Properties

Label 975.2.s.b.857.4
Level $975$
Weight $2$
Character 975.857
Analytic conductor $7.785$
Analytic rank $0$
Dimension $8$
CM discriminant -195
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(818,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.818");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.s (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.151613669376.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 7x^{4} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 857.4
Root \(0.662382 - 1.88713i\) of defining polynomial
Character \(\chi\) \(=\) 975.857
Dual form 975.2.s.b.818.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22474 + 1.22474i) q^{3} -2.00000i q^{4} +(2.54951 - 2.54951i) q^{7} +3.00000i q^{9} +6.24500 q^{11} +(2.44949 - 2.44949i) q^{12} +(-2.54951 - 2.54951i) q^{13} -4.00000 q^{16} +(-1.22474 + 1.22474i) q^{17} +6.24500 q^{21} +(-3.67423 - 3.67423i) q^{23} +(-3.67423 + 3.67423i) q^{27} +(-5.09902 - 5.09902i) q^{28} +(7.64853 + 7.64853i) q^{33} +6.00000 q^{36} +(2.54951 - 2.54951i) q^{37} -6.24500i q^{39} +6.24500 q^{41} -12.4900i q^{44} +(-4.89898 - 4.89898i) q^{48} -6.00000i q^{49} -3.00000 q^{51} +(-5.09902 + 5.09902i) q^{52} +(8.57321 + 8.57321i) q^{53} -12.4900i q^{59} +7.00000 q^{61} +(7.64853 + 7.64853i) q^{63} +8.00000i q^{64} +(-10.1980 + 10.1980i) q^{67} +(2.44949 + 2.44949i) q^{68} -9.00000i q^{69} +6.24500 q^{71} +(-5.09902 - 5.09902i) q^{73} +(15.9217 - 15.9217i) q^{77} +11.0000i q^{79} -9.00000 q^{81} -12.4900i q^{84} +18.7350i q^{89} -13.0000 q^{91} +(-7.34847 + 7.34847i) q^{92} +(2.54951 - 2.54951i) q^{97} +18.7350i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 32 q^{16} + 48 q^{36} - 24 q^{51} + 56 q^{61} - 72 q^{81} - 104 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(3\) 1.22474 + 1.22474i 0.707107 + 0.707107i
\(4\) 2.00000i 1.00000i
\(5\) 0 0
\(6\) 0 0
\(7\) 2.54951 2.54951i 0.963624 0.963624i −0.0357371 0.999361i \(-0.511378\pi\)
0.999361 + 0.0357371i \(0.0113779\pi\)
\(8\) 0 0
\(9\) 3.00000i 1.00000i
\(10\) 0 0
\(11\) 6.24500 1.88294 0.941469 0.337100i \(-0.109446\pi\)
0.941469 + 0.337100i \(0.109446\pi\)
\(12\) 2.44949 2.44949i 0.707107 0.707107i
\(13\) −2.54951 2.54951i −0.707107 0.707107i
\(14\) 0 0
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) −1.22474 + 1.22474i −0.297044 + 0.297044i −0.839855 0.542811i \(-0.817360\pi\)
0.542811 + 0.839855i \(0.317360\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 6.24500 1.36277
\(22\) 0 0
\(23\) −3.67423 3.67423i −0.766131 0.766131i 0.211292 0.977423i \(-0.432233\pi\)
−0.977423 + 0.211292i \(0.932233\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −3.67423 + 3.67423i −0.707107 + 0.707107i
\(28\) −5.09902 5.09902i −0.963624 0.963624i
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 7.64853 + 7.64853i 1.33144 + 1.33144i
\(34\) 0 0
\(35\) 0 0
\(36\) 6.00000 1.00000
\(37\) 2.54951 2.54951i 0.419137 0.419137i −0.465769 0.884906i \(-0.654222\pi\)
0.884906 + 0.465769i \(0.154222\pi\)
\(38\) 0 0
\(39\) 6.24500i 1.00000i
\(40\) 0 0
\(41\) 6.24500 0.975305 0.487652 0.873038i \(-0.337853\pi\)
0.487652 + 0.873038i \(0.337853\pi\)
\(42\) 0 0
\(43\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(44\) 12.4900i 1.88294i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(48\) −4.89898 4.89898i −0.707107 0.707107i
\(49\) 6.00000i 0.857143i
\(50\) 0 0
\(51\) −3.00000 −0.420084
\(52\) −5.09902 + 5.09902i −0.707107 + 0.707107i
\(53\) 8.57321 + 8.57321i 1.17762 + 1.17762i 0.980349 + 0.197273i \(0.0632085\pi\)
0.197273 + 0.980349i \(0.436791\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 12.4900i 1.62606i −0.582223 0.813029i \(-0.697817\pi\)
0.582223 0.813029i \(-0.302183\pi\)
\(60\) 0 0
\(61\) 7.00000 0.896258 0.448129 0.893969i \(-0.352090\pi\)
0.448129 + 0.893969i \(0.352090\pi\)
\(62\) 0 0
\(63\) 7.64853 + 7.64853i 0.963624 + 0.963624i
\(64\) 8.00000i 1.00000i
\(65\) 0 0
\(66\) 0 0
\(67\) −10.1980 + 10.1980i −1.24589 + 1.24589i −0.288370 + 0.957519i \(0.593113\pi\)
−0.957519 + 0.288370i \(0.906887\pi\)
\(68\) 2.44949 + 2.44949i 0.297044 + 0.297044i
\(69\) 9.00000i 1.08347i
\(70\) 0 0
\(71\) 6.24500 0.741145 0.370572 0.928804i \(-0.379162\pi\)
0.370572 + 0.928804i \(0.379162\pi\)
\(72\) 0 0
\(73\) −5.09902 5.09902i −0.596795 0.596795i 0.342663 0.939458i \(-0.388671\pi\)
−0.939458 + 0.342663i \(0.888671\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 15.9217 15.9217i 1.81444 1.81444i
\(78\) 0 0
\(79\) 11.0000i 1.23760i 0.785550 + 0.618798i \(0.212380\pi\)
−0.785550 + 0.618798i \(0.787620\pi\)
\(80\) 0 0
\(81\) −9.00000 −1.00000
\(82\) 0 0
\(83\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(84\) 12.4900i 1.36277i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 18.7350i 1.98591i 0.118511 + 0.992953i \(0.462188\pi\)
−0.118511 + 0.992953i \(0.537812\pi\)
\(90\) 0 0
\(91\) −13.0000 −1.36277
\(92\) −7.34847 + 7.34847i −0.766131 + 0.766131i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 2.54951 2.54951i 0.258863 0.258863i −0.565728 0.824592i \(-0.691405\pi\)
0.824592 + 0.565728i \(0.191405\pi\)
\(98\) 0 0
\(99\) 18.7350i 1.88294i
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −13.4722 + 13.4722i −1.30241 + 1.30241i −0.375641 + 0.926765i \(0.622577\pi\)
−0.926765 + 0.375641i \(0.877423\pi\)
\(108\) 7.34847 + 7.34847i 0.707107 + 0.707107i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 6.24500 0.592749
\(112\) −10.1980 + 10.1980i −0.963624 + 0.963624i
\(113\) −9.79796 9.79796i −0.921714 0.921714i 0.0754362 0.997151i \(-0.475965\pi\)
−0.997151 + 0.0754362i \(0.975965\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 7.64853 7.64853i 0.707107 0.707107i
\(118\) 0 0
\(119\) 6.24500i 0.572478i
\(120\) 0 0
\(121\) 28.0000 2.54545
\(122\) 0 0
\(123\) 7.64853 + 7.64853i 0.689645 + 0.689645i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 15.2971 15.2971i 1.33144 1.33144i
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(138\) 0 0
\(139\) 19.0000i 1.61156i −0.592216 0.805779i \(-0.701747\pi\)
0.592216 0.805779i \(-0.298253\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −15.9217 15.9217i −1.33144 1.33144i
\(144\) 12.0000i 1.00000i
\(145\) 0 0
\(146\) 0 0
\(147\) 7.34847 7.34847i 0.606092 0.606092i
\(148\) −5.09902 5.09902i −0.419137 0.419137i
\(149\) 18.7350i 1.53483i 0.641150 + 0.767415i \(0.278457\pi\)
−0.641150 + 0.767415i \(0.721543\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) −3.67423 3.67423i −0.297044 0.297044i
\(154\) 0 0
\(155\) 0 0
\(156\) −12.4900 −1.00000
\(157\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(158\) 0 0
\(159\) 21.0000i 1.66541i
\(160\) 0 0
\(161\) −18.7350 −1.47652
\(162\) 0 0
\(163\) −17.8466 17.8466i −1.39785 1.39785i −0.806178 0.591673i \(-0.798468\pi\)
−0.591673 0.806178i \(-0.701532\pi\)
\(164\) 12.4900i 0.975305i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(168\) 0 0
\(169\) 13.0000i 1.00000i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 14.6969 + 14.6969i 1.11739 + 1.11739i 0.992123 + 0.125264i \(0.0399778\pi\)
0.125264 + 0.992123i \(0.460022\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −24.9800 −1.88294
\(177\) 15.2971 15.2971i 1.14980 1.14980i
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −23.0000 −1.70958 −0.854788 0.518977i \(-0.826313\pi\)
−0.854788 + 0.518977i \(0.826313\pi\)
\(182\) 0 0
\(183\) 8.57321 + 8.57321i 0.633750 + 0.633750i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −7.64853 + 7.64853i −0.559316 + 0.559316i
\(188\) 0 0
\(189\) 18.7350i 1.36277i
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) −9.79796 + 9.79796i −0.707107 + 0.707107i
\(193\) −17.8466 17.8466i −1.28462 1.28462i −0.938007 0.346618i \(-0.887330\pi\)
−0.346618 0.938007i \(-0.612670\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −12.0000 −0.857143
\(197\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(198\) 0 0
\(199\) 4.00000i 0.283552i −0.989899 0.141776i \(-0.954719\pi\)
0.989899 0.141776i \(-0.0452813\pi\)
\(200\) 0 0
\(201\) −24.9800 −1.76195
\(202\) 0 0
\(203\) 0 0
\(204\) 6.00000i 0.420084i
\(205\) 0 0
\(206\) 0 0
\(207\) 11.0227 11.0227i 0.766131 0.766131i
\(208\) 10.1980 + 10.1980i 0.707107 + 0.707107i
\(209\) 0 0
\(210\) 0 0
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) 17.1464 17.1464i 1.17762 1.17762i
\(213\) 7.64853 + 7.64853i 0.524069 + 0.524069i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 12.4900i 0.843996i
\(220\) 0 0
\(221\) 6.24500 0.420084
\(222\) 0 0
\(223\) 20.3961 + 20.3961i 1.36582 + 1.36582i 0.866302 + 0.499520i \(0.166490\pi\)
0.499520 + 0.866302i \(0.333510\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 39.0000 2.56601
\(232\) 0 0
\(233\) 20.8207 + 20.8207i 1.36401 + 1.36401i 0.868742 + 0.495265i \(0.164929\pi\)
0.495265 + 0.868742i \(0.335071\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −24.9800 −1.62606
\(237\) −13.4722 + 13.4722i −0.875113 + 0.875113i
\(238\) 0 0
\(239\) 18.7350i 1.21187i 0.795516 + 0.605933i \(0.207200\pi\)
−0.795516 + 0.605933i \(0.792800\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) −11.0227 11.0227i −0.707107 0.707107i
\(244\) 14.0000i 0.896258i
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 15.2971 15.2971i 0.963624 0.963624i
\(253\) −22.9456 22.9456i −1.44258 1.44258i
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) −19.5959 + 19.5959i −1.22236 + 1.22236i −0.255569 + 0.966791i \(0.582263\pi\)
−0.966791 + 0.255569i \(0.917737\pi\)
\(258\) 0 0
\(259\) 13.0000i 0.807781i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.44949 + 2.44949i 0.151042 + 0.151042i 0.778583 0.627541i \(-0.215939\pi\)
−0.627541 + 0.778583i \(0.715939\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −22.9456 + 22.9456i −1.40425 + 1.40425i
\(268\) 20.3961 + 20.3961i 1.24589 + 1.24589i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 4.89898 4.89898i 0.297044 0.297044i
\(273\) −15.9217 15.9217i −0.963624 0.963624i
\(274\) 0 0
\(275\) 0 0
\(276\) −18.0000 −1.08347
\(277\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −24.9800 −1.49018 −0.745091 0.666963i \(-0.767594\pi\)
−0.745091 + 0.666963i \(0.767594\pi\)
\(282\) 0 0
\(283\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(284\) 12.4900i 0.741145i
\(285\) 0 0
\(286\) 0 0
\(287\) 15.9217 15.9217i 0.939827 0.939827i
\(288\) 0 0
\(289\) 14.0000i 0.823529i
\(290\) 0 0
\(291\) 6.24500 0.366088
\(292\) −10.1980 + 10.1980i −0.596795 + 0.596795i
\(293\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −22.9456 + 22.9456i −1.33144 + 1.33144i
\(298\) 0 0
\(299\) 18.7350i 1.08347i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 2.54951 2.54951i 0.145508 0.145508i −0.630600 0.776108i \(-0.717191\pi\)
0.776108 + 0.630600i \(0.217191\pi\)
\(308\) −31.8434 31.8434i −1.81444 1.81444i
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 22.0000 1.23760
\(317\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −33.0000 −1.84188
\(322\) 0 0
\(323\) 0 0
\(324\) 18.0000i 1.00000i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 7.64853 + 7.64853i 0.419137 + 0.419137i
\(334\) 0 0
\(335\) 0 0
\(336\) −24.9800 −1.36277
\(337\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(338\) 0 0
\(339\) 24.0000i 1.30350i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 2.54951 + 2.54951i 0.137661 + 0.137661i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −25.7196 + 25.7196i −1.38070 + 1.38070i −0.537332 + 0.843371i \(0.680568\pi\)
−0.843371 + 0.537332i \(0.819432\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 18.7350 1.00000
\(352\) 0 0
\(353\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 37.4700 1.98591
\(357\) −7.64853 + 7.64853i −0.404803 + 0.404803i
\(358\) 0 0
\(359\) 12.4900i 0.659197i −0.944121 0.329598i \(-0.893087\pi\)
0.944121 0.329598i \(-0.106913\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 34.2929 + 34.2929i 1.79991 + 1.79991i
\(364\) 26.0000i 1.36277i
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(368\) 14.6969 + 14.6969i 0.766131 + 0.766131i
\(369\) 18.7350i 0.975305i
\(370\) 0 0
\(371\) 43.7150 2.26957
\(372\) 0 0
\(373\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) −5.09902 5.09902i −0.258863 0.258863i
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 9.00000 0.455150
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 37.4700 1.88294
\(397\) 28.0446 28.0446i 1.40752 1.40752i 0.635036 0.772483i \(-0.280985\pi\)
0.772483 0.635036i \(-0.219015\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −24.9800 −1.24744 −0.623721 0.781647i \(-0.714380\pi\)
−0.623721 + 0.781647i \(0.714380\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 15.9217 15.9217i 0.789209 0.789209i
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −31.8434 31.8434i −1.56691 1.56691i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 23.2702 23.2702i 1.13954 1.13954i
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 17.8466 17.8466i 0.863656 0.863656i
\(428\) 26.9444 + 26.9444i 1.30241 + 1.30241i
\(429\) 39.0000i 1.88294i
\(430\) 0 0
\(431\) 37.4700 1.80487 0.902433 0.430830i \(-0.141779\pi\)
0.902433 + 0.430830i \(0.141779\pi\)
\(432\) 14.6969 14.6969i 0.707107 0.707107i
\(433\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 1.00000i 0.0477274i 0.999715 + 0.0238637i \(0.00759677\pi\)
−0.999715 + 0.0238637i \(0.992403\pi\)
\(440\) 0 0
\(441\) 18.0000 0.857143
\(442\) 0 0
\(443\) 8.57321 + 8.57321i 0.407326 + 0.407326i 0.880805 0.473479i \(-0.157002\pi\)
−0.473479 + 0.880805i \(0.657002\pi\)
\(444\) 12.4900i 0.592749i
\(445\) 0 0
\(446\) 0 0
\(447\) −22.9456 + 22.9456i −1.08529 + 1.08529i
\(448\) 20.3961 + 20.3961i 0.963624 + 0.963624i
\(449\) 18.7350i 0.884159i 0.896976 + 0.442080i \(0.145759\pi\)
−0.896976 + 0.442080i \(0.854241\pi\)
\(450\) 0 0
\(451\) 39.0000 1.83644
\(452\) −19.5959 + 19.5959i −0.921714 + 0.921714i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 2.54951 2.54951i 0.119261 0.119261i −0.644957 0.764218i \(-0.723125\pi\)
0.764218 + 0.644957i \(0.223125\pi\)
\(458\) 0 0
\(459\) 9.00000i 0.420084i
\(460\) 0 0
\(461\) 6.24500 0.290859 0.145429 0.989369i \(-0.453544\pi\)
0.145429 + 0.989369i \(0.453544\pi\)
\(462\) 0 0
\(463\) −17.8466 17.8466i −0.829400 0.829400i 0.158033 0.987434i \(-0.449485\pi\)
−0.987434 + 0.158033i \(0.949485\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 11.0227 11.0227i 0.510070 0.510070i −0.404478 0.914548i \(-0.632547\pi\)
0.914548 + 0.404478i \(0.132547\pi\)
\(468\) −15.2971 15.2971i −0.707107 0.707107i
\(469\) 52.0000i 2.40114i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 12.4900 0.572478
\(477\) −25.7196 + 25.7196i −1.17762 + 1.17762i
\(478\) 0 0
\(479\) 43.7150i 1.99739i −0.0510843 0.998694i \(-0.516268\pi\)
0.0510843 0.998694i \(-0.483732\pi\)
\(480\) 0 0
\(481\) −13.0000 −0.592749
\(482\) 0 0
\(483\) −22.9456 22.9456i −1.04406 1.04406i
\(484\) 56.0000i 2.54545i
\(485\) 0 0
\(486\) 0 0
\(487\) 28.0446 28.0446i 1.27082 1.27082i 0.325165 0.945657i \(-0.394580\pi\)
0.945657 0.325165i \(-0.105420\pi\)
\(488\) 0 0
\(489\) 43.7150i 1.97686i
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 15.2971 15.2971i 0.689645 0.689645i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 15.9217 15.9217i 0.714185 0.714185i
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −22.0454 22.0454i −0.982956 0.982956i 0.0169010 0.999857i \(-0.494620\pi\)
−0.999857 + 0.0169010i \(0.994620\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −15.9217 + 15.9217i −0.707107 + 0.707107i
\(508\) 0 0
\(509\) 43.7150i 1.93763i −0.247780 0.968816i \(-0.579701\pi\)
0.247780 0.968816i \(-0.420299\pi\)
\(510\) 0 0
\(511\) −26.0000 −1.15017
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 36.0000i 1.58022i
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −30.5941 30.5941i −1.33144 1.33144i
\(529\) 4.00000i 0.173913i
\(530\) 0 0
\(531\) 37.4700 1.62606
\(532\) 0 0
\(533\) −15.9217 15.9217i −0.689645 0.689645i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 37.4700i 1.61395i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) −28.1691 28.1691i −1.20885 1.20885i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(548\) 0 0
\(549\) 21.0000i 0.896258i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 28.0446 + 28.0446i 1.19258 + 1.19258i
\(554\) 0 0
\(555\) 0 0
\(556\) −38.0000 −1.61156
\(557\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −18.7350 −0.790992
\(562\) 0 0
\(563\) 33.0681 + 33.0681i 1.39365 + 1.39365i 0.816959 + 0.576696i \(0.195658\pi\)
0.576696 + 0.816959i \(0.304342\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −22.9456 + 22.9456i −0.963624 + 0.963624i
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) −23.0000 −0.962520 −0.481260 0.876578i \(-0.659821\pi\)
−0.481260 + 0.876578i \(0.659821\pi\)
\(572\) −31.8434 + 31.8434i −1.33144 + 1.33144i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −24.0000 −1.00000
\(577\) 28.0446 28.0446i 1.16751 1.16751i 0.184721 0.982791i \(-0.440862\pi\)
0.982791 0.184721i \(-0.0591383\pi\)
\(578\) 0 0
\(579\) 43.7150i 1.81673i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 53.5397 + 53.5397i 2.21739 + 2.21739i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(588\) −14.6969 14.6969i −0.606092 0.606092i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −10.1980 + 10.1980i −0.419137 + 0.419137i
\(593\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 37.4700 1.53483
\(597\) 4.89898 4.89898i 0.200502 0.200502i
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 47.0000 1.91717 0.958585 0.284807i \(-0.0919294\pi\)
0.958585 + 0.284807i \(0.0919294\pi\)
\(602\) 0 0
\(603\) −30.5941 30.5941i −1.24589 1.24589i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −7.34847 + 7.34847i −0.297044 + 0.297044i
\(613\) −17.8466 17.8466i −0.720816 0.720816i 0.247955 0.968771i \(-0.420241\pi\)
−0.968771 + 0.247955i \(0.920241\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 27.0000 1.08347
\(622\) 0 0
\(623\) 47.7650 + 47.7650i 1.91367 + 1.91367i
\(624\) 24.9800i 1.00000i
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 6.24500i 0.249004i
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) −9.79796 9.79796i −0.389434 0.389434i
\(634\) 0 0
\(635\) 0 0
\(636\) 42.0000 1.66541
\(637\) −15.2971 + 15.2971i −0.606092 + 0.606092i
\(638\) 0 0
\(639\) 18.7350i 0.741145i
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 33.1436 + 33.1436i 1.30706 + 1.30706i 0.923529 + 0.383528i \(0.125291\pi\)
0.383528 + 0.923529i \(0.374709\pi\)
\(644\) 37.4700i 1.47652i
\(645\) 0 0
\(646\) 0 0
\(647\) 35.5176 35.5176i 1.39634 1.39634i 0.586108 0.810233i \(-0.300659\pi\)
0.810233 0.586108i \(-0.199341\pi\)
\(648\) 0 0
\(649\) 78.0000i 3.06177i
\(650\) 0 0
\(651\) 0 0
\(652\) −35.6931 + 35.6931i −1.39785 + 1.39785i
\(653\) −34.2929 34.2929i −1.34198 1.34198i −0.894084 0.447899i \(-0.852172\pi\)
−0.447899 0.894084i \(-0.647828\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −24.9800 −0.975305
\(657\) 15.2971 15.2971i 0.596795 0.596795i
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 7.64853 + 7.64853i 0.297044 + 0.297044i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 49.9600i 1.93156i
\(670\) 0 0
\(671\) 43.7150 1.68760
\(672\) 0 0
\(673\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 26.0000 1.00000
\(677\) 23.2702 23.2702i 0.894345 0.894345i −0.100584 0.994929i \(-0.532071\pi\)
0.994929 + 0.100584i \(0.0320711\pi\)
\(678\) 0 0
\(679\) 13.0000i 0.498894i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 43.7150i 1.66541i
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 29.3939 29.3939i 1.11739 1.11739i
\(693\) 47.7650 + 47.7650i 1.81444 + 1.81444i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −7.64853 + 7.64853i −0.289709 + 0.289709i
\(698\) 0 0
\(699\) 51.0000i 1.92900i
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 49.9600i 1.88294i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) −30.5941 30.5941i −1.14980 1.14980i
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 0 0
\(711\) −33.0000 −1.23760
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −22.9456 + 22.9456i −0.856919 + 0.856919i
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 46.0000i 1.70958i
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) 0 0
\(731\) 0 0
\(732\) 17.1464 17.1464i 0.633750 0.633750i
\(733\) 33.1436 + 33.1436i 1.22419 + 1.22419i 0.966129 + 0.258058i \(0.0830827\pi\)
0.258058 + 0.966129i \(0.416917\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −63.6867 + 63.6867i −2.34593 + 2.34593i
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 15.2971 + 15.2971i 0.559316 + 0.559316i
\(749\) 68.6950i 2.51006i
\(750\) 0 0
\(751\) −53.0000 −1.93400 −0.966999 0.254781i \(-0.917997\pi\)
−0.966999 + 0.254781i \(0.917997\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 37.4700 1.36277
\(757\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(758\) 0 0
\(759\) 56.2050i 2.04011i
\(760\) 0 0
\(761\) −24.9800 −0.905524 −0.452762 0.891631i \(-0.649561\pi\)
−0.452762 + 0.891631i \(0.649561\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −31.8434 + 31.8434i −1.14980 + 1.14980i
\(768\) 19.5959 + 19.5959i 0.707107 + 0.707107i
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) −48.0000 −1.72868
\(772\) −35.6931 + 35.6931i −1.28462 + 1.28462i
\(773\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 15.9217 15.9217i 0.571187 0.571187i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 39.0000 1.39553
\(782\) 0 0
\(783\) 0 0
\(784\) 24.0000i 0.857143i
\(785\) 0 0
\(786\) 0 0
\(787\) −10.1980 + 10.1980i −0.363521 + 0.363521i −0.865107 0.501587i \(-0.832750\pi\)
0.501587 + 0.865107i \(0.332750\pi\)
\(788\) 0 0
\(789\) 6.00000i 0.213606i
\(790\) 0 0
\(791\) −49.9600 −1.77637
\(792\) 0 0
\(793\) −17.8466 17.8466i −0.633750 0.633750i
\(794\) 0 0
\(795\) 0 0
\(796\) −8.00000 −0.283552
\(797\) −1.22474 + 1.22474i −0.0433827 + 0.0433827i −0.728465 0.685083i \(-0.759766\pi\)
0.685083 + 0.728465i \(0.259766\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −56.2050 −1.98591
\(802\) 0 0
\(803\) −31.8434 31.8434i −1.12373 1.12373i
\(804\) 49.9600i 1.76195i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 12.0000 0.420084
\(817\) 0 0
\(818\) 0 0
\(819\) 39.0000i 1.36277i
\(820\) 0 0
\(821\) −56.2050 −1.96157 −0.980784 0.195098i \(-0.937497\pi\)
−0.980784 + 0.195098i \(0.937497\pi\)
\(822\) 0 0
\(823\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(828\) −22.0454 22.0454i −0.766131 0.766131i
\(829\) 14.0000i 0.486240i −0.969996 0.243120i \(-0.921829\pi\)
0.969996 0.243120i \(-0.0781709\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 20.3961 20.3961i 0.707107 0.707107i
\(833\) 7.34847 + 7.34847i 0.254609 + 0.254609i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 43.7150i 1.50921i −0.656180 0.754604i \(-0.727829\pi\)
0.656180 0.754604i \(-0.272171\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) −30.5941 30.5941i −1.05372 1.05372i
\(844\) 16.0000i 0.550743i
\(845\) 0 0
\(846\) 0 0
\(847\) 71.3863 71.3863i 2.45286 2.45286i
\(848\) −34.2929 34.2929i −1.17762 1.17762i
\(849\) 0 0
\(850\) 0 0
\(851\) −18.7350 −0.642227
\(852\) 15.2971 15.2971i 0.524069 0.524069i
\(853\) 33.1436 + 33.1436i 1.13482 + 1.13482i 0.989366 + 0.145451i \(0.0464632\pi\)
0.145451 + 0.989366i \(0.453537\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 11.0227 11.0227i 0.376528 0.376528i −0.493320 0.869848i \(-0.664217\pi\)
0.869848 + 0.493320i \(0.164217\pi\)
\(858\) 0 0
\(859\) 41.0000i 1.39890i 0.714681 + 0.699451i \(0.246572\pi\)
−0.714681 + 0.699451i \(0.753428\pi\)
\(860\) 0 0
\(861\) 39.0000 1.32912
\(862\) 0 0
\(863\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −17.1464 + 17.1464i −0.582323 + 0.582323i
\(868\) 0 0
\(869\) 68.6950i 2.33032i
\(870\) 0 0
\(871\) 52.0000 1.76195
\(872\) 0 0
\(873\) 7.64853 + 7.64853i 0.258863 + 0.258863i
\(874\) 0 0
\(875\) 0 0
\(876\) −24.9800 −0.843996
\(877\) −35.6931 + 35.6931i −1.20527 + 1.20527i −0.232730 + 0.972541i \(0.574766\pi\)
−0.972541 + 0.232730i \(0.925234\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(884\) 12.4900i 0.420084i
\(885\) 0 0
\(886\) 0 0
\(887\) −13.4722 + 13.4722i −0.452352 + 0.452352i −0.896135 0.443783i \(-0.853636\pi\)
0.443783 + 0.896135i \(0.353636\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −56.2050 −1.88294
\(892\) 40.7922 40.7922i 1.36582 1.36582i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −22.9456 + 22.9456i −0.766131 + 0.766131i
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −21.0000 −0.699611
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 59.0000i 1.94623i −0.230319 0.973115i \(-0.573977\pi\)
0.230319 0.973115i \(-0.426023\pi\)
\(920\) 0 0
\(921\) 6.24500 0.205780
\(922\) 0 0
\(923\) −15.9217 15.9217i −0.524069 0.524069i
\(924\) 78.0000i 2.56601i
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 43.7150i 1.43424i −0.696949 0.717121i \(-0.745459\pi\)
0.696949 0.717121i \(-0.254541\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 41.6413 41.6413i 1.36401 1.36401i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −56.2050 −1.83223 −0.916115 0.400916i \(-0.868692\pi\)
−0.916115 + 0.400916i \(0.868692\pi\)
\(942\) 0 0
\(943\) −22.9456 22.9456i −0.747211 0.747211i
\(944\) 49.9600i 1.62606i
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(948\) 26.9444 + 26.9444i 0.875113 + 0.875113i
\(949\) 26.0000i 0.843996i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 33.0681 + 33.0681i 1.07118 + 1.07118i 0.997264 + 0.0739168i \(0.0235499\pi\)
0.0739168 + 0.997264i \(0.476450\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 37.4700 1.21187
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 0 0
\(963\) −40.4166 40.4166i −1.30241 1.30241i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 40.7922 40.7922i 1.31179 1.31179i 0.391690 0.920097i \(-0.371891\pi\)
0.920097 0.391690i \(-0.128109\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) −22.0454 + 22.0454i −0.707107 + 0.707107i
\(973\) −48.4407 48.4407i −1.55294 1.55294i
\(974\) 0 0
\(975\) 0 0
\(976\) −28.0000 −0.896258
\(977\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(978\) 0 0
\(979\) 117.000i 3.73934i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 47.0000 1.49300 0.746502 0.665383i \(-0.231732\pi\)
0.746502 + 0.665383i \(0.231732\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(998\) 0 0
\(999\) 18.7350i 0.592749i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.s.b.857.4 yes 8
3.2 odd 2 inner 975.2.s.b.857.2 yes 8
5.2 odd 4 inner 975.2.s.b.818.4 yes 8
5.3 odd 4 inner 975.2.s.b.818.1 8
5.4 even 2 inner 975.2.s.b.857.1 yes 8
13.12 even 2 inner 975.2.s.b.857.3 yes 8
15.2 even 4 inner 975.2.s.b.818.2 yes 8
15.8 even 4 inner 975.2.s.b.818.3 yes 8
15.14 odd 2 inner 975.2.s.b.857.3 yes 8
39.38 odd 2 inner 975.2.s.b.857.1 yes 8
65.12 odd 4 inner 975.2.s.b.818.3 yes 8
65.38 odd 4 inner 975.2.s.b.818.2 yes 8
65.64 even 2 inner 975.2.s.b.857.2 yes 8
195.38 even 4 inner 975.2.s.b.818.4 yes 8
195.77 even 4 inner 975.2.s.b.818.1 8
195.194 odd 2 CM 975.2.s.b.857.4 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
975.2.s.b.818.1 8 5.3 odd 4 inner
975.2.s.b.818.1 8 195.77 even 4 inner
975.2.s.b.818.2 yes 8 15.2 even 4 inner
975.2.s.b.818.2 yes 8 65.38 odd 4 inner
975.2.s.b.818.3 yes 8 15.8 even 4 inner
975.2.s.b.818.3 yes 8 65.12 odd 4 inner
975.2.s.b.818.4 yes 8 5.2 odd 4 inner
975.2.s.b.818.4 yes 8 195.38 even 4 inner
975.2.s.b.857.1 yes 8 5.4 even 2 inner
975.2.s.b.857.1 yes 8 39.38 odd 2 inner
975.2.s.b.857.2 yes 8 3.2 odd 2 inner
975.2.s.b.857.2 yes 8 65.64 even 2 inner
975.2.s.b.857.3 yes 8 13.12 even 2 inner
975.2.s.b.857.3 yes 8 15.14 odd 2 inner
975.2.s.b.857.4 yes 8 1.1 even 1 trivial
975.2.s.b.857.4 yes 8 195.194 odd 2 CM