Properties

Label 975.6.a.u.1.10
Level $975$
Weight $6$
Character 975.1
Self dual yes
Analytic conductor $156.374$
Analytic rank $1$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,6,Mod(1,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 975.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(156.374224318\)
Analytic rank: \(1\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 2 x^{10} - 286 x^{9} + 442 x^{8} + 28715 x^{7} - 29138 x^{6} - 1208172 x^{5} + 509768 x^{4} + \cdots + 55036800 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5}\cdot 3\cdot 5^{3}\cdot 11 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(9.28847\) of defining polynomial
Character \(\chi\) \(=\) 975.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.28847 q^{2} -9.00000 q^{3} +54.2758 q^{4} -83.5963 q^{6} +85.6782 q^{7} +206.908 q^{8} +81.0000 q^{9} +119.113 q^{11} -488.482 q^{12} +169.000 q^{13} +795.820 q^{14} +185.034 q^{16} -763.350 q^{17} +752.366 q^{18} -2433.97 q^{19} -771.104 q^{21} +1106.38 q^{22} -4050.77 q^{23} -1862.17 q^{24} +1569.75 q^{26} -729.000 q^{27} +4650.25 q^{28} -5525.35 q^{29} +9537.22 q^{31} -4902.37 q^{32} -1072.02 q^{33} -7090.35 q^{34} +4396.34 q^{36} +5704.17 q^{37} -22607.9 q^{38} -1521.00 q^{39} -10517.8 q^{41} -7162.38 q^{42} +6708.08 q^{43} +6464.96 q^{44} -37625.5 q^{46} -577.173 q^{47} -1665.31 q^{48} -9466.24 q^{49} +6870.15 q^{51} +9172.60 q^{52} +12025.3 q^{53} -6771.30 q^{54} +17727.5 q^{56} +21905.7 q^{57} -51322.0 q^{58} -39563.2 q^{59} +49752.0 q^{61} +88586.3 q^{62} +6939.94 q^{63} -51456.6 q^{64} -9957.42 q^{66} -20394.4 q^{67} -41431.4 q^{68} +36456.9 q^{69} +29124.8 q^{71} +16759.5 q^{72} -57924.8 q^{73} +52983.0 q^{74} -132106. q^{76} +10205.4 q^{77} -14127.8 q^{78} +88938.2 q^{79} +6561.00 q^{81} -97694.5 q^{82} -68552.2 q^{83} -41852.3 q^{84} +62307.8 q^{86} +49728.1 q^{87} +24645.5 q^{88} -130659. q^{89} +14479.6 q^{91} -219859. q^{92} -85835.0 q^{93} -5361.06 q^{94} +44121.3 q^{96} +84079.6 q^{97} -87927.0 q^{98} +9648.17 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q + 2 q^{2} - 99 q^{3} + 224 q^{4} - 18 q^{6} - 55 q^{7} + 270 q^{8} + 891 q^{9} - 125 q^{11} - 2016 q^{12} + 1859 q^{13} - 1311 q^{14} + 5756 q^{16} - 4507 q^{17} + 162 q^{18} + 142 q^{19} + 495 q^{21}+ \cdots - 10125 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 9.28847 1.64199 0.820993 0.570938i \(-0.193420\pi\)
0.820993 + 0.570938i \(0.193420\pi\)
\(3\) −9.00000 −0.577350
\(4\) 54.2758 1.69612
\(5\) 0 0
\(6\) −83.5963 −0.948001
\(7\) 85.6782 0.660884 0.330442 0.943826i \(-0.392802\pi\)
0.330442 + 0.943826i \(0.392802\pi\)
\(8\) 206.908 1.14302
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) 119.113 0.296810 0.148405 0.988927i \(-0.452586\pi\)
0.148405 + 0.988927i \(0.452586\pi\)
\(12\) −488.482 −0.979254
\(13\) 169.000 0.277350
\(14\) 795.820 1.08516
\(15\) 0 0
\(16\) 185.034 0.180697
\(17\) −763.350 −0.640621 −0.320311 0.947313i \(-0.603787\pi\)
−0.320311 + 0.947313i \(0.603787\pi\)
\(18\) 752.366 0.547329
\(19\) −2433.97 −1.54679 −0.773395 0.633925i \(-0.781443\pi\)
−0.773395 + 0.633925i \(0.781443\pi\)
\(20\) 0 0
\(21\) −771.104 −0.381562
\(22\) 1106.38 0.487358
\(23\) −4050.77 −1.59668 −0.798340 0.602207i \(-0.794288\pi\)
−0.798340 + 0.602207i \(0.794288\pi\)
\(24\) −1862.17 −0.659920
\(25\) 0 0
\(26\) 1569.75 0.455405
\(27\) −729.000 −0.192450
\(28\) 4650.25 1.12094
\(29\) −5525.35 −1.22001 −0.610007 0.792396i \(-0.708833\pi\)
−0.610007 + 0.792396i \(0.708833\pi\)
\(30\) 0 0
\(31\) 9537.22 1.78245 0.891226 0.453560i \(-0.149846\pi\)
0.891226 + 0.453560i \(0.149846\pi\)
\(32\) −4902.37 −0.846313
\(33\) −1072.02 −0.171363
\(34\) −7090.35 −1.05189
\(35\) 0 0
\(36\) 4396.34 0.565373
\(37\) 5704.17 0.684996 0.342498 0.939519i \(-0.388727\pi\)
0.342498 + 0.939519i \(0.388727\pi\)
\(38\) −22607.9 −2.53981
\(39\) −1521.00 −0.160128
\(40\) 0 0
\(41\) −10517.8 −0.977161 −0.488581 0.872519i \(-0.662485\pi\)
−0.488581 + 0.872519i \(0.662485\pi\)
\(42\) −7162.38 −0.626519
\(43\) 6708.08 0.553257 0.276629 0.960977i \(-0.410783\pi\)
0.276629 + 0.960977i \(0.410783\pi\)
\(44\) 6464.96 0.503425
\(45\) 0 0
\(46\) −37625.5 −2.62173
\(47\) −577.173 −0.0381120 −0.0190560 0.999818i \(-0.506066\pi\)
−0.0190560 + 0.999818i \(0.506066\pi\)
\(48\) −1665.31 −0.104326
\(49\) −9466.24 −0.563232
\(50\) 0 0
\(51\) 6870.15 0.369863
\(52\) 9172.60 0.470418
\(53\) 12025.3 0.588037 0.294019 0.955800i \(-0.405007\pi\)
0.294019 + 0.955800i \(0.405007\pi\)
\(54\) −6771.30 −0.316000
\(55\) 0 0
\(56\) 17727.5 0.755401
\(57\) 21905.7 0.893039
\(58\) −51322.0 −2.00324
\(59\) −39563.2 −1.47966 −0.739830 0.672794i \(-0.765094\pi\)
−0.739830 + 0.672794i \(0.765094\pi\)
\(60\) 0 0
\(61\) 49752.0 1.71193 0.855964 0.517035i \(-0.172964\pi\)
0.855964 + 0.517035i \(0.172964\pi\)
\(62\) 88586.3 2.92676
\(63\) 6939.94 0.220295
\(64\) −51456.6 −1.57033
\(65\) 0 0
\(66\) −9957.42 −0.281376
\(67\) −20394.4 −0.555041 −0.277520 0.960720i \(-0.589513\pi\)
−0.277520 + 0.960720i \(0.589513\pi\)
\(68\) −41431.4 −1.08657
\(69\) 36456.9 0.921844
\(70\) 0 0
\(71\) 29124.8 0.685672 0.342836 0.939395i \(-0.388612\pi\)
0.342836 + 0.939395i \(0.388612\pi\)
\(72\) 16759.5 0.381005
\(73\) −57924.8 −1.27221 −0.636103 0.771604i \(-0.719455\pi\)
−0.636103 + 0.771604i \(0.719455\pi\)
\(74\) 52983.0 1.12475
\(75\) 0 0
\(76\) −132106. −2.62354
\(77\) 10205.4 0.196157
\(78\) −14127.8 −0.262928
\(79\) 88938.2 1.60332 0.801661 0.597779i \(-0.203950\pi\)
0.801661 + 0.597779i \(0.203950\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) −97694.5 −1.60448
\(83\) −68552.2 −1.09226 −0.546130 0.837701i \(-0.683899\pi\)
−0.546130 + 0.837701i \(0.683899\pi\)
\(84\) −41852.3 −0.647173
\(85\) 0 0
\(86\) 62307.8 0.908440
\(87\) 49728.1 0.704375
\(88\) 24645.5 0.339258
\(89\) −130659. −1.74850 −0.874249 0.485478i \(-0.838646\pi\)
−0.874249 + 0.485478i \(0.838646\pi\)
\(90\) 0 0
\(91\) 14479.6 0.183296
\(92\) −219859. −2.70816
\(93\) −85835.0 −1.02910
\(94\) −5361.06 −0.0625793
\(95\) 0 0
\(96\) 44121.3 0.488619
\(97\) 84079.6 0.907322 0.453661 0.891174i \(-0.350118\pi\)
0.453661 + 0.891174i \(0.350118\pi\)
\(98\) −87927.0 −0.924819
\(99\) 9648.17 0.0989366
\(100\) 0 0
\(101\) 13354.3 0.130262 0.0651308 0.997877i \(-0.479254\pi\)
0.0651308 + 0.997877i \(0.479254\pi\)
\(102\) 63813.2 0.607309
\(103\) −139847. −1.29885 −0.649426 0.760425i \(-0.724991\pi\)
−0.649426 + 0.760425i \(0.724991\pi\)
\(104\) 34967.4 0.317015
\(105\) 0 0
\(106\) 111696. 0.965549
\(107\) −42834.2 −0.361686 −0.180843 0.983512i \(-0.557883\pi\)
−0.180843 + 0.983512i \(0.557883\pi\)
\(108\) −39567.0 −0.326418
\(109\) −92100.9 −0.742502 −0.371251 0.928532i \(-0.621071\pi\)
−0.371251 + 0.928532i \(0.621071\pi\)
\(110\) 0 0
\(111\) −51337.5 −0.395483
\(112\) 15853.4 0.119420
\(113\) 80661.8 0.594254 0.297127 0.954838i \(-0.403972\pi\)
0.297127 + 0.954838i \(0.403972\pi\)
\(114\) 203471. 1.46636
\(115\) 0 0
\(116\) −299892. −2.06929
\(117\) 13689.0 0.0924500
\(118\) −367482. −2.42958
\(119\) −65402.4 −0.423376
\(120\) 0 0
\(121\) −146863. −0.911904
\(122\) 462120. 2.81096
\(123\) 94660.4 0.564164
\(124\) 517640. 3.02325
\(125\) 0 0
\(126\) 64461.4 0.361721
\(127\) −209632. −1.15332 −0.576658 0.816986i \(-0.695644\pi\)
−0.576658 + 0.816986i \(0.695644\pi\)
\(128\) −321078. −1.73215
\(129\) −60372.7 −0.319423
\(130\) 0 0
\(131\) −236797. −1.20559 −0.602793 0.797897i \(-0.705946\pi\)
−0.602793 + 0.797897i \(0.705946\pi\)
\(132\) −58184.7 −0.290652
\(133\) −208538. −1.02225
\(134\) −189433. −0.911369
\(135\) 0 0
\(136\) −157943. −0.732240
\(137\) −113905. −0.518490 −0.259245 0.965812i \(-0.583474\pi\)
−0.259245 + 0.965812i \(0.583474\pi\)
\(138\) 338629. 1.51365
\(139\) 166120. 0.729266 0.364633 0.931151i \(-0.381195\pi\)
0.364633 + 0.931151i \(0.381195\pi\)
\(140\) 0 0
\(141\) 5194.56 0.0220040
\(142\) 270525. 1.12586
\(143\) 20130.1 0.0823203
\(144\) 14987.8 0.0602324
\(145\) 0 0
\(146\) −538033. −2.08894
\(147\) 85196.2 0.325182
\(148\) 309598. 1.16183
\(149\) −319768. −1.17997 −0.589983 0.807416i \(-0.700866\pi\)
−0.589983 + 0.807416i \(0.700866\pi\)
\(150\) 0 0
\(151\) −449813. −1.60542 −0.802712 0.596367i \(-0.796610\pi\)
−0.802712 + 0.596367i \(0.796610\pi\)
\(152\) −503607. −1.76800
\(153\) −61831.3 −0.213540
\(154\) 94792.7 0.322087
\(155\) 0 0
\(156\) −82553.4 −0.271596
\(157\) 7895.85 0.0255652 0.0127826 0.999918i \(-0.495931\pi\)
0.0127826 + 0.999918i \(0.495931\pi\)
\(158\) 826101. 2.63263
\(159\) −108227. −0.339503
\(160\) 0 0
\(161\) −347063. −1.05522
\(162\) 60941.7 0.182443
\(163\) −235832. −0.695240 −0.347620 0.937636i \(-0.613010\pi\)
−0.347620 + 0.937636i \(0.613010\pi\)
\(164\) −570863. −1.65738
\(165\) 0 0
\(166\) −636745. −1.79348
\(167\) −177897. −0.493604 −0.246802 0.969066i \(-0.579380\pi\)
−0.246802 + 0.969066i \(0.579380\pi\)
\(168\) −159547. −0.436131
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) −197152. −0.515596
\(172\) 364086. 0.938389
\(173\) 129563. 0.329129 0.164564 0.986366i \(-0.447378\pi\)
0.164564 + 0.986366i \(0.447378\pi\)
\(174\) 461898. 1.15657
\(175\) 0 0
\(176\) 22040.0 0.0536327
\(177\) 356069. 0.854282
\(178\) −1.21363e6 −2.87101
\(179\) 90173.3 0.210351 0.105176 0.994454i \(-0.466459\pi\)
0.105176 + 0.994454i \(0.466459\pi\)
\(180\) 0 0
\(181\) 235482. 0.534271 0.267135 0.963659i \(-0.413923\pi\)
0.267135 + 0.963659i \(0.413923\pi\)
\(182\) 134494. 0.300970
\(183\) −447768. −0.988382
\(184\) −838136. −1.82503
\(185\) 0 0
\(186\) −797276. −1.68977
\(187\) −90925.1 −0.190143
\(188\) −31326.5 −0.0646424
\(189\) −62459.4 −0.127187
\(190\) 0 0
\(191\) 208853. 0.414245 0.207122 0.978315i \(-0.433590\pi\)
0.207122 + 0.978315i \(0.433590\pi\)
\(192\) 463109. 0.906631
\(193\) 930559. 1.79825 0.899126 0.437690i \(-0.144203\pi\)
0.899126 + 0.437690i \(0.144203\pi\)
\(194\) 780971. 1.48981
\(195\) 0 0
\(196\) −513788. −0.955308
\(197\) −343197. −0.630054 −0.315027 0.949083i \(-0.602014\pi\)
−0.315027 + 0.949083i \(0.602014\pi\)
\(198\) 89616.8 0.162453
\(199\) 589911. 1.05598 0.527988 0.849252i \(-0.322947\pi\)
0.527988 + 0.849252i \(0.322947\pi\)
\(200\) 0 0
\(201\) 183550. 0.320453
\(202\) 124041. 0.213888
\(203\) −473402. −0.806287
\(204\) 372882. 0.627331
\(205\) 0 0
\(206\) −1.29896e6 −2.13270
\(207\) −328112. −0.532227
\(208\) 31270.7 0.0501164
\(209\) −289918. −0.459102
\(210\) 0 0
\(211\) 235802. 0.364621 0.182311 0.983241i \(-0.441642\pi\)
0.182311 + 0.983241i \(0.441642\pi\)
\(212\) 652680. 0.997380
\(213\) −262123. −0.395873
\(214\) −397865. −0.593883
\(215\) 0 0
\(216\) −150836. −0.219973
\(217\) 817132. 1.17799
\(218\) −855477. −1.21918
\(219\) 521323. 0.734508
\(220\) 0 0
\(221\) −129006. −0.177676
\(222\) −476847. −0.649377
\(223\) 380770. 0.512744 0.256372 0.966578i \(-0.417473\pi\)
0.256372 + 0.966578i \(0.417473\pi\)
\(224\) −420026. −0.559315
\(225\) 0 0
\(226\) 749225. 0.975756
\(227\) 970558. 1.25014 0.625068 0.780571i \(-0.285071\pi\)
0.625068 + 0.780571i \(0.285071\pi\)
\(228\) 1.18895e6 1.51470
\(229\) −735622. −0.926970 −0.463485 0.886105i \(-0.653401\pi\)
−0.463485 + 0.886105i \(0.653401\pi\)
\(230\) 0 0
\(231\) −91848.7 −0.113251
\(232\) −1.14324e6 −1.39449
\(233\) 1.20744e6 1.45705 0.728526 0.685018i \(-0.240206\pi\)
0.728526 + 0.685018i \(0.240206\pi\)
\(234\) 127150. 0.151802
\(235\) 0 0
\(236\) −2.14733e6 −2.50968
\(237\) −800444. −0.925679
\(238\) −607489. −0.695178
\(239\) 350894. 0.397357 0.198678 0.980065i \(-0.436335\pi\)
0.198678 + 0.980065i \(0.436335\pi\)
\(240\) 0 0
\(241\) 1.32445e6 1.46890 0.734449 0.678664i \(-0.237441\pi\)
0.734449 + 0.678664i \(0.237441\pi\)
\(242\) −1.36413e6 −1.49733
\(243\) −59049.0 −0.0641500
\(244\) 2.70033e6 2.90363
\(245\) 0 0
\(246\) 879251. 0.926350
\(247\) −411341. −0.429002
\(248\) 1.97333e6 2.03737
\(249\) 616969. 0.630616
\(250\) 0 0
\(251\) 336335. 0.336967 0.168483 0.985704i \(-0.446113\pi\)
0.168483 + 0.985704i \(0.446113\pi\)
\(252\) 376670. 0.373646
\(253\) −482500. −0.473911
\(254\) −1.94716e6 −1.89373
\(255\) 0 0
\(256\) −1.33571e6 −1.27383
\(257\) −1.35530e6 −1.27997 −0.639987 0.768386i \(-0.721060\pi\)
−0.639987 + 0.768386i \(0.721060\pi\)
\(258\) −560770. −0.524488
\(259\) 488723. 0.452703
\(260\) 0 0
\(261\) −447553. −0.406671
\(262\) −2.19948e6 −1.97956
\(263\) −649642. −0.579141 −0.289571 0.957157i \(-0.593513\pi\)
−0.289571 + 0.957157i \(0.593513\pi\)
\(264\) −221809. −0.195871
\(265\) 0 0
\(266\) −1.93700e6 −1.67852
\(267\) 1.17593e6 1.00950
\(268\) −1.10692e6 −0.941415
\(269\) 941767. 0.793529 0.396765 0.917920i \(-0.370133\pi\)
0.396765 + 0.917920i \(0.370133\pi\)
\(270\) 0 0
\(271\) 244104. 0.201907 0.100954 0.994891i \(-0.467811\pi\)
0.100954 + 0.994891i \(0.467811\pi\)
\(272\) −141246. −0.115758
\(273\) −130317. −0.105826
\(274\) −1.05800e6 −0.851353
\(275\) 0 0
\(276\) 1.97873e6 1.56356
\(277\) 581955. 0.455711 0.227856 0.973695i \(-0.426829\pi\)
0.227856 + 0.973695i \(0.426829\pi\)
\(278\) 1.54300e6 1.19744
\(279\) 772515. 0.594150
\(280\) 0 0
\(281\) 1.56647e6 1.18347 0.591733 0.806134i \(-0.298444\pi\)
0.591733 + 0.806134i \(0.298444\pi\)
\(282\) 48249.5 0.0361302
\(283\) 166122. 0.123300 0.0616498 0.998098i \(-0.480364\pi\)
0.0616498 + 0.998098i \(0.480364\pi\)
\(284\) 1.58077e6 1.16298
\(285\) 0 0
\(286\) 186978. 0.135169
\(287\) −901148. −0.645790
\(288\) −397092. −0.282104
\(289\) −837154. −0.589605
\(290\) 0 0
\(291\) −756717. −0.523843
\(292\) −3.14391e6 −2.15781
\(293\) −1.96523e6 −1.33735 −0.668674 0.743555i \(-0.733138\pi\)
−0.668674 + 0.743555i \(0.733138\pi\)
\(294\) 791343. 0.533945
\(295\) 0 0
\(296\) 1.18024e6 0.782961
\(297\) −86833.6 −0.0571211
\(298\) −2.97016e6 −1.93749
\(299\) −684580. −0.442839
\(300\) 0 0
\(301\) 574736. 0.365639
\(302\) −4.17808e6 −2.63608
\(303\) −120188. −0.0752065
\(304\) −450367. −0.279501
\(305\) 0 0
\(306\) −574319. −0.350630
\(307\) 2.09330e6 1.26761 0.633805 0.773493i \(-0.281492\pi\)
0.633805 + 0.773493i \(0.281492\pi\)
\(308\) 553907. 0.332705
\(309\) 1.25862e6 0.749892
\(310\) 0 0
\(311\) −1.26784e6 −0.743299 −0.371650 0.928373i \(-0.621208\pi\)
−0.371650 + 0.928373i \(0.621208\pi\)
\(312\) −314707. −0.183029
\(313\) −2.90120e6 −1.67385 −0.836925 0.547317i \(-0.815649\pi\)
−0.836925 + 0.547317i \(0.815649\pi\)
\(314\) 73340.4 0.0419777
\(315\) 0 0
\(316\) 4.82719e6 2.71942
\(317\) −3.09468e6 −1.72969 −0.864844 0.502040i \(-0.832583\pi\)
−0.864844 + 0.502040i \(0.832583\pi\)
\(318\) −1.00527e6 −0.557460
\(319\) −658142. −0.362112
\(320\) 0 0
\(321\) 385508. 0.208819
\(322\) −3.22368e6 −1.73266
\(323\) 1.85797e6 0.990906
\(324\) 356103. 0.188458
\(325\) 0 0
\(326\) −2.19052e6 −1.14157
\(327\) 828908. 0.428684
\(328\) −2.17622e6 −1.11691
\(329\) −49451.2 −0.0251876
\(330\) 0 0
\(331\) 2.33082e6 1.16934 0.584668 0.811273i \(-0.301225\pi\)
0.584668 + 0.811273i \(0.301225\pi\)
\(332\) −3.72072e6 −1.85260
\(333\) 462038. 0.228332
\(334\) −1.65240e6 −0.810490
\(335\) 0 0
\(336\) −142680. −0.0689471
\(337\) −1.31758e6 −0.631977 −0.315988 0.948763i \(-0.602336\pi\)
−0.315988 + 0.948763i \(0.602336\pi\)
\(338\) 265288. 0.126307
\(339\) −725956. −0.343093
\(340\) 0 0
\(341\) 1.13601e6 0.529049
\(342\) −1.83124e6 −0.846602
\(343\) −2.25104e6 −1.03312
\(344\) 1.38795e6 0.632381
\(345\) 0 0
\(346\) 1.20344e6 0.540425
\(347\) 1.67075e6 0.744883 0.372442 0.928056i \(-0.378521\pi\)
0.372442 + 0.928056i \(0.378521\pi\)
\(348\) 2.69903e6 1.19470
\(349\) −3.19784e6 −1.40538 −0.702688 0.711498i \(-0.748017\pi\)
−0.702688 + 0.711498i \(0.748017\pi\)
\(350\) 0 0
\(351\) −123201. −0.0533761
\(352\) −583937. −0.251194
\(353\) 170177. 0.0726883 0.0363442 0.999339i \(-0.488429\pi\)
0.0363442 + 0.999339i \(0.488429\pi\)
\(354\) 3.30734e6 1.40272
\(355\) 0 0
\(356\) −7.09163e6 −2.96566
\(357\) 588622. 0.244436
\(358\) 837573. 0.345394
\(359\) 647400. 0.265116 0.132558 0.991175i \(-0.457681\pi\)
0.132558 + 0.991175i \(0.457681\pi\)
\(360\) 0 0
\(361\) 3.44811e6 1.39256
\(362\) 2.18727e6 0.877265
\(363\) 1.32177e6 0.526488
\(364\) 785892. 0.310892
\(365\) 0 0
\(366\) −4.15908e6 −1.62291
\(367\) −2.63522e6 −1.02130 −0.510648 0.859790i \(-0.670594\pi\)
−0.510648 + 0.859790i \(0.670594\pi\)
\(368\) −749530. −0.288516
\(369\) −851944. −0.325720
\(370\) 0 0
\(371\) 1.03030e6 0.388624
\(372\) −4.65876e6 −1.74547
\(373\) −3.87103e6 −1.44064 −0.720318 0.693644i \(-0.756004\pi\)
−0.720318 + 0.693644i \(0.756004\pi\)
\(374\) −844555. −0.312212
\(375\) 0 0
\(376\) −119422. −0.0435626
\(377\) −933784. −0.338371
\(378\) −580153. −0.208840
\(379\) 2.54174e6 0.908936 0.454468 0.890763i \(-0.349829\pi\)
0.454468 + 0.890763i \(0.349829\pi\)
\(380\) 0 0
\(381\) 1.88669e6 0.665868
\(382\) 1.93992e6 0.680184
\(383\) 3.54092e6 1.23344 0.616721 0.787182i \(-0.288461\pi\)
0.616721 + 0.787182i \(0.288461\pi\)
\(384\) 2.88970e6 1.00006
\(385\) 0 0
\(386\) 8.64347e6 2.95270
\(387\) 543354. 0.184419
\(388\) 4.56349e6 1.53892
\(389\) 1.95942e6 0.656527 0.328263 0.944586i \(-0.393537\pi\)
0.328263 + 0.944586i \(0.393537\pi\)
\(390\) 0 0
\(391\) 3.09215e6 1.02287
\(392\) −1.95864e6 −0.643783
\(393\) 2.13117e6 0.696046
\(394\) −3.18778e6 −1.03454
\(395\) 0 0
\(396\) 523662. 0.167808
\(397\) −5.10515e6 −1.62567 −0.812835 0.582494i \(-0.802077\pi\)
−0.812835 + 0.582494i \(0.802077\pi\)
\(398\) 5.47937e6 1.73390
\(399\) 1.87684e6 0.590195
\(400\) 0 0
\(401\) −596902. −0.185371 −0.0926855 0.995695i \(-0.529545\pi\)
−0.0926855 + 0.995695i \(0.529545\pi\)
\(402\) 1.70490e6 0.526179
\(403\) 1.61179e6 0.494363
\(404\) 724812. 0.220939
\(405\) 0 0
\(406\) −4.39718e6 −1.32391
\(407\) 679442. 0.203314
\(408\) 1.42149e6 0.422759
\(409\) 2.88580e6 0.853018 0.426509 0.904483i \(-0.359743\pi\)
0.426509 + 0.904483i \(0.359743\pi\)
\(410\) 0 0
\(411\) 1.02514e6 0.299350
\(412\) −7.59029e6 −2.20301
\(413\) −3.38971e6 −0.977884
\(414\) −3.04766e6 −0.873909
\(415\) 0 0
\(416\) −828500. −0.234725
\(417\) −1.49508e6 −0.421042
\(418\) −2.69290e6 −0.753840
\(419\) 5.48041e6 1.52503 0.762515 0.646971i \(-0.223965\pi\)
0.762515 + 0.646971i \(0.223965\pi\)
\(420\) 0 0
\(421\) 4.48786e6 1.23405 0.617026 0.786943i \(-0.288337\pi\)
0.617026 + 0.786943i \(0.288337\pi\)
\(422\) 2.19024e6 0.598703
\(423\) −46751.0 −0.0127040
\(424\) 2.48812e6 0.672135
\(425\) 0 0
\(426\) −2.43472e6 −0.650018
\(427\) 4.26266e6 1.13139
\(428\) −2.32486e6 −0.613462
\(429\) −181171. −0.0475276
\(430\) 0 0
\(431\) −139450. −0.0361597 −0.0180798 0.999837i \(-0.505755\pi\)
−0.0180798 + 0.999837i \(0.505755\pi\)
\(432\) −134890. −0.0347752
\(433\) 2.04709e6 0.524708 0.262354 0.964972i \(-0.415501\pi\)
0.262354 + 0.964972i \(0.415501\pi\)
\(434\) 7.58991e6 1.93425
\(435\) 0 0
\(436\) −4.99885e6 −1.25937
\(437\) 9.85945e6 2.46973
\(438\) 4.84230e6 1.20605
\(439\) 5.07121e6 1.25589 0.627943 0.778259i \(-0.283897\pi\)
0.627943 + 0.778259i \(0.283897\pi\)
\(440\) 0 0
\(441\) −766766. −0.187744
\(442\) −1.19827e6 −0.291742
\(443\) −2.31892e6 −0.561406 −0.280703 0.959795i \(-0.590568\pi\)
−0.280703 + 0.959795i \(0.590568\pi\)
\(444\) −2.78638e6 −0.670785
\(445\) 0 0
\(446\) 3.53678e6 0.841919
\(447\) 2.87791e6 0.681254
\(448\) −4.40871e6 −1.03781
\(449\) 7.95151e6 1.86137 0.930687 0.365816i \(-0.119210\pi\)
0.930687 + 0.365816i \(0.119210\pi\)
\(450\) 0 0
\(451\) −1.25281e6 −0.290031
\(452\) 4.37798e6 1.00792
\(453\) 4.04832e6 0.926892
\(454\) 9.01501e6 2.05270
\(455\) 0 0
\(456\) 4.53247e6 1.02076
\(457\) 528506. 0.118375 0.0591874 0.998247i \(-0.481149\pi\)
0.0591874 + 0.998247i \(0.481149\pi\)
\(458\) −6.83280e6 −1.52207
\(459\) 556482. 0.123288
\(460\) 0 0
\(461\) −3.79727e6 −0.832183 −0.416091 0.909323i \(-0.636600\pi\)
−0.416091 + 0.909323i \(0.636600\pi\)
\(462\) −853134. −0.185957
\(463\) −8.19835e6 −1.77735 −0.888677 0.458533i \(-0.848375\pi\)
−0.888677 + 0.458533i \(0.848375\pi\)
\(464\) −1.02238e6 −0.220453
\(465\) 0 0
\(466\) 1.12153e7 2.39246
\(467\) 2.15445e6 0.457135 0.228568 0.973528i \(-0.426596\pi\)
0.228568 + 0.973528i \(0.426596\pi\)
\(468\) 742981. 0.156806
\(469\) −1.74736e6 −0.366818
\(470\) 0 0
\(471\) −71062.6 −0.0147601
\(472\) −8.18595e6 −1.69127
\(473\) 799021. 0.164212
\(474\) −7.43491e6 −1.51995
\(475\) 0 0
\(476\) −3.54977e6 −0.718096
\(477\) 974046. 0.196012
\(478\) 3.25927e6 0.652455
\(479\) −2.04730e6 −0.407702 −0.203851 0.979002i \(-0.565346\pi\)
−0.203851 + 0.979002i \(0.565346\pi\)
\(480\) 0 0
\(481\) 964004. 0.189984
\(482\) 1.23021e7 2.41191
\(483\) 3.12356e6 0.609232
\(484\) −7.97110e6 −1.54670
\(485\) 0 0
\(486\) −548475. −0.105333
\(487\) −2.21510e6 −0.423225 −0.211612 0.977354i \(-0.567871\pi\)
−0.211612 + 0.977354i \(0.567871\pi\)
\(488\) 1.02941e7 1.95676
\(489\) 2.12249e6 0.401397
\(490\) 0 0
\(491\) −6.52362e6 −1.22119 −0.610597 0.791941i \(-0.709070\pi\)
−0.610597 + 0.791941i \(0.709070\pi\)
\(492\) 5.13777e6 0.956889
\(493\) 4.21777e6 0.781566
\(494\) −3.82073e6 −0.704415
\(495\) 0 0
\(496\) 1.76471e6 0.322084
\(497\) 2.49536e6 0.453150
\(498\) 5.73071e6 1.03546
\(499\) −3.53790e6 −0.636055 −0.318027 0.948082i \(-0.603020\pi\)
−0.318027 + 0.948082i \(0.603020\pi\)
\(500\) 0 0
\(501\) 1.60108e6 0.284982
\(502\) 3.12403e6 0.553295
\(503\) 3.76357e6 0.663254 0.331627 0.943411i \(-0.392402\pi\)
0.331627 + 0.943411i \(0.392402\pi\)
\(504\) 1.43593e6 0.251800
\(505\) 0 0
\(506\) −4.48169e6 −0.778154
\(507\) −257049. −0.0444116
\(508\) −1.13779e7 −1.95616
\(509\) 8.60164e6 1.47159 0.735795 0.677204i \(-0.236809\pi\)
0.735795 + 0.677204i \(0.236809\pi\)
\(510\) 0 0
\(511\) −4.96289e6 −0.840781
\(512\) −2.13222e6 −0.359466
\(513\) 1.77436e6 0.297680
\(514\) −1.25886e7 −2.10170
\(515\) 0 0
\(516\) −3.27677e6 −0.541779
\(517\) −68749.0 −0.0113120
\(518\) 4.53949e6 0.743332
\(519\) −1.16607e6 −0.190023
\(520\) 0 0
\(521\) −3.20683e6 −0.517585 −0.258792 0.965933i \(-0.583325\pi\)
−0.258792 + 0.965933i \(0.583325\pi\)
\(522\) −4.15709e6 −0.667748
\(523\) −4.37109e6 −0.698772 −0.349386 0.936979i \(-0.613610\pi\)
−0.349386 + 0.936979i \(0.613610\pi\)
\(524\) −1.28523e7 −2.04482
\(525\) 0 0
\(526\) −6.03418e6 −0.950942
\(527\) −7.28024e6 −1.14188
\(528\) −198360. −0.0309649
\(529\) 9.97239e6 1.54939
\(530\) 0 0
\(531\) −3.20462e6 −0.493220
\(532\) −1.13186e7 −1.73385
\(533\) −1.77751e6 −0.271016
\(534\) 1.09226e7 1.65758
\(535\) 0 0
\(536\) −4.21977e6 −0.634420
\(537\) −811560. −0.121446
\(538\) 8.74758e6 1.30296
\(539\) −1.12755e6 −0.167173
\(540\) 0 0
\(541\) 8.19236e6 1.20342 0.601708 0.798716i \(-0.294487\pi\)
0.601708 + 0.798716i \(0.294487\pi\)
\(542\) 2.26735e6 0.331529
\(543\) −2.11934e6 −0.308461
\(544\) 3.74222e6 0.542166
\(545\) 0 0
\(546\) −1.21044e6 −0.173765
\(547\) −5.17040e6 −0.738849 −0.369425 0.929261i \(-0.620445\pi\)
−0.369425 + 0.929261i \(0.620445\pi\)
\(548\) −6.18227e6 −0.879420
\(549\) 4.02991e6 0.570643
\(550\) 0 0
\(551\) 1.34485e7 1.88710
\(552\) 7.54322e6 1.05368
\(553\) 7.62007e6 1.05961
\(554\) 5.40547e6 0.748272
\(555\) 0 0
\(556\) 9.01631e6 1.23692
\(557\) 1.30342e7 1.78011 0.890055 0.455853i \(-0.150666\pi\)
0.890055 + 0.455853i \(0.150666\pi\)
\(558\) 7.17549e6 0.975587
\(559\) 1.13367e6 0.153446
\(560\) 0 0
\(561\) 818326. 0.109779
\(562\) 1.45501e7 1.94324
\(563\) −6.23908e6 −0.829563 −0.414781 0.909921i \(-0.636142\pi\)
−0.414781 + 0.909921i \(0.636142\pi\)
\(564\) 281939. 0.0373213
\(565\) 0 0
\(566\) 1.54302e6 0.202456
\(567\) 562135. 0.0734316
\(568\) 6.02614e6 0.783734
\(569\) 9.96520e6 1.29034 0.645172 0.764038i \(-0.276786\pi\)
0.645172 + 0.764038i \(0.276786\pi\)
\(570\) 0 0
\(571\) −5.09148e6 −0.653513 −0.326756 0.945109i \(-0.605956\pi\)
−0.326756 + 0.945109i \(0.605956\pi\)
\(572\) 1.09258e6 0.139625
\(573\) −1.87968e6 −0.239164
\(574\) −8.37029e6 −1.06038
\(575\) 0 0
\(576\) −4.16799e6 −0.523444
\(577\) 3.40798e6 0.426145 0.213073 0.977036i \(-0.431653\pi\)
0.213073 + 0.977036i \(0.431653\pi\)
\(578\) −7.77589e6 −0.968123
\(579\) −8.37503e6 −1.03822
\(580\) 0 0
\(581\) −5.87343e6 −0.721857
\(582\) −7.02874e6 −0.860142
\(583\) 1.43237e6 0.174535
\(584\) −1.19851e7 −1.45415
\(585\) 0 0
\(586\) −1.82540e7 −2.19591
\(587\) −4.58327e6 −0.549010 −0.274505 0.961586i \(-0.588514\pi\)
−0.274505 + 0.961586i \(0.588514\pi\)
\(588\) 4.62409e6 0.551547
\(589\) −2.32133e7 −2.75708
\(590\) 0 0
\(591\) 3.08877e6 0.363762
\(592\) 1.05546e6 0.123777
\(593\) −1.55994e7 −1.82168 −0.910838 0.412765i \(-0.864563\pi\)
−0.910838 + 0.412765i \(0.864563\pi\)
\(594\) −806551. −0.0937920
\(595\) 0 0
\(596\) −1.73557e7 −2.00136
\(597\) −5.30920e6 −0.609668
\(598\) −6.35870e6 −0.727136
\(599\) −223331. −0.0254321 −0.0127161 0.999919i \(-0.504048\pi\)
−0.0127161 + 0.999919i \(0.504048\pi\)
\(600\) 0 0
\(601\) 3.14524e6 0.355195 0.177598 0.984103i \(-0.443167\pi\)
0.177598 + 0.984103i \(0.443167\pi\)
\(602\) 5.33842e6 0.600374
\(603\) −1.65195e6 −0.185014
\(604\) −2.44140e7 −2.72299
\(605\) 0 0
\(606\) −1.11637e6 −0.123488
\(607\) −774656. −0.0853370 −0.0426685 0.999089i \(-0.513586\pi\)
−0.0426685 + 0.999089i \(0.513586\pi\)
\(608\) 1.19322e7 1.30907
\(609\) 4.26062e6 0.465510
\(610\) 0 0
\(611\) −97542.3 −0.0105704
\(612\) −3.35594e6 −0.362190
\(613\) −4.51473e6 −0.485267 −0.242633 0.970118i \(-0.578011\pi\)
−0.242633 + 0.970118i \(0.578011\pi\)
\(614\) 1.94436e7 2.08140
\(615\) 0 0
\(616\) 2.11158e6 0.224210
\(617\) 1.89227e6 0.200111 0.100056 0.994982i \(-0.468098\pi\)
0.100056 + 0.994982i \(0.468098\pi\)
\(618\) 1.16907e7 1.23131
\(619\) 1.13652e7 1.19220 0.596099 0.802911i \(-0.296716\pi\)
0.596099 + 0.802911i \(0.296716\pi\)
\(620\) 0 0
\(621\) 2.95301e6 0.307281
\(622\) −1.17763e7 −1.22049
\(623\) −1.11947e7 −1.15555
\(624\) −281437. −0.0289347
\(625\) 0 0
\(626\) −2.69477e7 −2.74844
\(627\) 2.60926e6 0.265063
\(628\) 428553. 0.0433616
\(629\) −4.35427e6 −0.438823
\(630\) 0 0
\(631\) 9.66441e6 0.966278 0.483139 0.875544i \(-0.339497\pi\)
0.483139 + 0.875544i \(0.339497\pi\)
\(632\) 1.84020e7 1.83262
\(633\) −2.12222e6 −0.210514
\(634\) −2.87449e7 −2.84012
\(635\) 0 0
\(636\) −5.87412e6 −0.575838
\(637\) −1.59979e6 −0.156212
\(638\) −6.11314e6 −0.594583
\(639\) 2.35911e6 0.228557
\(640\) 0 0
\(641\) 1.42384e7 1.36873 0.684363 0.729141i \(-0.260080\pi\)
0.684363 + 0.729141i \(0.260080\pi\)
\(642\) 3.58078e6 0.342879
\(643\) −1.28164e7 −1.22248 −0.611238 0.791447i \(-0.709328\pi\)
−0.611238 + 0.791447i \(0.709328\pi\)
\(644\) −1.88371e7 −1.78978
\(645\) 0 0
\(646\) 1.72577e7 1.62705
\(647\) −1.07646e7 −1.01097 −0.505485 0.862836i \(-0.668686\pi\)
−0.505485 + 0.862836i \(0.668686\pi\)
\(648\) 1.35752e6 0.127002
\(649\) −4.71251e6 −0.439178
\(650\) 0 0
\(651\) −7.35419e6 −0.680115
\(652\) −1.28000e7 −1.17921
\(653\) 2.77756e6 0.254906 0.127453 0.991845i \(-0.459320\pi\)
0.127453 + 0.991845i \(0.459320\pi\)
\(654\) 7.69930e6 0.703893
\(655\) 0 0
\(656\) −1.94615e6 −0.176570
\(657\) −4.69191e6 −0.424069
\(658\) −459326. −0.0413577
\(659\) 40832.4 0.00366262 0.00183131 0.999998i \(-0.499417\pi\)
0.00183131 + 0.999998i \(0.499417\pi\)
\(660\) 0 0
\(661\) −3.77383e6 −0.335953 −0.167977 0.985791i \(-0.553723\pi\)
−0.167977 + 0.985791i \(0.553723\pi\)
\(662\) 2.16498e7 1.92003
\(663\) 1.16105e6 0.102581
\(664\) −1.41840e7 −1.24847
\(665\) 0 0
\(666\) 4.29162e6 0.374918
\(667\) 2.23819e7 1.94797
\(668\) −9.65552e6 −0.837210
\(669\) −3.42693e6 −0.296033
\(670\) 0 0
\(671\) 5.92612e6 0.508117
\(672\) 3.78024e6 0.322921
\(673\) −1.78358e7 −1.51794 −0.758970 0.651126i \(-0.774297\pi\)
−0.758970 + 0.651126i \(0.774297\pi\)
\(674\) −1.22383e7 −1.03770
\(675\) 0 0
\(676\) 1.55017e6 0.130471
\(677\) 1.34680e7 1.12936 0.564681 0.825310i \(-0.308999\pi\)
0.564681 + 0.825310i \(0.308999\pi\)
\(678\) −6.74303e6 −0.563353
\(679\) 7.20379e6 0.599635
\(680\) 0 0
\(681\) −8.73503e6 −0.721766
\(682\) 1.05518e7 0.868691
\(683\) 1.13143e7 0.928059 0.464030 0.885820i \(-0.346403\pi\)
0.464030 + 0.885820i \(0.346403\pi\)
\(684\) −1.07005e7 −0.874512
\(685\) 0 0
\(686\) −2.09088e7 −1.69636
\(687\) 6.62059e6 0.535186
\(688\) 1.24122e6 0.0999720
\(689\) 2.03227e6 0.163092
\(690\) 0 0
\(691\) −1.61896e7 −1.28986 −0.644929 0.764242i \(-0.723113\pi\)
−0.644929 + 0.764242i \(0.723113\pi\)
\(692\) 7.03213e6 0.558241
\(693\) 826638. 0.0653857
\(694\) 1.55187e7 1.22309
\(695\) 0 0
\(696\) 1.02891e7 0.805111
\(697\) 8.02878e6 0.625990
\(698\) −2.97030e7 −2.30761
\(699\) −1.08669e7 −0.841229
\(700\) 0 0
\(701\) 5.30840e6 0.408008 0.204004 0.978970i \(-0.434604\pi\)
0.204004 + 0.978970i \(0.434604\pi\)
\(702\) −1.14435e6 −0.0876427
\(703\) −1.38838e7 −1.05954
\(704\) −6.12916e6 −0.466090
\(705\) 0 0
\(706\) 1.58069e6 0.119353
\(707\) 1.14417e6 0.0860878
\(708\) 1.93259e7 1.44896
\(709\) 4.99200e6 0.372957 0.186478 0.982459i \(-0.440293\pi\)
0.186478 + 0.982459i \(0.440293\pi\)
\(710\) 0 0
\(711\) 7.20400e6 0.534441
\(712\) −2.70344e7 −1.99856
\(713\) −3.86331e7 −2.84601
\(714\) 5.46740e6 0.401361
\(715\) 0 0
\(716\) 4.89423e6 0.356781
\(717\) −3.15804e6 −0.229414
\(718\) 6.01336e6 0.435317
\(719\) −7.83351e6 −0.565111 −0.282556 0.959251i \(-0.591182\pi\)
−0.282556 + 0.959251i \(0.591182\pi\)
\(720\) 0 0
\(721\) −1.19818e7 −0.858390
\(722\) 3.20277e7 2.28656
\(723\) −1.19200e7 −0.848069
\(724\) 1.27810e7 0.906186
\(725\) 0 0
\(726\) 1.22772e7 0.864486
\(727\) 2.20732e7 1.54892 0.774460 0.632622i \(-0.218021\pi\)
0.774460 + 0.632622i \(0.218021\pi\)
\(728\) 2.99595e6 0.209510
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −5.12061e6 −0.354428
\(732\) −2.43029e7 −1.67641
\(733\) 1.89500e7 1.30272 0.651358 0.758770i \(-0.274199\pi\)
0.651358 + 0.758770i \(0.274199\pi\)
\(734\) −2.44772e7 −1.67695
\(735\) 0 0
\(736\) 1.98584e7 1.35129
\(737\) −2.42925e6 −0.164742
\(738\) −7.91326e6 −0.534828
\(739\) −9.68780e6 −0.652550 −0.326275 0.945275i \(-0.605794\pi\)
−0.326275 + 0.945275i \(0.605794\pi\)
\(740\) 0 0
\(741\) 3.70207e6 0.247685
\(742\) 9.56994e6 0.638116
\(743\) −1.93530e6 −0.128610 −0.0643051 0.997930i \(-0.520483\pi\)
−0.0643051 + 0.997930i \(0.520483\pi\)
\(744\) −1.77599e7 −1.17628
\(745\) 0 0
\(746\) −3.59560e7 −2.36551
\(747\) −5.55273e6 −0.364087
\(748\) −4.93503e6 −0.322504
\(749\) −3.66996e6 −0.239032
\(750\) 0 0
\(751\) 1.66142e7 1.07493 0.537464 0.843287i \(-0.319383\pi\)
0.537464 + 0.843287i \(0.319383\pi\)
\(752\) −106797. −0.00688673
\(753\) −3.02701e6 −0.194548
\(754\) −8.67342e6 −0.555600
\(755\) 0 0
\(756\) −3.39003e6 −0.215724
\(757\) 1.89893e7 1.20439 0.602196 0.798348i \(-0.294292\pi\)
0.602196 + 0.798348i \(0.294292\pi\)
\(758\) 2.36089e7 1.49246
\(759\) 4.34250e6 0.273612
\(760\) 0 0
\(761\) −2.11475e7 −1.32373 −0.661863 0.749625i \(-0.730234\pi\)
−0.661863 + 0.749625i \(0.730234\pi\)
\(762\) 1.75245e7 1.09335
\(763\) −7.89104e6 −0.490708
\(764\) 1.13356e7 0.702608
\(765\) 0 0
\(766\) 3.28897e7 2.02530
\(767\) −6.68619e6 −0.410384
\(768\) 1.20214e7 0.735447
\(769\) −2.47106e7 −1.50684 −0.753420 0.657540i \(-0.771597\pi\)
−0.753420 + 0.657540i \(0.771597\pi\)
\(770\) 0 0
\(771\) 1.21977e7 0.738993
\(772\) 5.05068e7 3.05005
\(773\) 2.84076e7 1.70996 0.854980 0.518660i \(-0.173569\pi\)
0.854980 + 0.518660i \(0.173569\pi\)
\(774\) 5.04693e6 0.302813
\(775\) 0 0
\(776\) 1.73967e7 1.03708
\(777\) −4.39851e6 −0.261368
\(778\) 1.82000e7 1.07801
\(779\) 2.56001e7 1.51146
\(780\) 0 0
\(781\) 3.46915e6 0.203514
\(782\) 2.87214e7 1.67953
\(783\) 4.02798e6 0.234792
\(784\) −1.75158e6 −0.101774
\(785\) 0 0
\(786\) 1.97954e7 1.14290
\(787\) 1.57312e6 0.0905365 0.0452683 0.998975i \(-0.485586\pi\)
0.0452683 + 0.998975i \(0.485586\pi\)
\(788\) −1.86273e7 −1.06865
\(789\) 5.84678e6 0.334367
\(790\) 0 0
\(791\) 6.91096e6 0.392733
\(792\) 1.99628e6 0.113086
\(793\) 8.40808e6 0.474804
\(794\) −4.74191e7 −2.66933
\(795\) 0 0
\(796\) 3.20179e7 1.79106
\(797\) −3.10824e7 −1.73328 −0.866641 0.498932i \(-0.833726\pi\)
−0.866641 + 0.498932i \(0.833726\pi\)
\(798\) 1.74330e7 0.969093
\(799\) 440585. 0.0244153
\(800\) 0 0
\(801\) −1.05834e7 −0.582833
\(802\) −5.54431e6 −0.304377
\(803\) −6.89961e6 −0.377603
\(804\) 9.96232e6 0.543526
\(805\) 0 0
\(806\) 1.49711e7 0.811737
\(807\) −8.47591e6 −0.458144
\(808\) 2.76310e6 0.148891
\(809\) 2.30163e7 1.23642 0.618208 0.786014i \(-0.287859\pi\)
0.618208 + 0.786014i \(0.287859\pi\)
\(810\) 0 0
\(811\) 3.15218e7 1.68290 0.841451 0.540334i \(-0.181702\pi\)
0.841451 + 0.540334i \(0.181702\pi\)
\(812\) −2.56942e7 −1.36756
\(813\) −2.19694e6 −0.116571
\(814\) 6.31098e6 0.333838
\(815\) 0 0
\(816\) 1.27121e6 0.0668332
\(817\) −1.63273e7 −0.855772
\(818\) 2.68047e7 1.40064
\(819\) 1.17285e6 0.0610988
\(820\) 0 0
\(821\) 2.55863e7 1.32480 0.662398 0.749152i \(-0.269539\pi\)
0.662398 + 0.749152i \(0.269539\pi\)
\(822\) 9.52201e6 0.491529
\(823\) −2.24169e7 −1.15365 −0.576826 0.816867i \(-0.695709\pi\)
−0.576826 + 0.816867i \(0.695709\pi\)
\(824\) −2.89354e7 −1.48461
\(825\) 0 0
\(826\) −3.14852e7 −1.60567
\(827\) 3.61037e7 1.83564 0.917822 0.396992i \(-0.129946\pi\)
0.917822 + 0.396992i \(0.129946\pi\)
\(828\) −1.78085e7 −0.902719
\(829\) −173851. −0.00878599 −0.00439300 0.999990i \(-0.501398\pi\)
−0.00439300 + 0.999990i \(0.501398\pi\)
\(830\) 0 0
\(831\) −5.23759e6 −0.263105
\(832\) −8.69617e6 −0.435531
\(833\) 7.22605e6 0.360818
\(834\) −1.38870e7 −0.691345
\(835\) 0 0
\(836\) −1.57355e7 −0.778692
\(837\) −6.95264e6 −0.343033
\(838\) 5.09047e7 2.50408
\(839\) −1.92270e7 −0.942987 −0.471493 0.881870i \(-0.656285\pi\)
−0.471493 + 0.881870i \(0.656285\pi\)
\(840\) 0 0
\(841\) 1.00183e7 0.488432
\(842\) 4.16853e7 2.02630
\(843\) −1.40982e7 −0.683275
\(844\) 1.27984e7 0.618441
\(845\) 0 0
\(846\) −434246. −0.0208598
\(847\) −1.25830e7 −0.602663
\(848\) 2.22508e6 0.106257
\(849\) −1.49510e6 −0.0711870
\(850\) 0 0
\(851\) −2.31063e7 −1.09372
\(852\) −1.42269e7 −0.671447
\(853\) −1.35017e7 −0.635352 −0.317676 0.948199i \(-0.602902\pi\)
−0.317676 + 0.948199i \(0.602902\pi\)
\(854\) 3.95936e7 1.85772
\(855\) 0 0
\(856\) −8.86274e6 −0.413412
\(857\) −1.86409e7 −0.866992 −0.433496 0.901156i \(-0.642720\pi\)
−0.433496 + 0.901156i \(0.642720\pi\)
\(858\) −1.68280e6 −0.0780397
\(859\) 1.54673e7 0.715208 0.357604 0.933873i \(-0.383594\pi\)
0.357604 + 0.933873i \(0.383594\pi\)
\(860\) 0 0
\(861\) 8.11034e6 0.372847
\(862\) −1.29528e6 −0.0593737
\(863\) −7.44388e6 −0.340230 −0.170115 0.985424i \(-0.554414\pi\)
−0.170115 + 0.985424i \(0.554414\pi\)
\(864\) 3.57383e6 0.162873
\(865\) 0 0
\(866\) 1.90144e7 0.861564
\(867\) 7.53439e6 0.340408
\(868\) 4.43505e7 1.99802
\(869\) 1.05937e7 0.475882
\(870\) 0 0
\(871\) −3.44666e6 −0.153941
\(872\) −1.90564e7 −0.848691
\(873\) 6.81045e6 0.302441
\(874\) 9.15793e7 4.05526
\(875\) 0 0
\(876\) 2.82952e7 1.24581
\(877\) 1.50507e7 0.660783 0.330391 0.943844i \(-0.392819\pi\)
0.330391 + 0.943844i \(0.392819\pi\)
\(878\) 4.71038e7 2.06215
\(879\) 1.76871e7 0.772119
\(880\) 0 0
\(881\) 4.50487e7 1.95543 0.977716 0.209932i \(-0.0673244\pi\)
0.977716 + 0.209932i \(0.0673244\pi\)
\(882\) −7.12208e6 −0.308273
\(883\) −1.45280e7 −0.627053 −0.313527 0.949579i \(-0.601510\pi\)
−0.313527 + 0.949579i \(0.601510\pi\)
\(884\) −7.00190e6 −0.301360
\(885\) 0 0
\(886\) −2.15393e7 −0.921820
\(887\) −2.50271e7 −1.06807 −0.534037 0.845461i \(-0.679326\pi\)
−0.534037 + 0.845461i \(0.679326\pi\)
\(888\) −1.06221e7 −0.452043
\(889\) −1.79609e7 −0.762209
\(890\) 0 0
\(891\) 781502. 0.0329789
\(892\) 2.06666e7 0.869675
\(893\) 1.40482e6 0.0589512
\(894\) 2.67314e7 1.11861
\(895\) 0 0
\(896\) −2.75094e7 −1.14475
\(897\) 6.16122e6 0.255673
\(898\) 7.38574e7 3.05635
\(899\) −5.26965e7 −2.17461
\(900\) 0 0
\(901\) −9.17948e6 −0.376709
\(902\) −1.16367e7 −0.476227
\(903\) −5.17263e6 −0.211102
\(904\) 1.66896e7 0.679241
\(905\) 0 0
\(906\) 3.76027e7 1.52194
\(907\) 1.25157e7 0.505168 0.252584 0.967575i \(-0.418720\pi\)
0.252584 + 0.967575i \(0.418720\pi\)
\(908\) 5.26778e7 2.12038
\(909\) 1.08169e6 0.0434205
\(910\) 0 0
\(911\) 3.94640e6 0.157545 0.0787727 0.996893i \(-0.474900\pi\)
0.0787727 + 0.996893i \(0.474900\pi\)
\(912\) 4.05330e6 0.161370
\(913\) −8.16547e6 −0.324194
\(914\) 4.90901e6 0.194370
\(915\) 0 0
\(916\) −3.99264e7 −1.57225
\(917\) −2.02884e7 −0.796753
\(918\) 5.16887e6 0.202436
\(919\) 9.49362e6 0.370803 0.185401 0.982663i \(-0.440641\pi\)
0.185401 + 0.982663i \(0.440641\pi\)
\(920\) 0 0
\(921\) −1.88397e7 −0.731855
\(922\) −3.52708e7 −1.36643
\(923\) 4.92209e6 0.190171
\(924\) −4.98516e6 −0.192087
\(925\) 0 0
\(926\) −7.61502e7 −2.91839
\(927\) −1.13276e7 −0.432951
\(928\) 2.70873e7 1.03251
\(929\) −3.50533e7 −1.33257 −0.666284 0.745698i \(-0.732116\pi\)
−0.666284 + 0.745698i \(0.732116\pi\)
\(930\) 0 0
\(931\) 2.30405e7 0.871201
\(932\) 6.55346e7 2.47133
\(933\) 1.14106e7 0.429144
\(934\) 2.00116e7 0.750610
\(935\) 0 0
\(936\) 2.83236e6 0.105672
\(937\) 2.44398e6 0.0909388 0.0454694 0.998966i \(-0.485522\pi\)
0.0454694 + 0.998966i \(0.485522\pi\)
\(938\) −1.62303e7 −0.602310
\(939\) 2.61108e7 0.966398
\(940\) 0 0
\(941\) −5.35649e7 −1.97200 −0.985998 0.166759i \(-0.946670\pi\)
−0.985998 + 0.166759i \(0.946670\pi\)
\(942\) −660063. −0.0242359
\(943\) 4.26053e7 1.56021
\(944\) −7.32054e6 −0.267370
\(945\) 0 0
\(946\) 7.42169e6 0.269634
\(947\) 4.21959e7 1.52896 0.764478 0.644650i \(-0.222997\pi\)
0.764478 + 0.644650i \(0.222997\pi\)
\(948\) −4.34447e7 −1.57006
\(949\) −9.78929e6 −0.352846
\(950\) 0 0
\(951\) 2.78521e7 0.998636
\(952\) −1.35323e7 −0.483926
\(953\) 1.76524e7 0.629608 0.314804 0.949157i \(-0.398061\pi\)
0.314804 + 0.949157i \(0.398061\pi\)
\(954\) 9.04740e6 0.321850
\(955\) 0 0
\(956\) 1.90450e7 0.673964
\(957\) 5.92328e6 0.209065
\(958\) −1.90163e7 −0.669441
\(959\) −9.75916e6 −0.342662
\(960\) 0 0
\(961\) 6.23295e7 2.17713
\(962\) 8.95413e6 0.311951
\(963\) −3.46957e6 −0.120562
\(964\) 7.18853e7 2.49142
\(965\) 0 0
\(966\) 2.90132e7 1.00035
\(967\) 3.24710e6 0.111668 0.0558340 0.998440i \(-0.482218\pi\)
0.0558340 + 0.998440i \(0.482218\pi\)
\(968\) −3.03871e7 −1.04232
\(969\) −1.67217e7 −0.572100
\(970\) 0 0
\(971\) −989341. −0.0336743 −0.0168371 0.999858i \(-0.505360\pi\)
−0.0168371 + 0.999858i \(0.505360\pi\)
\(972\) −3.20493e6 −0.108806
\(973\) 1.42329e7 0.481960
\(974\) −2.05749e7 −0.694929
\(975\) 0 0
\(976\) 9.20580e6 0.309341
\(977\) −1.01621e7 −0.340603 −0.170301 0.985392i \(-0.554474\pi\)
−0.170301 + 0.985392i \(0.554474\pi\)
\(978\) 1.97147e7 0.659088
\(979\) −1.55633e7 −0.518972
\(980\) 0 0
\(981\) −7.46018e6 −0.247501
\(982\) −6.05944e7 −2.00518
\(983\) −4.05016e7 −1.33687 −0.668433 0.743772i \(-0.733035\pi\)
−0.668433 + 0.743772i \(0.733035\pi\)
\(984\) 1.95860e7 0.644848
\(985\) 0 0
\(986\) 3.91767e7 1.28332
\(987\) 445061. 0.0145421
\(988\) −2.23258e7 −0.727638
\(989\) −2.71729e7 −0.883375
\(990\) 0 0
\(991\) −2.37017e7 −0.766648 −0.383324 0.923614i \(-0.625221\pi\)
−0.383324 + 0.923614i \(0.625221\pi\)
\(992\) −4.67550e7 −1.50851
\(993\) −2.09774e7 −0.675117
\(994\) 2.31781e7 0.744066
\(995\) 0 0
\(996\) 3.34865e7 1.06960
\(997\) 3.98801e7 1.27063 0.635315 0.772253i \(-0.280870\pi\)
0.635315 + 0.772253i \(0.280870\pi\)
\(998\) −3.28617e7 −1.04439
\(999\) −4.15834e6 −0.131828
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.6.a.u.1.10 yes 11
5.4 even 2 975.6.a.r.1.2 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
975.6.a.r.1.2 11 5.4 even 2
975.6.a.u.1.10 yes 11 1.1 even 1 trivial