Properties

Label 975.2.s.b
Level $975$
Weight $2$
Character orbit 975.s
Analytic conductor $7.785$
Analytic rank $0$
Dimension $8$
CM discriminant -195
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(818,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.818");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.s (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.151613669376.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 7x^{4} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{3} q^{3} + 2 \beta_{2} q^{4} + \beta_1 q^{7} - 3 \beta_{2} q^{9} - \beta_{6} q^{11} - 2 \beta_{4} q^{12} + \beta_{7} q^{13} - 4 q^{16} + \beta_{4} q^{17} - \beta_{6} q^{21} + 3 \beta_{3} q^{23}+ \cdots + 3 \beta_{5} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 32 q^{16} + 48 q^{36} - 24 q^{51} + 56 q^{61} - 72 q^{81} - 104 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 7x^{4} + 256 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{5} + 29\nu ) / 20 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{6} + 9\nu^{2} ) / 80 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{5} + 11\nu ) / 20 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{7} + 71\nu^{3} ) / 320 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 2\nu^{4} - 7 ) / 5 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -\nu^{6} + 23\nu^{2} ) / 16 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 9\nu^{7} + \nu^{3} ) / 320 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{6} + 5\beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{7} + 9\beta_{4} ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 5\beta_{5} + 7 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -29\beta_{3} + 11\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -9\beta_{6} + 115\beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 71\beta_{7} - \beta_{4} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(-1\) \(-1\) \(-\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
818.1
−0.662382 1.88713i
1.88713 + 0.662382i
−1.88713 0.662382i
0.662382 + 1.88713i
−0.662382 + 1.88713i
1.88713 0.662382i
−1.88713 + 0.662382i
0.662382 1.88713i
0 −1.22474 + 1.22474i 2.00000i 0 0 −2.54951 2.54951i 0 3.00000i 0
818.2 0 −1.22474 + 1.22474i 2.00000i 0 0 2.54951 + 2.54951i 0 3.00000i 0
818.3 0 1.22474 1.22474i 2.00000i 0 0 −2.54951 2.54951i 0 3.00000i 0
818.4 0 1.22474 1.22474i 2.00000i 0 0 2.54951 + 2.54951i 0 3.00000i 0
857.1 0 −1.22474 1.22474i 2.00000i 0 0 −2.54951 + 2.54951i 0 3.00000i 0
857.2 0 −1.22474 1.22474i 2.00000i 0 0 2.54951 2.54951i 0 3.00000i 0
857.3 0 1.22474 + 1.22474i 2.00000i 0 0 −2.54951 + 2.54951i 0 3.00000i 0
857.4 0 1.22474 + 1.22474i 2.00000i 0 0 2.54951 2.54951i 0 3.00000i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 818.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
195.e odd 2 1 CM by \(\Q(\sqrt{-195}) \)
3.b odd 2 1 inner
5.b even 2 1 inner
5.c odd 4 2 inner
13.b even 2 1 inner
15.d odd 2 1 inner
15.e even 4 2 inner
39.d odd 2 1 inner
65.d even 2 1 inner
65.h odd 4 2 inner
195.s even 4 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 975.2.s.b 8
3.b odd 2 1 inner 975.2.s.b 8
5.b even 2 1 inner 975.2.s.b 8
5.c odd 4 2 inner 975.2.s.b 8
13.b even 2 1 inner 975.2.s.b 8
15.d odd 2 1 inner 975.2.s.b 8
15.e even 4 2 inner 975.2.s.b 8
39.d odd 2 1 inner 975.2.s.b 8
65.d even 2 1 inner 975.2.s.b 8
65.h odd 4 2 inner 975.2.s.b 8
195.e odd 2 1 CM 975.2.s.b 8
195.s even 4 2 inner 975.2.s.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
975.2.s.b 8 1.a even 1 1 trivial
975.2.s.b 8 3.b odd 2 1 inner
975.2.s.b 8 5.b even 2 1 inner
975.2.s.b 8 5.c odd 4 2 inner
975.2.s.b 8 13.b even 2 1 inner
975.2.s.b 8 15.d odd 2 1 inner
975.2.s.b 8 15.e even 4 2 inner
975.2.s.b 8 39.d odd 2 1 inner
975.2.s.b 8 65.d even 2 1 inner
975.2.s.b 8 65.h odd 4 2 inner
975.2.s.b 8 195.e odd 2 1 CM
975.2.s.b 8 195.s even 4 2 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(975, [\chi])\):

\( T_{2} \) Copy content Toggle raw display
\( T_{7}^{4} + 169 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{4} + 9)^{2} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( (T^{4} + 169)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 39)^{4} \) Copy content Toggle raw display
$13$ \( (T^{4} + 169)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} + 9)^{2} \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( (T^{4} + 729)^{2} \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( T^{8} \) Copy content Toggle raw display
$37$ \( (T^{4} + 169)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 39)^{4} \) Copy content Toggle raw display
$43$ \( T^{8} \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( (T^{4} + 21609)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 156)^{4} \) Copy content Toggle raw display
$61$ \( (T - 7)^{8} \) Copy content Toggle raw display
$67$ \( (T^{4} + 43264)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 39)^{4} \) Copy content Toggle raw display
$73$ \( (T^{4} + 2704)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 121)^{4} \) Copy content Toggle raw display
$83$ \( T^{8} \) Copy content Toggle raw display
$89$ \( (T^{2} + 351)^{4} \) Copy content Toggle raw display
$97$ \( (T^{4} + 169)^{2} \) Copy content Toggle raw display
show more
show less