Properties

Label 975.2.w.d.49.1
Level $975$
Weight $2$
Character 975.49
Analytic conductor $7.785$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(49,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.w (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 975.49
Dual form 975.2.w.d.199.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{3} +(1.00000 - 1.73205i) q^{4} +(-0.866025 + 1.50000i) q^{7} +(0.500000 - 0.866025i) q^{9} +(-3.00000 + 1.73205i) q^{11} +2.00000i q^{12} +(-0.866025 + 3.50000i) q^{13} +(-2.00000 - 3.46410i) q^{16} +(-3.00000 - 1.73205i) q^{19} -1.73205i q^{21} +(-5.19615 + 3.00000i) q^{23} +1.00000i q^{27} +(1.73205 + 3.00000i) q^{28} +(3.00000 + 5.19615i) q^{29} -1.73205i q^{31} +(1.73205 - 3.00000i) q^{33} +(-1.00000 - 1.73205i) q^{36} +(-1.00000 - 3.46410i) q^{39} +(-6.00000 + 3.46410i) q^{41} +(0.866025 + 0.500000i) q^{43} +6.92820i q^{44} -3.46410 q^{47} +(3.46410 + 2.00000i) q^{48} +(2.00000 + 3.46410i) q^{49} +(5.19615 + 5.00000i) q^{52} +12.0000i q^{53} +3.46410 q^{57} +(3.00000 + 1.73205i) q^{59} +(-0.500000 + 0.866025i) q^{61} +(0.866025 + 1.50000i) q^{63} -8.00000 q^{64} +(-4.33013 - 7.50000i) q^{67} +(3.00000 - 5.19615i) q^{69} +(-9.00000 - 5.19615i) q^{71} +1.73205 q^{73} +(-6.00000 + 3.46410i) q^{76} -6.00000i q^{77} +11.0000 q^{79} +(-0.500000 - 0.866025i) q^{81} -13.8564 q^{83} +(-3.00000 - 1.73205i) q^{84} +(-5.19615 - 3.00000i) q^{87} +(-6.00000 + 3.46410i) q^{89} +(-4.50000 - 4.33013i) q^{91} +12.0000i q^{92} +(0.866025 + 1.50000i) q^{93} +(-2.59808 + 4.50000i) q^{97} +3.46410i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} + 2 q^{9} - 12 q^{11} - 8 q^{16} - 12 q^{19} + 12 q^{29} - 4 q^{36} - 4 q^{39} - 24 q^{41} + 8 q^{49} + 12 q^{59} - 2 q^{61} - 32 q^{64} + 12 q^{69} - 36 q^{71} - 24 q^{76} + 44 q^{79} - 2 q^{81}+ \cdots - 18 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(3\) −0.866025 + 0.500000i −0.500000 + 0.288675i
\(4\) 1.00000 1.73205i 0.500000 0.866025i
\(5\) 0 0
\(6\) 0 0
\(7\) −0.866025 + 1.50000i −0.327327 + 0.566947i −0.981981 0.188982i \(-0.939481\pi\)
0.654654 + 0.755929i \(0.272814\pi\)
\(8\) 0 0
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 0 0
\(11\) −3.00000 + 1.73205i −0.904534 + 0.522233i −0.878668 0.477432i \(-0.841568\pi\)
−0.0258656 + 0.999665i \(0.508234\pi\)
\(12\) 2.00000i 0.577350i
\(13\) −0.866025 + 3.50000i −0.240192 + 0.970725i
\(14\) 0 0
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.500000 0.866025i
\(17\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(18\) 0 0
\(19\) −3.00000 1.73205i −0.688247 0.397360i 0.114708 0.993399i \(-0.463407\pi\)
−0.802955 + 0.596040i \(0.796740\pi\)
\(20\) 0 0
\(21\) 1.73205i 0.377964i
\(22\) 0 0
\(23\) −5.19615 + 3.00000i −1.08347 + 0.625543i −0.931831 0.362892i \(-0.881789\pi\)
−0.151642 + 0.988436i \(0.548456\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 1.73205 + 3.00000i 0.327327 + 0.566947i
\(29\) 3.00000 + 5.19615i 0.557086 + 0.964901i 0.997738 + 0.0672232i \(0.0214140\pi\)
−0.440652 + 0.897678i \(0.645253\pi\)
\(30\) 0 0
\(31\) 1.73205i 0.311086i −0.987829 0.155543i \(-0.950287\pi\)
0.987829 0.155543i \(-0.0497126\pi\)
\(32\) 0 0
\(33\) 1.73205 3.00000i 0.301511 0.522233i
\(34\) 0 0
\(35\) 0 0
\(36\) −1.00000 1.73205i −0.166667 0.288675i
\(37\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(38\) 0 0
\(39\) −1.00000 3.46410i −0.160128 0.554700i
\(40\) 0 0
\(41\) −6.00000 + 3.46410i −0.937043 + 0.541002i −0.889032 0.457845i \(-0.848621\pi\)
−0.0480106 + 0.998847i \(0.515288\pi\)
\(42\) 0 0
\(43\) 0.866025 + 0.500000i 0.132068 + 0.0762493i 0.564578 0.825380i \(-0.309039\pi\)
−0.432511 + 0.901629i \(0.642372\pi\)
\(44\) 6.92820i 1.04447i
\(45\) 0 0
\(46\) 0 0
\(47\) −3.46410 −0.505291 −0.252646 0.967559i \(-0.581301\pi\)
−0.252646 + 0.967559i \(0.581301\pi\)
\(48\) 3.46410 + 2.00000i 0.500000 + 0.288675i
\(49\) 2.00000 + 3.46410i 0.285714 + 0.494872i
\(50\) 0 0
\(51\) 0 0
\(52\) 5.19615 + 5.00000i 0.720577 + 0.693375i
\(53\) 12.0000i 1.64833i 0.566352 + 0.824163i \(0.308354\pi\)
−0.566352 + 0.824163i \(0.691646\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 3.46410 0.458831
\(58\) 0 0
\(59\) 3.00000 + 1.73205i 0.390567 + 0.225494i 0.682406 0.730974i \(-0.260934\pi\)
−0.291839 + 0.956467i \(0.594267\pi\)
\(60\) 0 0
\(61\) −0.500000 + 0.866025i −0.0640184 + 0.110883i −0.896258 0.443533i \(-0.853725\pi\)
0.832240 + 0.554416i \(0.187058\pi\)
\(62\) 0 0
\(63\) 0.866025 + 1.50000i 0.109109 + 0.188982i
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) −4.33013 7.50000i −0.529009 0.916271i −0.999428 0.0338274i \(-0.989230\pi\)
0.470418 0.882443i \(-0.344103\pi\)
\(68\) 0 0
\(69\) 3.00000 5.19615i 0.361158 0.625543i
\(70\) 0 0
\(71\) −9.00000 5.19615i −1.06810 0.616670i −0.140441 0.990089i \(-0.544852\pi\)
−0.927663 + 0.373419i \(0.878185\pi\)
\(72\) 0 0
\(73\) 1.73205 0.202721 0.101361 0.994850i \(-0.467680\pi\)
0.101361 + 0.994850i \(0.467680\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −6.00000 + 3.46410i −0.688247 + 0.397360i
\(77\) 6.00000i 0.683763i
\(78\) 0 0
\(79\) 11.0000 1.23760 0.618798 0.785550i \(-0.287620\pi\)
0.618798 + 0.785550i \(0.287620\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) −13.8564 −1.52094 −0.760469 0.649374i \(-0.775031\pi\)
−0.760469 + 0.649374i \(0.775031\pi\)
\(84\) −3.00000 1.73205i −0.327327 0.188982i
\(85\) 0 0
\(86\) 0 0
\(87\) −5.19615 3.00000i −0.557086 0.321634i
\(88\) 0 0
\(89\) −6.00000 + 3.46410i −0.635999 + 0.367194i −0.783072 0.621932i \(-0.786348\pi\)
0.147073 + 0.989126i \(0.453015\pi\)
\(90\) 0 0
\(91\) −4.50000 4.33013i −0.471728 0.453921i
\(92\) 12.0000i 1.25109i
\(93\) 0.866025 + 1.50000i 0.0898027 + 0.155543i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −2.59808 + 4.50000i −0.263795 + 0.456906i −0.967247 0.253837i \(-0.918307\pi\)
0.703452 + 0.710742i \(0.251641\pi\)
\(98\) 0 0
\(99\) 3.46410i 0.348155i
\(100\) 0 0
\(101\) 9.00000 + 15.5885i 0.895533 + 1.55111i 0.833143 + 0.553058i \(0.186539\pi\)
0.0623905 + 0.998052i \(0.480128\pi\)
\(102\) 0 0
\(103\) 1.00000i 0.0985329i −0.998786 0.0492665i \(-0.984312\pi\)
0.998786 0.0492665i \(-0.0156884\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.19615 3.00000i 0.502331 0.290021i −0.227345 0.973814i \(-0.573004\pi\)
0.729676 + 0.683793i \(0.239671\pi\)
\(108\) 1.73205 + 1.00000i 0.166667 + 0.0962250i
\(109\) 15.5885i 1.49310i −0.665327 0.746552i \(-0.731708\pi\)
0.665327 0.746552i \(-0.268292\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 6.92820 0.654654
\(113\) −5.19615 3.00000i −0.488813 0.282216i 0.235269 0.971930i \(-0.424403\pi\)
−0.724082 + 0.689714i \(0.757736\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 12.0000 1.11417
\(117\) 2.59808 + 2.50000i 0.240192 + 0.231125i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.500000 0.866025i 0.0454545 0.0787296i
\(122\) 0 0
\(123\) 3.46410 6.00000i 0.312348 0.541002i
\(124\) −3.00000 1.73205i −0.269408 0.155543i
\(125\) 0 0
\(126\) 0 0
\(127\) −11.2583 + 6.50000i −0.999015 + 0.576782i −0.907957 0.419064i \(-0.862358\pi\)
−0.0910585 + 0.995846i \(0.529025\pi\)
\(128\) 0 0
\(129\) −1.00000 −0.0880451
\(130\) 0 0
\(131\) 6.00000 0.524222 0.262111 0.965038i \(-0.415581\pi\)
0.262111 + 0.965038i \(0.415581\pi\)
\(132\) −3.46410 6.00000i −0.301511 0.522233i
\(133\) 5.19615 3.00000i 0.450564 0.260133i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(138\) 0 0
\(139\) 2.50000 4.33013i 0.212047 0.367277i −0.740308 0.672268i \(-0.765320\pi\)
0.952355 + 0.304991i \(0.0986536\pi\)
\(140\) 0 0
\(141\) 3.00000 1.73205i 0.252646 0.145865i
\(142\) 0 0
\(143\) −3.46410 12.0000i −0.289683 1.00349i
\(144\) −4.00000 −0.333333
\(145\) 0 0
\(146\) 0 0
\(147\) −3.46410 2.00000i −0.285714 0.164957i
\(148\) 0 0
\(149\) 6.00000 + 3.46410i 0.491539 + 0.283790i 0.725213 0.688525i \(-0.241741\pi\)
−0.233674 + 0.972315i \(0.575075\pi\)
\(150\) 0 0
\(151\) 3.46410i 0.281905i 0.990016 + 0.140952i \(0.0450164\pi\)
−0.990016 + 0.140952i \(0.954984\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −7.00000 1.73205i −0.560449 0.138675i
\(157\) 11.0000i 0.877896i −0.898513 0.438948i \(-0.855351\pi\)
0.898513 0.438948i \(-0.144649\pi\)
\(158\) 0 0
\(159\) −6.00000 10.3923i −0.475831 0.824163i
\(160\) 0 0
\(161\) 10.3923i 0.819028i
\(162\) 0 0
\(163\) 9.52628 16.5000i 0.746156 1.29238i −0.203497 0.979076i \(-0.565231\pi\)
0.949653 0.313304i \(-0.101436\pi\)
\(164\) 13.8564i 1.08200i
\(165\) 0 0
\(166\) 0 0
\(167\) 3.46410 + 6.00000i 0.268060 + 0.464294i 0.968361 0.249554i \(-0.0802840\pi\)
−0.700301 + 0.713848i \(0.746951\pi\)
\(168\) 0 0
\(169\) −11.5000 6.06218i −0.884615 0.466321i
\(170\) 0 0
\(171\) −3.00000 + 1.73205i −0.229416 + 0.132453i
\(172\) 1.73205 1.00000i 0.132068 0.0762493i
\(173\) 5.19615 + 3.00000i 0.395056 + 0.228086i 0.684349 0.729155i \(-0.260087\pi\)
−0.289292 + 0.957241i \(0.593420\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 12.0000 + 6.92820i 0.904534 + 0.522233i
\(177\) −3.46410 −0.260378
\(178\) 0 0
\(179\) 6.00000 + 10.3923i 0.448461 + 0.776757i 0.998286 0.0585225i \(-0.0186389\pi\)
−0.549825 + 0.835280i \(0.685306\pi\)
\(180\) 0 0
\(181\) 14.0000 1.04061 0.520306 0.853980i \(-0.325818\pi\)
0.520306 + 0.853980i \(0.325818\pi\)
\(182\) 0 0
\(183\) 1.00000i 0.0739221i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −3.46410 + 6.00000i −0.252646 + 0.437595i
\(189\) −1.50000 0.866025i −0.109109 0.0629941i
\(190\) 0 0
\(191\) 9.00000 15.5885i 0.651217 1.12794i −0.331611 0.943416i \(-0.607592\pi\)
0.982828 0.184525i \(-0.0590746\pi\)
\(192\) 6.92820 4.00000i 0.500000 0.288675i
\(193\) −7.79423 13.5000i −0.561041 0.971751i −0.997406 0.0719816i \(-0.977068\pi\)
0.436365 0.899770i \(-0.356266\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 8.00000 0.571429
\(197\) −6.92820 12.0000i −0.493614 0.854965i 0.506359 0.862323i \(-0.330991\pi\)
−0.999973 + 0.00735824i \(0.997658\pi\)
\(198\) 0 0
\(199\) 3.50000 6.06218i 0.248108 0.429736i −0.714893 0.699234i \(-0.753524\pi\)
0.963001 + 0.269498i \(0.0868577\pi\)
\(200\) 0 0
\(201\) 7.50000 + 4.33013i 0.529009 + 0.305424i
\(202\) 0 0
\(203\) −10.3923 −0.729397
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 6.00000i 0.417029i
\(208\) 13.8564 4.00000i 0.960769 0.277350i
\(209\) 12.0000 0.830057
\(210\) 0 0
\(211\) −6.50000 11.2583i −0.447478 0.775055i 0.550743 0.834675i \(-0.314345\pi\)
−0.998221 + 0.0596196i \(0.981011\pi\)
\(212\) 20.7846 + 12.0000i 1.42749 + 0.824163i
\(213\) 10.3923 0.712069
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 2.59808 + 1.50000i 0.176369 + 0.101827i
\(218\) 0 0
\(219\) −1.50000 + 0.866025i −0.101361 + 0.0585206i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 8.66025 + 15.0000i 0.579934 + 1.00447i 0.995486 + 0.0949052i \(0.0302548\pi\)
−0.415553 + 0.909569i \(0.636412\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.3923 18.0000i 0.689761 1.19470i −0.282153 0.959369i \(-0.591049\pi\)
0.971915 0.235333i \(-0.0756180\pi\)
\(228\) 3.46410 6.00000i 0.229416 0.397360i
\(229\) 27.7128i 1.83131i 0.401960 + 0.915657i \(0.368329\pi\)
−0.401960 + 0.915657i \(0.631671\pi\)
\(230\) 0 0
\(231\) 3.00000 + 5.19615i 0.197386 + 0.341882i
\(232\) 0 0
\(233\) 18.0000i 1.17922i −0.807688 0.589610i \(-0.799282\pi\)
0.807688 0.589610i \(-0.200718\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 6.00000 3.46410i 0.390567 0.225494i
\(237\) −9.52628 + 5.50000i −0.618798 + 0.357263i
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 18.0000 + 10.3923i 1.15948 + 0.669427i 0.951180 0.308637i \(-0.0998729\pi\)
0.208302 + 0.978065i \(0.433206\pi\)
\(242\) 0 0
\(243\) 0.866025 + 0.500000i 0.0555556 + 0.0320750i
\(244\) 1.00000 + 1.73205i 0.0640184 + 0.110883i
\(245\) 0 0
\(246\) 0 0
\(247\) 8.66025 9.00000i 0.551039 0.572656i
\(248\) 0 0
\(249\) 12.0000 6.92820i 0.760469 0.439057i
\(250\) 0 0
\(251\) −6.00000 + 10.3923i −0.378717 + 0.655956i −0.990876 0.134778i \(-0.956968\pi\)
0.612159 + 0.790735i \(0.290301\pi\)
\(252\) 3.46410 0.218218
\(253\) 10.3923 18.0000i 0.653359 1.13165i
\(254\) 0 0
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) 0 0
\(263\) 10.3923 6.00000i 0.640817 0.369976i −0.144112 0.989561i \(-0.546033\pi\)
0.784929 + 0.619586i \(0.212699\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 3.46410 6.00000i 0.212000 0.367194i
\(268\) −17.3205 −1.05802
\(269\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(270\) 0 0
\(271\) −4.50000 + 2.59808i −0.273356 + 0.157822i −0.630412 0.776261i \(-0.717114\pi\)
0.357056 + 0.934083i \(0.383781\pi\)
\(272\) 0 0
\(273\) 6.06218 + 1.50000i 0.366900 + 0.0907841i
\(274\) 0 0
\(275\) 0 0
\(276\) −6.00000 10.3923i −0.361158 0.625543i
\(277\) −8.66025 5.00000i −0.520344 0.300421i 0.216731 0.976231i \(-0.430460\pi\)
−0.737075 + 0.675810i \(0.763794\pi\)
\(278\) 0 0
\(279\) −1.50000 0.866025i −0.0898027 0.0518476i
\(280\) 0 0
\(281\) 24.2487i 1.44656i 0.690557 + 0.723278i \(0.257366\pi\)
−0.690557 + 0.723278i \(0.742634\pi\)
\(282\) 0 0
\(283\) −9.52628 + 5.50000i −0.566279 + 0.326941i −0.755662 0.654962i \(-0.772685\pi\)
0.189383 + 0.981903i \(0.439351\pi\)
\(284\) −18.0000 + 10.3923i −1.06810 + 0.616670i
\(285\) 0 0
\(286\) 0 0
\(287\) 12.0000i 0.708338i
\(288\) 0 0
\(289\) −8.50000 14.7224i −0.500000 0.866025i
\(290\) 0 0
\(291\) 5.19615i 0.304604i
\(292\) 1.73205 3.00000i 0.101361 0.175562i
\(293\) 8.66025 15.0000i 0.505937 0.876309i −0.494039 0.869440i \(-0.664480\pi\)
0.999976 0.00686959i \(-0.00218668\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −1.73205 3.00000i −0.100504 0.174078i
\(298\) 0 0
\(299\) −6.00000 20.7846i −0.346989 1.20201i
\(300\) 0 0
\(301\) −1.50000 + 0.866025i −0.0864586 + 0.0499169i
\(302\) 0 0
\(303\) −15.5885 9.00000i −0.895533 0.517036i
\(304\) 13.8564i 0.794719i
\(305\) 0 0
\(306\) 0 0
\(307\) 1.73205 0.0988534 0.0494267 0.998778i \(-0.484261\pi\)
0.0494267 + 0.998778i \(0.484261\pi\)
\(308\) −10.3923 6.00000i −0.592157 0.341882i
\(309\) 0.500000 + 0.866025i 0.0284440 + 0.0492665i
\(310\) 0 0
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) 13.0000i 0.734803i 0.930062 + 0.367402i \(0.119753\pi\)
−0.930062 + 0.367402i \(0.880247\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 11.0000 19.0526i 0.618798 1.07179i
\(317\) −6.92820 −0.389127 −0.194563 0.980890i \(-0.562329\pi\)
−0.194563 + 0.980890i \(0.562329\pi\)
\(318\) 0 0
\(319\) −18.0000 10.3923i −1.00781 0.581857i
\(320\) 0 0
\(321\) −3.00000 + 5.19615i −0.167444 + 0.290021i
\(322\) 0 0
\(323\) 0 0
\(324\) −2.00000 −0.111111
\(325\) 0 0
\(326\) 0 0
\(327\) 7.79423 + 13.5000i 0.431022 + 0.746552i
\(328\) 0 0
\(329\) 3.00000 5.19615i 0.165395 0.286473i
\(330\) 0 0
\(331\) 4.50000 + 2.59808i 0.247342 + 0.142803i 0.618547 0.785748i \(-0.287722\pi\)
−0.371204 + 0.928551i \(0.621055\pi\)
\(332\) −13.8564 + 24.0000i −0.760469 + 1.31717i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) −6.00000 + 3.46410i −0.327327 + 0.188982i
\(337\) 5.00000i 0.272367i 0.990684 + 0.136184i \(0.0434837\pi\)
−0.990684 + 0.136184i \(0.956516\pi\)
\(338\) 0 0
\(339\) 6.00000 0.325875
\(340\) 0 0
\(341\) 3.00000 + 5.19615i 0.162459 + 0.281387i
\(342\) 0 0
\(343\) −19.0526 −1.02874
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −20.7846 12.0000i −1.11578 0.644194i −0.175457 0.984487i \(-0.556140\pi\)
−0.940319 + 0.340293i \(0.889474\pi\)
\(348\) −10.3923 + 6.00000i −0.557086 + 0.321634i
\(349\) 16.5000 9.52628i 0.883225 0.509930i 0.0115044 0.999934i \(-0.496338\pi\)
0.871720 + 0.490004i \(0.163005\pi\)
\(350\) 0 0
\(351\) −3.50000 0.866025i −0.186816 0.0462250i
\(352\) 0 0
\(353\) 5.19615 + 9.00000i 0.276563 + 0.479022i 0.970528 0.240987i \(-0.0774711\pi\)
−0.693965 + 0.720009i \(0.744138\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 13.8564i 0.734388i
\(357\) 0 0
\(358\) 0 0
\(359\) 6.92820i 0.365657i 0.983145 + 0.182828i \(0.0585252\pi\)
−0.983145 + 0.182828i \(0.941475\pi\)
\(360\) 0 0
\(361\) −3.50000 6.06218i −0.184211 0.319062i
\(362\) 0 0
\(363\) 1.00000i 0.0524864i
\(364\) −12.0000 + 3.46410i −0.628971 + 0.181568i
\(365\) 0 0
\(366\) 0 0
\(367\) −14.7224 + 8.50000i −0.768505 + 0.443696i −0.832341 0.554264i \(-0.813000\pi\)
0.0638362 + 0.997960i \(0.479666\pi\)
\(368\) 20.7846 + 12.0000i 1.08347 + 0.625543i
\(369\) 6.92820i 0.360668i
\(370\) 0 0
\(371\) −18.0000 10.3923i −0.934513 0.539542i
\(372\) 3.46410 0.179605
\(373\) 9.52628 + 5.50000i 0.493252 + 0.284779i 0.725923 0.687776i \(-0.241413\pi\)
−0.232671 + 0.972556i \(0.574746\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −20.7846 + 6.00000i −1.07046 + 0.309016i
\(378\) 0 0
\(379\) 19.5000 11.2583i 1.00165 0.578302i 0.0929123 0.995674i \(-0.470382\pi\)
0.908735 + 0.417373i \(0.137049\pi\)
\(380\) 0 0
\(381\) 6.50000 11.2583i 0.333005 0.576782i
\(382\) 0 0
\(383\) −13.8564 + 24.0000i −0.708029 + 1.22634i 0.257558 + 0.966263i \(0.417082\pi\)
−0.965587 + 0.260080i \(0.916251\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0.866025 0.500000i 0.0440225 0.0254164i
\(388\) 5.19615 + 9.00000i 0.263795 + 0.456906i
\(389\) −12.0000 −0.608424 −0.304212 0.952604i \(-0.598393\pi\)
−0.304212 + 0.952604i \(0.598393\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −5.19615 + 3.00000i −0.262111 + 0.151330i
\(394\) 0 0
\(395\) 0 0
\(396\) 6.00000 + 3.46410i 0.301511 + 0.174078i
\(397\) 7.79423 13.5000i 0.391181 0.677546i −0.601424 0.798930i \(-0.705400\pi\)
0.992606 + 0.121384i \(0.0387333\pi\)
\(398\) 0 0
\(399\) −3.00000 + 5.19615i −0.150188 + 0.260133i
\(400\) 0 0
\(401\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(402\) 0 0
\(403\) 6.06218 + 1.50000i 0.301979 + 0.0747203i
\(404\) 36.0000 1.79107
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −7.50000 4.33013i −0.370851 0.214111i 0.302979 0.952997i \(-0.402019\pi\)
−0.673830 + 0.738886i \(0.735352\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −1.73205 1.00000i −0.0853320 0.0492665i
\(413\) −5.19615 + 3.00000i −0.255686 + 0.147620i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 5.00000i 0.244851i
\(418\) 0 0
\(419\) −6.00000 10.3923i −0.293119 0.507697i 0.681426 0.731887i \(-0.261360\pi\)
−0.974546 + 0.224189i \(0.928027\pi\)
\(420\) 0 0
\(421\) 12.1244i 0.590905i 0.955357 + 0.295452i \(0.0954704\pi\)
−0.955357 + 0.295452i \(0.904530\pi\)
\(422\) 0 0
\(423\) −1.73205 + 3.00000i −0.0842152 + 0.145865i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −0.866025 1.50000i −0.0419099 0.0725901i
\(428\) 12.0000i 0.580042i
\(429\) 9.00000 + 8.66025i 0.434524 + 0.418121i
\(430\) 0 0
\(431\) 18.0000 10.3923i 0.867029 0.500580i 0.000669521 1.00000i \(-0.499787\pi\)
0.866360 + 0.499420i \(0.166454\pi\)
\(432\) 3.46410 2.00000i 0.166667 0.0962250i
\(433\) 19.9186 + 11.5000i 0.957226 + 0.552655i 0.895318 0.445427i \(-0.146948\pi\)
0.0619079 + 0.998082i \(0.480282\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −27.0000 15.5885i −1.29307 0.746552i
\(437\) 20.7846 0.994263
\(438\) 0 0
\(439\) 17.5000 + 30.3109i 0.835229 + 1.44666i 0.893843 + 0.448379i \(0.147999\pi\)
−0.0586141 + 0.998281i \(0.518668\pi\)
\(440\) 0 0
\(441\) 4.00000 0.190476
\(442\) 0 0
\(443\) 24.0000i 1.14027i 0.821549 + 0.570137i \(0.193110\pi\)
−0.821549 + 0.570137i \(0.806890\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −6.92820 −0.327693
\(448\) 6.92820 12.0000i 0.327327 0.566947i
\(449\) −33.0000 19.0526i −1.55737 0.899146i −0.997508 0.0705577i \(-0.977522\pi\)
−0.559859 0.828588i \(-0.689145\pi\)
\(450\) 0 0
\(451\) 12.0000 20.7846i 0.565058 0.978709i
\(452\) −10.3923 + 6.00000i −0.488813 + 0.282216i
\(453\) −1.73205 3.00000i −0.0813788 0.140952i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 18.1865 + 31.5000i 0.850730 + 1.47351i 0.880550 + 0.473953i \(0.157173\pi\)
−0.0298202 + 0.999555i \(0.509493\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −36.0000 20.7846i −1.67669 0.968036i −0.963750 0.266808i \(-0.914031\pi\)
−0.712938 0.701228i \(-0.752636\pi\)
\(462\) 0 0
\(463\) −36.3731 −1.69040 −0.845200 0.534450i \(-0.820519\pi\)
−0.845200 + 0.534450i \(0.820519\pi\)
\(464\) 12.0000 20.7846i 0.557086 0.964901i
\(465\) 0 0
\(466\) 0 0
\(467\) 6.00000i 0.277647i −0.990317 0.138823i \(-0.955668\pi\)
0.990317 0.138823i \(-0.0443321\pi\)
\(468\) 6.92820 2.00000i 0.320256 0.0924500i
\(469\) 15.0000 0.692636
\(470\) 0 0
\(471\) 5.50000 + 9.52628i 0.253427 + 0.438948i
\(472\) 0 0
\(473\) −3.46410 −0.159280
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 10.3923 + 6.00000i 0.475831 + 0.274721i
\(478\) 0 0
\(479\) −30.0000 + 17.3205i −1.37073 + 0.791394i −0.991021 0.133710i \(-0.957311\pi\)
−0.379714 + 0.925104i \(0.623978\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 5.19615 + 9.00000i 0.236433 + 0.409514i
\(484\) −1.00000 1.73205i −0.0454545 0.0787296i
\(485\) 0 0
\(486\) 0 0
\(487\) −12.1244 + 21.0000i −0.549407 + 0.951601i 0.448908 + 0.893578i \(0.351813\pi\)
−0.998315 + 0.0580230i \(0.981520\pi\)
\(488\) 0 0
\(489\) 19.0526i 0.861586i
\(490\) 0 0
\(491\) −3.00000 5.19615i −0.135388 0.234499i 0.790358 0.612646i \(-0.209895\pi\)
−0.925746 + 0.378147i \(0.876561\pi\)
\(492\) −6.92820 12.0000i −0.312348 0.541002i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −6.00000 + 3.46410i −0.269408 + 0.155543i
\(497\) 15.5885 9.00000i 0.699238 0.403705i
\(498\) 0 0
\(499\) 31.1769i 1.39567i 0.716258 + 0.697835i \(0.245853\pi\)
−0.716258 + 0.697835i \(0.754147\pi\)
\(500\) 0 0
\(501\) −6.00000 3.46410i −0.268060 0.154765i
\(502\) 0 0
\(503\) 25.9808 + 15.0000i 1.15842 + 0.668817i 0.950926 0.309418i \(-0.100134\pi\)
0.207499 + 0.978235i \(0.433468\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 12.9904 0.500000i 0.576923 0.0222058i
\(508\) 26.0000i 1.15356i
\(509\) 15.0000 8.66025i 0.664863 0.383859i −0.129264 0.991610i \(-0.541262\pi\)
0.794128 + 0.607751i \(0.207928\pi\)
\(510\) 0 0
\(511\) −1.50000 + 2.59808i −0.0663561 + 0.114932i
\(512\) 0 0
\(513\) 1.73205 3.00000i 0.0764719 0.132453i
\(514\) 0 0
\(515\) 0 0
\(516\) −1.00000 + 1.73205i −0.0440225 + 0.0762493i
\(517\) 10.3923 6.00000i 0.457053 0.263880i
\(518\) 0 0
\(519\) −6.00000 −0.263371
\(520\) 0 0
\(521\) −24.0000 −1.05146 −0.525730 0.850652i \(-0.676208\pi\)
−0.525730 + 0.850652i \(0.676208\pi\)
\(522\) 0 0
\(523\) −24.2487 + 14.0000i −1.06032 + 0.612177i −0.925521 0.378695i \(-0.876373\pi\)
−0.134801 + 0.990873i \(0.543039\pi\)
\(524\) 6.00000 10.3923i 0.262111 0.453990i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −13.8564 −0.603023
\(529\) 6.50000 11.2583i 0.282609 0.489493i
\(530\) 0 0
\(531\) 3.00000 1.73205i 0.130189 0.0751646i
\(532\) 12.0000i 0.520266i
\(533\) −6.92820 24.0000i −0.300094 1.03956i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −10.3923 6.00000i −0.448461 0.258919i
\(538\) 0 0
\(539\) −12.0000 6.92820i −0.516877 0.298419i
\(540\) 0 0
\(541\) 29.4449i 1.26593i 0.774179 + 0.632967i \(0.218163\pi\)
−0.774179 + 0.632967i \(0.781837\pi\)
\(542\) 0 0
\(543\) −12.1244 + 7.00000i −0.520306 + 0.300399i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 19.0000i 0.812381i 0.913788 + 0.406191i \(0.133143\pi\)
−0.913788 + 0.406191i \(0.866857\pi\)
\(548\) 0 0
\(549\) 0.500000 + 0.866025i 0.0213395 + 0.0369611i
\(550\) 0 0
\(551\) 20.7846i 0.885454i
\(552\) 0 0
\(553\) −9.52628 + 16.5000i −0.405099 + 0.701651i
\(554\) 0 0
\(555\) 0 0
\(556\) −5.00000 8.66025i −0.212047 0.367277i
\(557\) 13.8564 + 24.0000i 0.587115 + 1.01691i 0.994608 + 0.103704i \(0.0330696\pi\)
−0.407493 + 0.913208i \(0.633597\pi\)
\(558\) 0 0
\(559\) −2.50000 + 2.59808i −0.105739 + 0.109887i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 36.3731 + 21.0000i 1.53294 + 0.885044i 0.999224 + 0.0393818i \(0.0125389\pi\)
0.533718 + 0.845663i \(0.320794\pi\)
\(564\) 6.92820i 0.291730i
\(565\) 0 0
\(566\) 0 0
\(567\) 1.73205 0.0727393
\(568\) 0 0
\(569\) −3.00000 5.19615i −0.125767 0.217834i 0.796266 0.604947i \(-0.206806\pi\)
−0.922032 + 0.387113i \(0.873472\pi\)
\(570\) 0 0
\(571\) −44.0000 −1.84134 −0.920671 0.390339i \(-0.872358\pi\)
−0.920671 + 0.390339i \(0.872358\pi\)
\(572\) −24.2487 6.00000i −1.01389 0.250873i
\(573\) 18.0000i 0.751961i
\(574\) 0 0
\(575\) 0 0
\(576\) −4.00000 + 6.92820i −0.166667 + 0.288675i
\(577\) 34.6410 1.44212 0.721062 0.692870i \(-0.243654\pi\)
0.721062 + 0.692870i \(0.243654\pi\)
\(578\) 0 0
\(579\) 13.5000 + 7.79423i 0.561041 + 0.323917i
\(580\) 0 0
\(581\) 12.0000 20.7846i 0.497844 0.862291i
\(582\) 0 0
\(583\) −20.7846 36.0000i −0.860811 1.49097i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 15.5885 + 27.0000i 0.643404 + 1.11441i 0.984668 + 0.174441i \(0.0558120\pi\)
−0.341263 + 0.939968i \(0.610855\pi\)
\(588\) −6.92820 + 4.00000i −0.285714 + 0.164957i
\(589\) −3.00000 + 5.19615i −0.123613 + 0.214104i
\(590\) 0 0
\(591\) 12.0000 + 6.92820i 0.493614 + 0.284988i
\(592\) 0 0
\(593\) 3.46410 0.142254 0.0711268 0.997467i \(-0.477341\pi\)
0.0711268 + 0.997467i \(0.477341\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 12.0000 6.92820i 0.491539 0.283790i
\(597\) 7.00000i 0.286491i
\(598\) 0 0
\(599\) 30.0000 1.22577 0.612883 0.790173i \(-0.290010\pi\)
0.612883 + 0.790173i \(0.290010\pi\)
\(600\) 0 0
\(601\) 13.0000 + 22.5167i 0.530281 + 0.918474i 0.999376 + 0.0353259i \(0.0112469\pi\)
−0.469095 + 0.883148i \(0.655420\pi\)
\(602\) 0 0
\(603\) −8.66025 −0.352673
\(604\) 6.00000 + 3.46410i 0.244137 + 0.140952i
\(605\) 0 0
\(606\) 0 0
\(607\) 6.92820 + 4.00000i 0.281207 + 0.162355i 0.633970 0.773358i \(-0.281424\pi\)
−0.352763 + 0.935713i \(0.614758\pi\)
\(608\) 0 0
\(609\) 9.00000 5.19615i 0.364698 0.210559i
\(610\) 0 0
\(611\) 3.00000 12.1244i 0.121367 0.490499i
\(612\) 0 0
\(613\) 4.33013 + 7.50000i 0.174892 + 0.302922i 0.940124 0.340833i \(-0.110709\pi\)
−0.765232 + 0.643755i \(0.777376\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −5.19615 + 9.00000i −0.209189 + 0.362326i −0.951459 0.307774i \(-0.900416\pi\)
0.742270 + 0.670101i \(0.233749\pi\)
\(618\) 0 0
\(619\) 25.9808i 1.04425i 0.852867 + 0.522127i \(0.174861\pi\)
−0.852867 + 0.522127i \(0.825139\pi\)
\(620\) 0 0
\(621\) −3.00000 5.19615i −0.120386 0.208514i
\(622\) 0 0
\(623\) 12.0000i 0.480770i
\(624\) −10.0000 + 10.3923i −0.400320 + 0.416025i
\(625\) 0 0
\(626\) 0 0
\(627\) −10.3923 + 6.00000i −0.415029 + 0.239617i
\(628\) −19.0526 11.0000i −0.760280 0.438948i
\(629\) 0 0
\(630\) 0 0
\(631\) 1.50000 + 0.866025i 0.0597141 + 0.0344759i 0.529560 0.848273i \(-0.322357\pi\)
−0.469846 + 0.882749i \(0.655690\pi\)
\(632\) 0 0
\(633\) 11.2583 + 6.50000i 0.447478 + 0.258352i
\(634\) 0 0
\(635\) 0 0
\(636\) −24.0000 −0.951662
\(637\) −13.8564 + 4.00000i −0.549011 + 0.158486i
\(638\) 0 0
\(639\) −9.00000 + 5.19615i −0.356034 + 0.205557i
\(640\) 0 0
\(641\) −9.00000 + 15.5885i −0.355479 + 0.615707i −0.987200 0.159489i \(-0.949015\pi\)
0.631721 + 0.775196i \(0.282349\pi\)
\(642\) 0 0
\(643\) −9.52628 + 16.5000i −0.375680 + 0.650696i −0.990429 0.138027i \(-0.955924\pi\)
0.614749 + 0.788723i \(0.289257\pi\)
\(644\) −18.0000 10.3923i −0.709299 0.409514i
\(645\) 0 0
\(646\) 0 0
\(647\) 15.5885 9.00000i 0.612845 0.353827i −0.161233 0.986916i \(-0.551547\pi\)
0.774078 + 0.633090i \(0.218214\pi\)
\(648\) 0 0
\(649\) −12.0000 −0.471041
\(650\) 0 0
\(651\) −3.00000 −0.117579
\(652\) −19.0526 33.0000i −0.746156 1.29238i
\(653\) 31.1769 18.0000i 1.22005 0.704394i 0.255119 0.966910i \(-0.417885\pi\)
0.964928 + 0.262515i \(0.0845520\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 24.0000 + 13.8564i 0.937043 + 0.541002i
\(657\) 0.866025 1.50000i 0.0337869 0.0585206i
\(658\) 0 0
\(659\) 24.0000 41.5692i 0.934907 1.61931i 0.160108 0.987099i \(-0.448816\pi\)
0.774799 0.632207i \(-0.217851\pi\)
\(660\) 0 0
\(661\) −22.5000 + 12.9904i −0.875149 + 0.505267i −0.869056 0.494714i \(-0.835273\pi\)
−0.00609283 + 0.999981i \(0.501939\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −31.1769 18.0000i −1.20717 0.696963i
\(668\) 13.8564 0.536120
\(669\) −15.0000 8.66025i −0.579934 0.334825i
\(670\) 0 0
\(671\) 3.46410i 0.133730i
\(672\) 0 0
\(673\) −0.866025 + 0.500000i −0.0333828 + 0.0192736i −0.516599 0.856228i \(-0.672802\pi\)
0.483216 + 0.875501i \(0.339469\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −22.0000 + 13.8564i −0.846154 + 0.532939i
\(677\) 48.0000i 1.84479i −0.386248 0.922395i \(-0.626229\pi\)
0.386248 0.922395i \(-0.373771\pi\)
\(678\) 0 0
\(679\) −4.50000 7.79423i −0.172694 0.299115i
\(680\) 0 0
\(681\) 20.7846i 0.796468i
\(682\) 0 0
\(683\) −12.1244 + 21.0000i −0.463926 + 0.803543i −0.999152 0.0411658i \(-0.986893\pi\)
0.535227 + 0.844708i \(0.320226\pi\)
\(684\) 6.92820i 0.264906i
\(685\) 0 0
\(686\) 0 0
\(687\) −13.8564 24.0000i −0.528655 0.915657i
\(688\) 4.00000i 0.152499i
\(689\) −42.0000 10.3923i −1.60007 0.395915i
\(690\) 0 0
\(691\) 37.5000 21.6506i 1.42657 0.823629i 0.429719 0.902963i \(-0.358613\pi\)
0.996848 + 0.0793336i \(0.0252792\pi\)
\(692\) 10.3923 6.00000i 0.395056 0.228086i
\(693\) −5.19615 3.00000i −0.197386 0.113961i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 9.00000 + 15.5885i 0.340411 + 0.589610i
\(700\) 0 0
\(701\) −12.0000 −0.453234 −0.226617 0.973984i \(-0.572767\pi\)
−0.226617 + 0.973984i \(0.572767\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 24.0000 13.8564i 0.904534 0.522233i
\(705\) 0 0
\(706\) 0 0
\(707\) −31.1769 −1.17253
\(708\) −3.46410 + 6.00000i −0.130189 + 0.225494i
\(709\) 16.5000 + 9.52628i 0.619671 + 0.357767i 0.776741 0.629821i \(-0.216872\pi\)
−0.157070 + 0.987587i \(0.550205\pi\)
\(710\) 0 0
\(711\) 5.50000 9.52628i 0.206266 0.357263i
\(712\) 0 0
\(713\) 5.19615 + 9.00000i 0.194597 + 0.337053i
\(714\) 0 0
\(715\) 0 0
\(716\) 24.0000 0.896922
\(717\) 0 0
\(718\) 0 0
\(719\) −3.00000 + 5.19615i −0.111881 + 0.193784i −0.916529 0.399969i \(-0.869021\pi\)
0.804648 + 0.593753i \(0.202354\pi\)
\(720\) 0 0
\(721\) 1.50000 + 0.866025i 0.0558629 + 0.0322525i
\(722\) 0 0
\(723\) −20.7846 −0.772988
\(724\) 14.0000 24.2487i 0.520306 0.901196i
\(725\) 0 0
\(726\) 0 0
\(727\) 35.0000i 1.29808i 0.760755 + 0.649039i \(0.224829\pi\)
−0.760755 + 0.649039i \(0.775171\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) −1.73205 1.00000i −0.0640184 0.0369611i
\(733\) 39.8372 1.47142 0.735710 0.677297i \(-0.236849\pi\)
0.735710 + 0.677297i \(0.236849\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 25.9808 + 15.0000i 0.957014 + 0.552532i
\(738\) 0 0
\(739\) −39.0000 + 22.5167i −1.43464 + 0.828289i −0.997470 0.0710909i \(-0.977352\pi\)
−0.437168 + 0.899380i \(0.644019\pi\)
\(740\) 0 0
\(741\) −3.00000 + 12.1244i −0.110208 + 0.445399i
\(742\) 0 0
\(743\) −5.19615 9.00000i −0.190628 0.330178i 0.754830 0.655920i \(-0.227719\pi\)
−0.945459 + 0.325742i \(0.894386\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −6.92820 + 12.0000i −0.253490 + 0.439057i
\(748\) 0 0
\(749\) 10.3923i 0.379727i
\(750\) 0 0
\(751\) −4.00000 6.92820i −0.145962 0.252814i 0.783769 0.621052i \(-0.213294\pi\)
−0.929731 + 0.368238i \(0.879961\pi\)
\(752\) 6.92820 + 12.0000i 0.252646 + 0.437595i
\(753\) 12.0000i 0.437304i
\(754\) 0 0
\(755\) 0 0
\(756\) −3.00000 + 1.73205i −0.109109 + 0.0629941i
\(757\) −29.4449 + 17.0000i −1.07019 + 0.617876i −0.928234 0.371997i \(-0.878673\pi\)
−0.141958 + 0.989873i \(0.545340\pi\)
\(758\) 0 0
\(759\) 20.7846i 0.754434i
\(760\) 0 0
\(761\) −18.0000 10.3923i −0.652499 0.376721i 0.136914 0.990583i \(-0.456282\pi\)
−0.789413 + 0.613862i \(0.789615\pi\)
\(762\) 0 0
\(763\) 23.3827 + 13.5000i 0.846510 + 0.488733i
\(764\) −18.0000 31.1769i −0.651217 1.12794i
\(765\) 0 0
\(766\) 0 0
\(767\) −8.66025 + 9.00000i −0.312704 + 0.324971i
\(768\) 16.0000i 0.577350i
\(769\) 6.00000 3.46410i 0.216366 0.124919i −0.387901 0.921701i \(-0.626800\pi\)
0.604266 + 0.796782i \(0.293466\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −31.1769 −1.12208
\(773\) 25.9808 45.0000i 0.934463 1.61854i 0.158874 0.987299i \(-0.449213\pi\)
0.775589 0.631239i \(-0.217453\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 24.0000 0.859889
\(780\) 0 0
\(781\) 36.0000 1.28818
\(782\) 0 0
\(783\) −5.19615 + 3.00000i −0.185695 + 0.107211i
\(784\) 8.00000 13.8564i 0.285714 0.494872i
\(785\) 0 0
\(786\) 0 0
\(787\) 16.4545 28.5000i 0.586539 1.01592i −0.408143 0.912918i \(-0.633823\pi\)
0.994682 0.102997i \(-0.0328433\pi\)
\(788\) −27.7128 −0.987228
\(789\) −6.00000 + 10.3923i −0.213606 + 0.369976i
\(790\) 0 0
\(791\) 9.00000 5.19615i 0.320003 0.184754i
\(792\) 0 0
\(793\) −2.59808 2.50000i −0.0922604 0.0887776i
\(794\) 0 0
\(795\) 0 0
\(796\) −7.00000 12.1244i −0.248108 0.429736i
\(797\) 10.3923 + 6.00000i 0.368114 + 0.212531i 0.672634 0.739975i \(-0.265163\pi\)
−0.304520 + 0.952506i \(0.598496\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 6.92820i 0.244796i
\(802\) 0 0
\(803\) −5.19615 + 3.00000i −0.183368 + 0.105868i
\(804\) 15.0000 8.66025i 0.529009 0.305424i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 6.00000 + 10.3923i 0.210949 + 0.365374i 0.952012 0.306062i \(-0.0990113\pi\)
−0.741063 + 0.671436i \(0.765678\pi\)
\(810\) 0 0
\(811\) 25.9808i 0.912308i 0.889901 + 0.456154i \(0.150773\pi\)
−0.889901 + 0.456154i \(0.849227\pi\)
\(812\) −10.3923 + 18.0000i −0.364698 + 0.631676i
\(813\) 2.59808 4.50000i 0.0911185 0.157822i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −1.73205 3.00000i −0.0605968 0.104957i
\(818\) 0 0
\(819\) −6.00000 + 1.73205i −0.209657 + 0.0605228i
\(820\) 0 0
\(821\) 21.0000 12.1244i 0.732905 0.423143i −0.0865789 0.996245i \(-0.527593\pi\)
0.819484 + 0.573102i \(0.194260\pi\)
\(822\) 0 0
\(823\) −27.7128 16.0000i −0.966008 0.557725i −0.0679910 0.997686i \(-0.521659\pi\)
−0.898017 + 0.439961i \(0.854992\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −48.4974 −1.68642 −0.843210 0.537584i \(-0.819337\pi\)
−0.843210 + 0.537584i \(0.819337\pi\)
\(828\) 10.3923 + 6.00000i 0.361158 + 0.208514i
\(829\) 15.5000 + 26.8468i 0.538337 + 0.932427i 0.998994 + 0.0448490i \(0.0142807\pi\)
−0.460657 + 0.887578i \(0.652386\pi\)
\(830\) 0 0
\(831\) 10.0000 0.346896
\(832\) 6.92820 28.0000i 0.240192 0.970725i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 12.0000 20.7846i 0.415029 0.718851i
\(837\) 1.73205 0.0598684
\(838\) 0 0
\(839\) −27.0000 15.5885i −0.932144 0.538173i −0.0446547 0.999002i \(-0.514219\pi\)
−0.887489 + 0.460829i \(0.847552\pi\)
\(840\) 0 0
\(841\) −3.50000 + 6.06218i −0.120690 + 0.209041i
\(842\) 0 0
\(843\) −12.1244 21.0000i −0.417585 0.723278i
\(844\) −26.0000 −0.894957
\(845\) 0 0
\(846\) 0 0
\(847\) 0.866025 + 1.50000i 0.0297570 + 0.0515406i
\(848\) 41.5692 24.0000i 1.42749 0.824163i
\(849\) 5.50000 9.52628i 0.188760 0.326941i
\(850\) 0 0
\(851\) 0 0
\(852\) 10.3923 18.0000i 0.356034 0.616670i
\(853\) −25.9808 −0.889564 −0.444782 0.895639i \(-0.646719\pi\)
−0.444782 + 0.895639i \(0.646719\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 18.0000i 0.614868i −0.951569 0.307434i \(-0.900530\pi\)
0.951569 0.307434i \(-0.0994704\pi\)
\(858\) 0 0
\(859\) −13.0000 −0.443554 −0.221777 0.975097i \(-0.571186\pi\)
−0.221777 + 0.975097i \(0.571186\pi\)
\(860\) 0 0
\(861\) 6.00000 + 10.3923i 0.204479 + 0.354169i
\(862\) 0 0
\(863\) −17.3205 −0.589597 −0.294798 0.955559i \(-0.595253\pi\)
−0.294798 + 0.955559i \(0.595253\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 14.7224 + 8.50000i 0.500000 + 0.288675i
\(868\) 5.19615 3.00000i 0.176369 0.101827i
\(869\) −33.0000 + 19.0526i −1.11945 + 0.646314i
\(870\) 0 0
\(871\) 30.0000 8.66025i 1.01651 0.293442i
\(872\) 0 0
\(873\) 2.59808 + 4.50000i 0.0879316 + 0.152302i
\(874\) 0 0
\(875\) 0 0
\(876\) 3.46410i 0.117041i
\(877\) 20.7846 36.0000i 0.701846 1.21563i −0.265971 0.963981i \(-0.585693\pi\)
0.967818 0.251653i \(-0.0809741\pi\)
\(878\) 0 0
\(879\) 17.3205i 0.584206i
\(880\) 0 0
\(881\) 6.00000 + 10.3923i 0.202145 + 0.350126i 0.949219 0.314615i \(-0.101875\pi\)
−0.747074 + 0.664741i \(0.768542\pi\)
\(882\) 0 0
\(883\) 5.00000i 0.168263i −0.996455 0.0841317i \(-0.973188\pi\)
0.996455 0.0841317i \(-0.0268116\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 36.3731 21.0000i 1.22129 0.705111i 0.256096 0.966651i \(-0.417564\pi\)
0.965193 + 0.261540i \(0.0842305\pi\)
\(888\) 0 0
\(889\) 22.5167i 0.755185i
\(890\) 0 0
\(891\) 3.00000 + 1.73205i 0.100504 + 0.0580259i
\(892\) 34.6410 1.15987
\(893\) 10.3923 + 6.00000i 0.347765 + 0.200782i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 15.5885 + 15.0000i 0.520483 + 0.500835i
\(898\) 0 0
\(899\) 9.00000 5.19615i 0.300167 0.173301i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0.866025 1.50000i 0.0288195 0.0499169i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 38.1051 22.0000i 1.26526 0.730498i 0.291172 0.956671i \(-0.405955\pi\)
0.974087 + 0.226173i \(0.0726213\pi\)
\(908\) −20.7846 36.0000i −0.689761 1.19470i
\(909\) 18.0000 0.597022
\(910\) 0 0
\(911\) −12.0000 −0.397578 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) −6.92820 12.0000i −0.229416 0.397360i
\(913\) 41.5692 24.0000i 1.37574 0.794284i
\(914\) 0 0
\(915\) 0 0
\(916\) 48.0000 + 27.7128i 1.58596 + 0.915657i
\(917\) −5.19615 + 9.00000i −0.171592 + 0.297206i
\(918\) 0 0
\(919\) −16.0000 + 27.7128i −0.527791 + 0.914161i 0.471684 + 0.881768i \(0.343646\pi\)
−0.999475 + 0.0323936i \(0.989687\pi\)
\(920\) 0 0
\(921\) −1.50000 + 0.866025i −0.0494267 + 0.0285365i
\(922\) 0 0
\(923\) 25.9808 27.0000i 0.855167 0.888716i
\(924\) 12.0000 0.394771
\(925\) 0 0
\(926\) 0 0
\(927\) −0.866025 0.500000i −0.0284440 0.0164222i
\(928\) 0 0
\(929\) 18.0000 + 10.3923i 0.590561 + 0.340960i 0.765319 0.643651i \(-0.222581\pi\)
−0.174758 + 0.984611i \(0.555914\pi\)
\(930\) 0 0
\(931\) 13.8564i 0.454125i
\(932\) −31.1769 18.0000i −1.02123 0.589610i
\(933\) 20.7846 12.0000i 0.680458 0.392862i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 14.0000i 0.457360i 0.973502 + 0.228680i \(0.0734410\pi\)
−0.973502 + 0.228680i \(0.926559\pi\)
\(938\) 0 0
\(939\) −6.50000 11.2583i −0.212119 0.367402i
\(940\) 0 0
\(941\) 10.3923i 0.338779i 0.985549 + 0.169390i \(0.0541797\pi\)
−0.985549 + 0.169390i \(0.945820\pi\)
\(942\) 0 0
\(943\) 20.7846 36.0000i 0.676840 1.17232i
\(944\) 13.8564i 0.450988i
\(945\) 0 0
\(946\) 0 0
\(947\) 24.2487 + 42.0000i 0.787977 + 1.36482i 0.927204 + 0.374556i \(0.122205\pi\)
−0.139227 + 0.990260i \(0.544462\pi\)
\(948\) 22.0000i 0.714527i
\(949\) −1.50000 + 6.06218i −0.0486921 + 0.196787i
\(950\) 0 0
\(951\) 6.00000 3.46410i 0.194563 0.112331i
\(952\) 0 0
\(953\) −5.19615 3.00000i −0.168320 0.0971795i 0.413473 0.910516i \(-0.364315\pi\)
−0.581793 + 0.813337i \(0.697649\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 20.7846 0.671871
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 28.0000 0.903226
\(962\) 0 0
\(963\) 6.00000i 0.193347i
\(964\) 36.0000 20.7846i 1.15948 0.669427i
\(965\) 0 0
\(966\) 0 0
\(967\) 24.2487 0.779786 0.389893 0.920860i \(-0.372512\pi\)
0.389893 + 0.920860i \(0.372512\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −18.0000 + 31.1769i −0.577647 + 1.00051i 0.418101 + 0.908401i \(0.362696\pi\)
−0.995748 + 0.0921142i \(0.970638\pi\)
\(972\) 1.73205 1.00000i 0.0555556 0.0320750i
\(973\) 4.33013 + 7.50000i 0.138817 + 0.240439i
\(974\) 0 0
\(975\) 0 0
\(976\) 4.00000 0.128037
\(977\) 13.8564 + 24.0000i 0.443306 + 0.767828i 0.997932 0.0642712i \(-0.0204723\pi\)
−0.554627 + 0.832099i \(0.687139\pi\)
\(978\) 0 0
\(979\) 12.0000 20.7846i 0.383522 0.664279i
\(980\) 0 0
\(981\) −13.5000 7.79423i −0.431022 0.248851i
\(982\) 0 0
\(983\) −10.3923 −0.331463 −0.165732 0.986171i \(-0.552999\pi\)
−0.165732 + 0.986171i \(0.552999\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 6.00000i 0.190982i
\(988\) −6.92820 24.0000i −0.220416 0.763542i
\(989\) −6.00000 −0.190789
\(990\) 0 0
\(991\) 8.00000 + 13.8564i 0.254128 + 0.440163i 0.964658 0.263504i \(-0.0848781\pi\)
−0.710530 + 0.703667i \(0.751545\pi\)
\(992\) 0 0
\(993\) −5.19615 −0.164895
\(994\) 0 0
\(995\) 0 0
\(996\) 27.7128i 0.878114i
\(997\) 30.3109 + 17.5000i 0.959955 + 0.554231i 0.896159 0.443732i \(-0.146346\pi\)
0.0637961 + 0.997963i \(0.479679\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.w.d.49.1 4
5.2 odd 4 39.2.j.a.10.1 yes 2
5.3 odd 4 975.2.bc.c.751.1 2
5.4 even 2 inner 975.2.w.d.49.2 4
13.4 even 6 inner 975.2.w.d.199.2 4
15.2 even 4 117.2.q.a.10.1 2
20.7 even 4 624.2.bv.b.49.1 2
60.47 odd 4 1872.2.by.f.1297.1 2
65.2 even 12 507.2.a.e.1.1 2
65.4 even 6 inner 975.2.w.d.199.1 4
65.7 even 12 507.2.e.f.22.2 4
65.12 odd 4 507.2.j.b.361.1 2
65.17 odd 12 39.2.j.a.4.1 2
65.22 odd 12 507.2.j.b.316.1 2
65.32 even 12 507.2.e.f.22.1 4
65.37 even 12 507.2.a.e.1.2 2
65.42 odd 12 507.2.b.c.337.1 2
65.43 odd 12 975.2.bc.c.901.1 2
65.47 even 4 507.2.e.f.484.2 4
65.57 even 4 507.2.e.f.484.1 4
65.62 odd 12 507.2.b.c.337.2 2
195.2 odd 12 1521.2.a.h.1.2 2
195.17 even 12 117.2.q.a.82.1 2
195.62 even 12 1521.2.b.f.1351.1 2
195.107 even 12 1521.2.b.f.1351.2 2
195.167 odd 12 1521.2.a.h.1.1 2
260.67 odd 12 8112.2.a.bu.1.1 2
260.147 even 12 624.2.bv.b.433.1 2
260.167 odd 12 8112.2.a.bu.1.2 2
780.407 odd 12 1872.2.by.f.433.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.2.j.a.4.1 2 65.17 odd 12
39.2.j.a.10.1 yes 2 5.2 odd 4
117.2.q.a.10.1 2 15.2 even 4
117.2.q.a.82.1 2 195.17 even 12
507.2.a.e.1.1 2 65.2 even 12
507.2.a.e.1.2 2 65.37 even 12
507.2.b.c.337.1 2 65.42 odd 12
507.2.b.c.337.2 2 65.62 odd 12
507.2.e.f.22.1 4 65.32 even 12
507.2.e.f.22.2 4 65.7 even 12
507.2.e.f.484.1 4 65.57 even 4
507.2.e.f.484.2 4 65.47 even 4
507.2.j.b.316.1 2 65.22 odd 12
507.2.j.b.361.1 2 65.12 odd 4
624.2.bv.b.49.1 2 20.7 even 4
624.2.bv.b.433.1 2 260.147 even 12
975.2.w.d.49.1 4 1.1 even 1 trivial
975.2.w.d.49.2 4 5.4 even 2 inner
975.2.w.d.199.1 4 65.4 even 6 inner
975.2.w.d.199.2 4 13.4 even 6 inner
975.2.bc.c.751.1 2 5.3 odd 4
975.2.bc.c.901.1 2 65.43 odd 12
1521.2.a.h.1.1 2 195.167 odd 12
1521.2.a.h.1.2 2 195.2 odd 12
1521.2.b.f.1351.1 2 195.62 even 12
1521.2.b.f.1351.2 2 195.107 even 12
1872.2.by.f.433.1 2 780.407 odd 12
1872.2.by.f.1297.1 2 60.47 odd 4
8112.2.a.bu.1.1 2 260.67 odd 12
8112.2.a.bu.1.2 2 260.167 odd 12