 + 0.639675i
\(487\) 2.48442 + 2.48442i 0.112580 + 0.112580i 0.761153 0.648573i \(-0.224634\pi\)
−0.648573 + 0.761153i \(0.724634\pi\)
\(488\) 28.8113 + 28.8113i 1.30422 + 1.30422i
\(489\) −0.369156 + 6.70626i −0.0166938 + 0.303268i
\(490\) 0 0
\(491\) −16.8134 −0.758780 −0.379390 0.925237i \(-0.623866\pi\)
−0.379390 + 0.925237i \(0.623866\pi\)
\(492\) 0.896031 16.2777i 0.0403962 0.733856i
\(493\) −1.33635 −0.0601860
\(494\) 8.74289 0.421693i 0.393361 0.0189729i
\(495\) 0 0
\(496\) −0.473835 + 0.473835i −0.0212758 + 0.0212758i
\(497\) −24.5744 −1.10231
\(498\) 6.04282 + 6.74685i 0.270785 + 0.302333i
\(499\) 11.5502 11.5502i 0.517060 0.517060i −0.399621 0.916681i \(-0.630858\pi\)
0.916681 + 0.399621i \(0.130858\pi\)
\(500\) 0 0
\(501\) 29.5526 + 1.62677i 1.32031 + 0.0726786i
\(502\) 15.8236 15.8236i 0.706241 0.706241i
\(503\) 11.9608 0.533304 0.266652 0.963793i \(-0.414083\pi\)
0.266652 + 0.963793i \(0.414083\pi\)
\(504\) 3.00205 27.1857i 0.133722 1.21095i
\(505\) 0 0
\(506\) 5.30471 0.235823
\(507\) −15.2491 + 16.5670i −0.677235 + 0.735767i
\(508\) 13.5885i 0.602892i
\(509\) −1.50135 1.50135i −0.0665461 0.0665461i 0.673050 0.739597i \(-0.264984\pi\)
−0.739597 + 0.673050i \(0.764984\pi\)
\(510\) 0 0
\(511\) 41.5186i 1.83667i
\(512\) −4.13175 + 4.13175i −0.182599 + 0.182599i
\(513\) −13.2383 2.20399i −0.584484 0.0973084i
\(514\) 18.2124 + 18.2124i 0.803316 + 0.803316i
\(515\) 0 0
\(516\) 3.23301 + 3.60968i 0.142325 + 0.158907i
\(517\) −14.1543 −0.622506
\(518\) −5.34262 5.34262i −0.234741 0.234741i
\(519\) 27.8122 + 31.0525i 1.22082 + 1.36305i
\(520\) 0 0
\(521\) 8.71097i 0.381635i 0.981626 + 0.190817i \(0.0611138\pi\)
−0.981626 + 0.190817i \(0.938886\pi\)
\(522\) −4.26937 + 3.42023i −0.186865 + 0.149699i
\(523\) 5.25678i 0.229863i −0.993373 0.114931i \(-0.963335\pi\)
0.993373 0.114931i \(-0.0366648\pi\)
\(524\) −10.1179 −0.442003
\(525\) 0 0
\(526\) −14.2323 + 14.2323i −0.620558 + 0.620558i
\(527\) 0.627206 + 0.627206i 0.0273215 + 0.0273215i
\(528\) 0.0574667 1.04397i 0.00250092 0.0454328i
\(529\) −0.671807 −0.0292090
\(530\) 0 0
\(531\) 9.19800 + 11.4816i 0.399159 + 0.498259i
\(532\) 8.97488 0.389110
\(533\) 20.4320 22.5029i 0.885010 0.974709i
\(534\) −1.65612 1.84907i −0.0716674 0.0800171i
\(535\) 0 0
\(536\) 22.3632i 0.965942i
\(537\) −12.1632 + 10.8940i −0.524882 + 0.470111i
\(538\) 1.36109 + 1.36109i 0.0586808 + 0.0586808i
\(539\) −2.20344 2.20344i −0.0949088 0.0949088i
\(540\) 0 0
\(541\) −7.12828 7.12828i −0.306469 0.306469i 0.537069 0.843538i \(-0.319531\pi\)
−0.843538 + 0.537069i \(0.819531\pi\)
\(542\) −17.2801 −0.742243
\(543\) −20.5732 22.9701i −0.882880 0.985741i
\(544\) 2.61543 + 2.61543i 0.112136 + 0.112136i
\(545\) 0 0
\(546\) 13.0056 12.8301i 0.556590 0.549076i
\(547\) 34.7849i 1.48730i −0.668571 0.743648i \(-0.733094\pi\)
0.668571 0.743648i \(-0.266906\pi\)
\(548\) −14.5326 + 14.5326i −0.620803 + 0.620803i
\(549\) 4.58009 41.4760i 0.195473 1.77015i
\(550\) 0 0
\(551\) −3.54298 3.54298i −0.150936 0.150936i
\(552\) −1.35681 + 24.6484i −0.0577496 + 1.04911i
\(553\) 13.3686 13.3686i 0.568490 0.568490i
\(554\) −2.59530 + 2.59530i −0.110264 + 0.110264i
\(555\) 0 0
\(556\) 6.65856i 0.282386i
\(557\) −7.60755 7.60755i −0.322342 0.322342i 0.527323 0.849665i \(-0.323196\pi\)
−0.849665 + 0.527323i \(0.823196\pi\)
\(558\) 3.60907 + 0.398540i 0.152784 + 0.0168715i
\(559\) 0.435267 + 9.02431i 0.0184098 + 0.381688i
\(560\) 0 0
\(561\) −1.38188 0.0760674i −0.0583429 0.00321157i
\(562\) 14.6939i 0.619826i
\(563\) 21.5401i 0.907807i 0.891051 + 0.453903i \(0.149969\pi\)
−0.891051 + 0.453903i \(0.850031\pi\)
\(564\) 1.29700 23.5619i 0.0546134 0.992133i
\(565\) 0 0
\(566\) 3.00732 3.00732i 0.126407 0.126407i
\(567\) −23.6510 + 15.0076i −0.993248 + 0.630262i
\(568\) 23.1298i 0.970503i
\(569\) 30.7745 1.29013 0.645067 0.764126i \(-0.276829\pi\)
0.645067 + 0.764126i \(0.276829\pi\)
\(570\) 0 0
\(571\) 25.0540i 1.04848i −0.851572 0.524238i \(-0.824350\pi\)
0.851572 0.524238i \(-0.175650\pi\)
\(572\) −3.13898 + 3.45713i −0.131247 + 0.144550i
\(573\) −8.18460 9.13816i −0.341917 0.381752i
\(574\) −17.4380 + 17.4380i −0.727849 + 0.727849i
\(575\) 0 0
\(576\) 18.1532 + 2.00462i 0.756385 + 0.0835257i
\(577\) −13.6669 13.6669i −0.568959 0.568959i 0.362878 0.931837i \(-0.381794\pi\)
−0.931837 + 0.362878i \(0.881794\pi\)
\(578\) 10.9835 10.9835i 0.456854 0.456854i
\(579\) 0.602673 10.9484i 0.0250462 0.455002i
\(580\) 0 0
\(581\) 17.3149i 0.718343i
\(582\) 12.0461 10.7891i 0.499328 0.447223i
\(583\) 7.37507 7.37507i 0.305444 0.305444i
\(584\) −39.0779 −1.61705
\(585\) 0 0
\(586\) −9.80659 −0.405106
\(587\) −5.19514 + 5.19514i −0.214426 + 0.214426i −0.806145 0.591718i \(-0.798450\pi\)
0.591718 + 0.806145i \(0.298450\pi\)
\(588\) 3.86984 3.46602i 0.159589 0.142936i
\(589\) 3.32575i 0.137035i
\(590\) 0 0
\(591\) 2.29884 41.7618i 0.0945616 1.71785i
\(592\) 0.950408 0.950408i 0.0390615 0.0390615i
\(593\) −4.27083 4.27083i −0.175382 0.175382i 0.613957 0.789339i \(-0.289577\pi\)
−0.789339 + 0.613957i \(0.789577\pi\)
\(594\) −4.60952 + 3.29374i −0.189131 + 0.135144i
\(595\) 0 0
\(596\) 3.46875 3.46875i 0.142086 0.142086i
\(597\) −3.19709 3.56957i −0.130848 0.146093i
\(598\) −11.0841 + 12.2075i −0.453262 + 0.499202i
\(599\) 17.0139i 0.695171i 0.937648 + 0.347585i \(0.112998\pi\)
−0.937648 + 0.347585i \(0.887002\pi\)
\(600\) 0 0
\(601\) −36.2957 −1.48053 −0.740266 0.672314i \(-0.765300\pi\)
−0.740266 + 0.672314i \(0.765300\pi\)
\(602\) 7.33044i 0.298767i
\(603\) 17.8743 14.3192i 0.727896 0.583124i
\(604\) −0.0333213 + 0.0333213i −0.00135583 + 0.00135583i
\(605\) 0 0
\(606\) −1.70675 + 31.0057i −0.0693321 + 1.25952i
\(607\) 37.6421i 1.52785i −0.645306 0.763924i \(-0.723270\pi\)
0.645306 0.763924i \(-0.276730\pi\)
\(608\) 13.8683i 0.562433i
\(609\) −10.4420 0.574794i −0.423130 0.0232918i
\(610\) 0 0
\(611\) 29.5752 32.5728i 1.19648 1.31775i
\(612\) 0.253250 2.29336i 0.0102370 0.0927035i
\(613\) 10.7888 + 10.7888i 0.435755 + 0.435755i 0.890581 0.454826i \(-0.150298\pi\)
−0.454826 + 0.890581i \(0.650298\pi\)
\(614\) 2.40574i 0.0970879i
\(615\) 0 0
\(616\) 7.47791 7.47791i 0.301294 0.301294i
\(617\) 27.1551 27.1551i 1.09322 1.09322i 0.0980399 0.995182i \(-0.468743\pi\)
0.995182 0.0980399i \(-0.0312573\pi\)
\(618\) −1.26317 + 22.9474i −0.0508122 + 0.923078i
\(619\) −12.5227 12.5227i −0.503329 0.503329i 0.409142 0.912471i \(-0.365828\pi\)
−0.912471 + 0.409142i \(0.865828\pi\)
\(620\) 0 0
\(621\) 20.5696 14.6980i 0.825428 0.589811i
\(622\) −8.62020 + 8.62020i −0.345638 + 0.345638i
\(623\) 4.74540i 0.190120i
\(624\) 2.28236 + 2.31360i 0.0913676 + 0.0926179i
\(625\) 0 0
\(626\) −17.1327 17.1327i −0.684761 0.684761i
\(627\) −3.46202 3.86537i −0.138260 0.154368i
\(628\) −20.8532 −0.832132
\(629\) −1.25804 1.25804i −0.0501611 0.0501611i
\(630\) 0 0
\(631\) −0.0650570 0.0650570i −0.00258988 0.00258988i 0.705811 0.708401i \(-0.250583\pi\)
−0.708401 + 0.705811i \(0.750583\pi\)
\(632\) 12.5827 + 12.5827i 0.500513 + 0.500513i
\(633\) −11.0108 + 9.86184i −0.437640 + 0.391973i
\(634\) 1.57417i 0.0625181i
\(635\) 0 0
\(636\) 11.6010 + 12.9526i 0.460011 + 0.513605i
\(637\) 9.67472 0.466637i 0.383326 0.0184888i
\(638\) −2.11516 −0.0837401
\(639\) −18.4870 + 14.8101i −0.731333 + 0.585877i
\(640\) 0 0
\(641\) −5.72335 −0.226059 −0.113029 0.993592i \(-0.536055\pi\)
−0.113029 + 0.993592i \(0.536055\pi\)
\(642\) −1.62395 + 29.5014i −0.0640921 + 1.16433i
\(643\) 24.0577 + 24.0577i 0.948742 + 0.948742i 0.998749 0.0500069i \(-0.0159243\pi\)
−0.0500069 + 0.998749i \(0.515924\pi\)
\(644\) −11.9548 + 11.9548i −0.471086 + 0.471086i
\(645\) 0 0
\(646\) −1.67228 −0.0657951
\(647\) 33.6947i 1.32468i −0.749205 0.662338i \(-0.769564\pi\)
0.749205 0.662338i \(-0.230436\pi\)
\(648\) −14.1254 22.2606i −0.554898 0.874481i
\(649\) 5.68830i 0.223285i
\(650\) 0 0
\(651\) 4.63110 + 5.17065i 0.181507 + 0.202654i
\(652\) −3.06142 3.06142i −0.119894 0.119894i
\(653\) −6.47341 −0.253324 −0.126662 0.991946i \(-0.540426\pi\)
−0.126662 + 0.991946i \(0.540426\pi\)
\(654\) −14.5820 16.2809i −0.570201 0.636632i
\(655\) 0 0
\(656\) −3.10208 3.10208i −0.121116 0.121116i
\(657\) 25.0217 + 31.2339i 0.976190 + 1.21855i
\(658\) −25.2414 + 25.2414i −0.984011 + 0.984011i
\(659\) 0.908137i 0.0353760i 0.999844 + 0.0176880i \(0.00563056\pi\)
−0.999844 + 0.0176880i \(0.994369\pi\)
\(660\) 0 0
\(661\) −22.4502 22.4502i −0.873210 0.873210i 0.119610 0.992821i \(-0.461835\pi\)
−0.992821 + 0.119610i \(0.961835\pi\)
\(662\) 2.38814i 0.0928176i
\(663\) 3.06246 3.02111i 0.118936 0.117330i
\(664\) −16.2970 −0.632448
\(665\) 0 0
\(666\) −7.23898 0.799383i −0.280505 0.0309754i
\(667\) 9.43873 0.365469
\(668\) −13.4908 + 13.4908i −0.521976 + 0.521976i
\(669\) 42.3423 + 2.33079i 1.63705 + 0.0901137i
\(670\) 0 0
\(671\) 11.4087 11.4087i 0.440429 0.440429i
\(672\) 19.3115 + 21.5614i 0.744959 + 0.831751i
\(673\) 40.5282 1.56225 0.781123 0.624377i \(-0.214647\pi\)
0.781123 + 0.624377i \(0.214647\pi\)
\(674\) 6.82965 6.82965i 0.263068 0.263068i
\(675\) 0 0
\(676\) −1.39690 14.4472i −0.0537270 0.555662i
\(677\) 16.4579 0.632527 0.316264 0.948671i \(-0.397572\pi\)
0.316264 + 0.948671i \(0.397572\pi\)
\(678\) −0.652593 + 11.8553i −0.0250627 + 0.455301i
\(679\) 30.9148 1.18640
\(680\) 0 0
\(681\) 0.979652 17.7968i 0.0375404 0.681976i
\(682\) 0.992738 + 0.992738i 0.0380139 + 0.0380139i
\(683\) 8.30681 + 8.30681i 0.317851 + 0.317851i 0.847941 0.530090i \(-0.177842\pi\)
−0.530090 + 0.847941i \(0.677842\pi\)
\(684\) 6.75168 5.40883i 0.258157 0.206812i
\(685\) 0 0
\(686\) 12.6189 0.481793
\(687\) −37.2527 2.05063i −1.42128 0.0782364i
\(688\) 1.30402 0.0497155
\(689\) 1.56187 + 32.3820i 0.0595025 + 1.23366i
\(690\) 0 0
\(691\) 24.4080 24.4080i 0.928524 0.928524i −0.0690863 0.997611i \(-0.522008\pi\)
0.997611 + 0.0690863i \(0.0220084\pi\)
\(692\) −26.8718 −1.02151
\(693\) −10.7650 1.18875i −0.408929 0.0451570i
\(694\) −11.2107 + 11.2107i −0.425551 + 0.425551i
\(695\) 0 0
\(696\) 0.541004 9.82814i 0.0205067 0.372535i
\(697\) −4.10615 + 4.10615i −0.155532 + 0.155532i
\(698\) −19.8739 −0.752239
\(699\) −12.1921 13.6126i −0.461149 0.514876i
\(700\) 0 0
\(701\) −25.2071 −0.952058 −0.476029 0.879430i \(-0.657924\pi\)
−0.476029 + 0.879430i \(0.657924\pi\)
\(702\) 2.05176 17.4899i 0.0774388 0.660114i
\(703\) 6.67072i 0.251591i
\(704\) 4.99337 + 4.99337i 0.188195 + 0.188195i
\(705\) 0 0
\(706\) 8.69780i 0.327346i
\(707\) −41.9761 + 41.9761i −1.57867 + 1.57867i
\(708\) −9.46897 0.521233i −0.355866 0.0195891i
\(709\) −3.27176 3.27176i −0.122873 0.122873i 0.642996 0.765869i \(-0.277691\pi\)
−0.765869 + 0.642996i \(0.777691\pi\)
\(710\) 0 0
\(711\) 2.00025 18.1137i 0.0750154 0.679318i
\(712\) 4.46644 0.167387
\(713\) −4.43001 4.43001i −0.165905 0.165905i
\(714\) −2.59995 + 2.32865i −0.0973006 + 0.0871474i
\(715\) 0 0
\(716\) 10.5257i 0.393363i
\(717\) 26.3882 + 1.45257i 0.985484 + 0.0542474i
\(718\) 17.6402i 0.658325i
\(719\) −12.3985 −0.462385 −0.231192 0.972908i \(-0.574263\pi\)
−0.231192 + 0.972908i \(0.574263\pi\)
\(720\) 0 0
\(721\) −31.0666 + 31.0666i −1.15698 + 1.15698i
\(722\) 8.19454 + 8.19454i 0.304969 + 0.304969i
\(723\) 11.5733 + 0.637067i 0.430414 + 0.0236928i
\(724\) 19.8776 0.738745
\(725\) 0 0
\(726\) 15.6940 + 0.863901i 0.582460 + 0.0320624i
\(727\) 14.6064 0.541722 0.270861 0.962619i \(-0.412692\pi\)
0.270861 + 0.962619i \(0.412692\pi\)
\(728\) 1.58365 + 32.8336i 0.0586940 + 1.21689i
\(729\) −8.74777 + 25.5436i −0.323992 + 0.946060i
\(730\) 0 0
\(731\) 1.72611i 0.0638425i
\(732\) 17.9460 + 20.0368i 0.663303 + 0.740582i
\(733\) −24.5952 24.5952i −0.908445 0.908445i 0.0877014 0.996147i \(-0.472048\pi\)
−0.996147 + 0.0877014i \(0.972048\pi\)
\(734\) −10.2082 10.2082i −0.376792 0.376792i
\(735\) 0 0
\(736\) −18.4730 18.4730i −0.680923 0.680923i
\(737\) 8.85540 0.326193
\(738\) −2.60914 + 23.6276i −0.0960437 + 0.869745i
\(739\) 32.1016 + 32.1016i 1.18088 + 1.18088i 0.979518 + 0.201357i \(0.0645352\pi\)
0.201357 + 0.979518i \(0.435465\pi\)
\(740\) 0 0
\(741\) 16.1290 + 0.109609i 0.592515 + 0.00402659i
\(742\) 26.3039i 0.965645i
\(743\) 31.6922 31.6922i 1.16268 1.16268i 0.178788 0.983888i \(-0.442782\pi\)
0.983888 0.178788i \(-0.0572177\pi\)
\(744\) −4.86669 + 4.35886i −0.178421 + 0.159803i
\(745\) 0 0
\(746\) −5.68526 5.68526i −0.208152 0.208152i
\(747\) 10.4350 + 13.0258i 0.381798 + 0.476588i
\(748\) 0.630829 0.630829i 0.0230654 0.0230654i
\(749\) −39.9396 + 39.9396i −1.45936 + 1.45936i
\(750\) 0 0
\(751\) 8.44360i 0.308111i −0.988062 0.154056i \(-0.950766\pi\)
0.988062 0.154056i \(-0.0492335\pi\)
\(752\) −4.49023 4.49023i −0.163742 0.163742i
\(753\) 30.7169 27.5117i 1.11939 1.00258i
\(754\) 4.41960 4.86754i 0.160952 0.177265i
\(755\) 0 0
\(756\) 2.96528 17.8110i 0.107846 0.647778i
\(757\) 33.4040i 1.21409i 0.794667 + 0.607045i \(0.207645\pi\)
−0.794667 + 0.607045i \(0.792355\pi\)
\(758\) 16.0940i 0.584559i
\(759\) 9.76031 + 0.537270i 0.354277 + 0.0195017i
\(760\) 0 0
\(761\) −2.45709 + 2.45709i −0.0890694 + 0.0890694i −0.750238 0.661168i \(-0.770061\pi\)
0.661168 + 0.750238i \(0.270061\pi\)
\(762\) −1.08904 + 19.7841i −0.0394519 + 0.716701i
\(763\) 41.7827i 1.51264i
\(764\) 7.90787 0.286097
\(765\) 0 0
\(766\) 23.0338i 0.832245i
\(767\) −13.0902 11.8856i −0.472661 0.429164i
\(768\) −21.7932 + 19.5191i −0.786396 + 0.704336i
\(769\) −10.9256 + 10.9256i −0.393987 + 0.393987i −0.876106 0.482119i \(-0.839867\pi\)
0.482119 + 0.876106i \(0.339867\pi\)
\(770\) 0 0
\(771\) 31.6651 + 35.3542i 1.14039 + 1.27325i
\(772\) 4.99798 + 4.99798i 0.179881 + 0.179881i
\(773\) −28.7466 + 28.7466i −1.03394 + 1.03394i −0.0345388 + 0.999403i \(0.510996\pi\)
−0.999403 + 0.0345388i \(0.989004\pi\)
\(774\) −4.41779 5.51459i −0.158794 0.198218i
\(775\) 0 0
\(776\) 29.0974i 1.04454i
\(777\) −9.28895 10.3712i −0.333239 0.372064i
\(778\) 12.4603 12.4603i 0.446724 0.446724i
\(779\) −21.7728 −0.780093
\(780\) 0 0
\(781\) −9.15895 −0.327733
\(782\) 2.22753 2.22753i 0.0796564 0.0796564i
\(783\) −8.20177 + 5.86058i −0.293107 + 0.209440i
\(784\) 1.39801i 0.0499289i
\(785\) 0 0
\(786\) 14.7311 + 0.810896i 0.525442 + 0.0289237i
\(787\) 17.0605 17.0605i 0.608141 0.608141i −0.334319 0.942460i \(-0.608506\pi\)
0.942460 + 0.334319i \(0.108506\pi\)
\(788\) 19.0643 + 19.0643i 0.679139 + 0.679139i
\(789\) −27.6280 + 24.7450i −0.983581 + 0.880946i
\(790\) 0 0
\(791\) −16.0500 + 16.0500i −0.570671 + 0.570671i
\(792\) 1.11887 10.1322i 0.0397574 0.360032i
\(793\) 2.41610 + 50.0927i 0.0857984 + 1.77884i
\(794\) 24.6579i 0.875076i
\(795\) 0 0
\(796\) 3.08899 0.109486
\(797\) 43.7007i 1.54796i 0.633212 + 0.773979i \(0.281736\pi\)
−0.633212 + 0.773979i \(0.718264\pi\)
\(798\) −13.0669 0.719287i −0.462564 0.0254625i
\(799\) −5.94362 + 5.94362i −0.210270 + 0.210270i
\(800\) 0 0
\(801\) −2.85987 3.56990i −0.101049 0.126136i
\(802\) 26.8890i 0.949483i
\(803\) 15.4741i 0.546069i
\(804\) −0.811442 + 14.7411i −0.0286174 + 0.519877i
\(805\) 0 0
\(806\) −4.35886 + 0.210239i −0.153534 + 0.00740536i
\(807\) 2.36646 + 2.64217i 0.0833034 + 0.0930087i
\(808\) −39.5085 39.5085i −1.38990 1.38990i
\(809\) 37.8152i 1.32951i 0.747060 + 0.664757i \(0.231465\pi\)
−0.747060 + 0.664757i \(0.768535\pi\)
\(810\) 0 0
\(811\) −33.4507 + 33.4507i −1.17461 + 1.17461i −0.193514 + 0.981098i \(0.561988\pi\)
−0.981098 + 0.193514i \(0.938012\pi\)
\(812\) 4.76678 4.76678i 0.167281 0.167281i
\(813\) −31.7942 1.75016i −1.11507 0.0613806i
\(814\) −1.99121 1.99121i −0.0697919 0.0697919i
\(815\) 0 0
\(816\) −0.414247 0.462509i −0.0145015 0.0161911i
\(817\) 4.57634 4.57634i 0.160106 0.160106i
\(818\) 2.46574i 0.0862126i
\(819\) 25.2290 22.2892i 0.881571 0.778848i
\(820\) 0 0
\(821\) −9.07369 9.07369i −0.316674 0.316674i 0.530814 0.847488i \(-0.321886\pi\)
−0.847488 + 0.530814i \(0.821886\pi\)
\(822\) 22.3234 19.9940i 0.778617 0.697369i
\(823\) 45.6468 1.59115 0.795574 0.605856i \(-0.207169\pi\)
0.795574 + 0.605856i \(0.207169\pi\)
\(824\) −29.2403 29.2403i −1.01863 1.01863i
\(825\) 0 0
\(826\) 10.1439 + 10.1439i 0.352952 + 0.352952i
\(827\) 4.08085 + 4.08085i 0.141905 + 0.141905i 0.774491 0.632585i \(-0.218006\pi\)
−0.632585 + 0.774491i \(0.718006\pi\)
\(828\) −1.78872 + 16.1982i −0.0621625 + 0.562926i
\(829\) 33.3484i 1.15824i −0.815243 0.579119i \(-0.803397\pi\)
0.815243 0.579119i \(-0.196603\pi\)
\(830\) 0 0
\(831\) −5.03803 + 4.51232i −0.174767 + 0.156531i
\(832\) −21.9246 + 1.05748i −0.760099 + 0.0366616i
\(833\) −1.85052 −0.0641166
\(834\) −0.533647 + 9.69448i −0.0184787 + 0.335693i
\(835\) 0 0
\(836\) 3.34497 0.115688
\(837\) 6.60007 + 1.09882i 0.228132 + 0.0379807i
\(838\) −15.0811 15.0811i −0.520968 0.520968i
\(839\) 24.9303 24.9303i 0.860690 0.860690i −0.130728 0.991418i \(-0.541732\pi\)
0.991418 + 0.130728i \(0.0417315\pi\)
\(840\) 0 0
\(841\) 25.2365 0.870223
\(842\) 0.744202i 0.0256469i
\(843\) 1.48823 27.0358i 0.0512573 0.931164i
\(844\) 9.52840i 0.327981i
\(845\) 0 0
\(846\) −3.77670 + 34.2008i −0.129846 + 1.17585i
\(847\) 21.2469 + 21.2469i 0.730052 + 0.730052i
\(848\) 4.67924 0.160686
\(849\) 5.83785 5.22868i 0.200355 0.179448i
\(850\) 0 0
\(851\) 8.88561 + 8.88561i 0.304595 + 0.304595i
\(852\) 0.839258 15.2464i 0.0287525 0.522331i
\(853\) 15.5260 15.5260i 0.531602 0.531602i −0.389447 0.921049i \(-0.627334\pi\)
0.921049 + 0.389447i \(0.127334\pi\)
\(854\) 40.6903i 1.39239i
\(855\) 0 0
\(856\) −37.5917 37.5917i −1.28486 1.28486i
\(857\) 7.92513i 0.270717i −0.990797 0.135359i \(-0.956781\pi\)
0.990797 0.135359i \(-0.0432187\pi\)
\(858\) 4.84724 4.78181i 0.165482 0.163248i
\(859\) −28.7269 −0.980148 −0.490074 0.871681i \(-0.663030\pi\)
−0.490074 + 0.871681i \(0.663030\pi\)
\(860\) 0 0
\(861\) −33.8509 + 30.3186i −1.15364 + 1.03326i
\(862\) −34.0061 −1.15825
\(863\) −3.03332 + 3.03332i −0.103255 + 0.103255i −0.756847 0.653592i \(-0.773261\pi\)
0.653592 + 0.756847i \(0.273261\pi\)
\(864\) 27.5221 + 4.58204i 0.936320 + 0.155884i
\(865\) 0 0
\(866\) −12.5314 + 12.5314i −0.425835 + 0.425835i
\(867\) 21.3213 19.0965i 0.724111 0.648551i
\(868\) −4.47452 −0.151875
\(869\) 4.98251 4.98251i 0.169020 0.169020i
\(870\) 0 0
\(871\) −18.5032 + 20.3786i −0.626957 + 0.690501i
\(872\) 39.3265 1.33176
\(873\) 23.2568 18.6312i 0.787123 0.630570i
\(874\) 11.8115 0.399529
\(875\) 0 0
\(876\) −25.7588 1.41793i −0.870310 0.0479075i
\(877\) −0.402259 0.402259i −0.0135833 0.0135833i 0.700283 0.713866i \(-0.253057\pi\)
−0.713866 + 0.700283i \(0.753057\pi\)
\(878\) 12.1937 + 12.1937i 0.411517 + 0.411517i
\(879\) −18.0435 0.993228i −0.608591 0.0335007i
\(880\) 0 0
\(881\) 38.6903 1.30351 0.651755 0.758430i \(-0.274033\pi\)
0.651755 + 0.758430i \(0.274033\pi\)
\(882\) −5.91204 + 4.73619i −0.199069 + 0.159476i
\(883\) −23.4454 −0.789000 −0.394500 0.918896i \(-0.629082\pi\)
−0.394500 + 0.918896i \(0.629082\pi\)
\(884\) 0.133595 + 2.76981i 0.00449329 + 0.0931587i
\(885\) 0 0
\(886\) 4.86914 4.86914i 0.163582 0.163582i
\(887\) 37.0936 1.24548 0.622740 0.782429i \(-0.286019\pi\)
0.622740 + 0.782429i \(0.286019\pi\)
\(888\) 9.76149 8.74289i 0.327574 0.293392i
\(889\) −26.7841 + 26.7841i −0.898309 + 0.898309i
\(890\) 0 0
\(891\) −8.81480 + 5.59339i −0.295307 + 0.187386i
\(892\) −19.3293 + 19.3293i −0.647194 + 0.647194i
\(893\) −31.5160 −1.05464
\(894\) −5.32830 + 4.77230i −0.178205 + 0.159610i
\(895\) 0 0
\(896\) −15.6138 −0.521622
\(897\) −21.6304 + 21.3384i −0.722218 + 0.712468i
\(898\) 27.3078i 0.911273i
\(899\) 1.76639 + 1.76639i 0.0589124 + 0.0589124i
\(900\) 0 0
\(901\) 6.19381i 0.206346i
\(902\) −6.49920 + 6.49920i −0.216400 + 0.216400i
\(903\) 0.742440 13.4875i 0.0247069 0.448837i
\(904\) −15.1065 15.1065i −0.502433 0.502433i
\(905\) 0 0
\(906\) 0.0511845 0.0458435i 0.00170049 0.00152305i
\(907\) −23.1351 −0.768189 −0.384094 0.923294i \(-0.625486\pi\)
−0.384094 + 0.923294i \(0.625486\pi\)
\(908\) 8.12429 + 8.12429i 0.269614 + 0.269614i
\(909\) −6.28062 + 56.8755i −0.208315 + 1.88644i
\(910\) 0 0
\(911\) 51.2489i 1.69795i 0.528432 + 0.848976i \(0.322780\pi\)
−0.528432 + 0.848976i \(0.677220\pi\)
\(912\) 0.127955 2.32450i 0.00423702 0.0769717i
\(913\) 6.45332i 0.213574i
\(914\) 16.2515 0.537552
\(915\) 0 0
\(916\) 17.0059 17.0059i 0.561892 0.561892i
\(917\) 19.9433 + 19.9433i 0.658585 + 0.658585i
\(918\) −0.552517 + 3.31870i −0.0182358 + 0.109533i
\(919\) 52.3805 1.72787 0.863936 0.503602i \(-0.167992\pi\)
0.863936 + 0.503602i \(0.167992\pi\)
\(920\) 0 0
\(921\) 0.243658 4.42640i 0.00802880 0.145855i
\(922\) 27.0147 0.889680
\(923\) 19.1375 21.0771i 0.629917 0.693761i
\(924\) 5.20052 4.65785i 0.171085 0.153232i
\(925\) 0 0
\(926\) 9.22303i 0.303088i
\(927\) −4.64830 + 42.0936i −0.152670 + 1.38254i
\(928\) 7.36579 + 7.36579i 0.241794 + 0.241794i
\(929\) −35.5168 35.5168i −1.16527 1.16527i −0.983305 0.181963i \(-0.941755\pi\)
−0.181963 0.983305i \(-0.558245\pi\)
\(930\) 0 0
\(931\) −4.90617 4.90617i −0.160793 0.160793i
\(932\) 11.7799 0.385864
\(933\) −16.7337 + 14.9875i −0.547835 + 0.490669i
\(934\) −9.63865 9.63865i −0.315386 0.315386i
\(935\) 0 0
\(936\) 20.9789 + 23.7458i 0.685718 + 0.776157i
\(937\) 28.4360i 0.928962i 0.885583 + 0.464481i \(0.153759\pi\)
−0.885583 + 0.464481i \(0.846241\pi\)
\(938\) 15.7918 15.7918i 0.515621 0.515621i
\(939\) −29.7878 33.2583i −0.972089 1.08534i
\(940\) 0 0
\(941\) −7.42076 7.42076i −0.241910 0.241910i 0.575730 0.817640i \(-0.304718\pi\)
−0.817640 + 0.575730i \(0.804718\pi\)
\(942\) 30.3610 + 1.67127i 0.989215 + 0.0544528i
\(943\) 29.0021 29.0021i 0.944439 0.944439i
\(944\) −1.80452 + 1.80452i −0.0587321 + 0.0587321i
\(945\) 0 0
\(946\) 2.73208i 0.0888275i
\(947\) −0.253519 0.253519i −0.00823827 0.00823827i 0.702976 0.711214i \(-0.251854\pi\)
−0.711214 + 0.702976i \(0.751854\pi\)
\(948\) 7.83753 + 8.75065i 0.254551 + 0.284208i
\(949\) −35.6099 32.3329i −1.15595 1.04957i
\(950\) 0 0
\(951\) −0.159434 + 2.89636i −0.00517001 + 0.0939209i
\(952\) 6.28019i 0.203542i
\(953\) 52.1909i 1.69063i −0.534268 0.845315i \(-0.679413\pi\)
0.534268 0.845315i \(-0.320587\pi\)
\(954\) −15.8524 19.7880i −0.513239 0.640662i
\(955\) 0 0
\(956\) −12.0462 + 12.0462i −0.389603 + 0.389603i
\(957\) −3.89176 0.214227i −0.125803 0.00692499i
\(958\) 17.1675i 0.554656i
\(959\) 57.2900 1.84999
\(960\) 0 0
\(961\) 29.3419i 0.946513i
\(962\) 8.74289 0.421693i 0.281882 0.0135959i
\(963\) −5.97591 + 54.1161i −0.192571 + 1.74387i
\(964\) −5.28322 + 5.28322i −0.170161 + 0.170161i
\(965\) 0 0
\(966\) 18.3636 16.4474i 0.590841 0.529187i
\(967\) −18.9172 18.9172i −0.608336 0.608336i 0.334175 0.942511i \(-0.391542\pi\)
−0.942511 + 0.334175i \(0.891542\pi\)
\(968\) −19.9979 + 19.9979i −0.642756 + 0.642756i
\(969\) −3.07689 0.169372i −0.0988438 0.00544100i
\(970\) 0 0
\(971\) 30.9230i 0.992367i 0.868218 + 0.496183i \(0.165266\pi\)
−0.868218 + 0.496183i \(0.834734\pi\)
\(972\) −8.50327 15.1860i −0.272742 0.487091i
\(973\) −13.1246 + 13.1246i −0.420755 + 0.420755i
\(974\) 3.30249 0.105819
\(975\) 0 0
\(976\) 7.23846 0.231698
\(977\) 14.2630 14.2630i 0.456313 0.456313i −0.441130 0.897443i \(-0.645422\pi\)
0.897443 + 0.441130i \(0.145422\pi\)
\(978\) 4.21190 + 4.70261i 0.134682 + 0.150373i
\(979\) 1.76862i 0.0565255i
\(980\) 0 0
\(981\) −25.1809 31.4326i −0.803964 1.00357i
\(982\) −11.1749 + 11.1749i −0.356605 + 0.356605i
\(983\) 23.7893 + 23.7893i 0.758760 + 0.758760i 0.976097 0.217337i \(-0.0697369\pi\)
−0.217337 + 0.976097i \(0.569737\pi\)
\(984\) −28.5363 31.8610i −0.909704 1.01569i
\(985\) 0 0
\(986\) −0.888190 + 0.888190i −0.0282857 + 0.0282857i
\(987\) −48.9989 + 43.8859i −1.55965 + 1.39690i
\(988\) −6.98925 + 7.69763i −0.222358 + 0.244894i
\(989\) 12.1917i 0.387672i
\(990\) 0 0
\(991\) −47.6939 −1.51505 −0.757523 0.652809i \(-0.773591\pi\)
−0.757523 + 0.652809i \(0.773591\pi\)
\(992\) 6.91417i 0.219525i
\(993\) 0.241875 4.39401i 0.00767566 0.139440i
\(994\) −16.3331 + 16.3331i −0.518055 + 0.518055i
\(995\) 0 0
\(996\) −10.7425 0.591334i −0.340388 0.0187371i
\(997\) 51.2235i 1.62226i 0.584863 + 0.811132i \(0.301148\pi\)
−0.584863 + 0.811132i \(0.698852\pi\)
\(998\) 15.3535i 0.486007i
\(999\) −13.2383 2.20399i −0.418840 0.0697310i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.n.o.824.2 8
3.2 odd 2 975.2.n.n.824.3 8
5.2 odd 4 975.2.o.o.551.2 yes 8
5.3 odd 4 975.2.o.l.551.3 yes 8
5.4 even 2 975.2.n.m.824.3 8
13.8 odd 4 975.2.n.p.749.2 8
15.2 even 4 975.2.o.m.551.3 yes 8
15.8 even 4 975.2.o.n.551.2 yes 8
15.14 odd 2 975.2.n.p.824.2 8
39.8 even 4 975.2.n.m.749.3 8
65.8 even 4 975.2.o.n.476.2 yes 8
65.34 odd 4 975.2.n.n.749.3 8
65.47 even 4 975.2.o.m.476.3 yes 8
195.8 odd 4 975.2.o.l.476.3 8
195.47 odd 4 975.2.o.o.476.2 yes 8
195.164 even 4 inner 975.2.n.o.749.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
975.2.n.m.749.3 8 39.8 even 4
975.2.n.m.824.3 8 5.4 even 2
975.2.n.n.749.3 8 65.34 odd 4
975.2.n.n.824.3 8 3.2 odd 2
975.2.n.o.749.2 8 195.164 even 4 inner
975.2.n.o.824.2 8 1.1 even 1 trivial
975.2.n.p.749.2 8 13.8 odd 4
975.2.n.p.824.2 8 15.14 odd 2
975.2.o.l.476.3 8 195.8 odd 4
975.2.o.l.551.3 yes 8 5.3 odd 4
975.2.o.m.476.3 yes 8 65.47 even 4
975.2.o.m.551.3 yes 8 15.2 even 4
975.2.o.n.476.2 yes 8 65.8 even 4
975.2.o.n.551.2 yes 8 15.8 even 4
975.2.o.o.476.2 yes 8 195.47 odd 4
975.2.o.o.551.2 yes 8 5.2 odd 4