Properties

Label 975.6.a.u.1.10
Level 975975
Weight 66
Character 975.1
Self dual yes
Analytic conductor 156.374156.374
Analytic rank 11
Dimension 1111
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,6,Mod(1,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: N N == 975=35213 975 = 3 \cdot 5^{2} \cdot 13
Weight: k k == 6 6
Character orbit: [χ][\chi] == 975.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [11,2,-99,224,0,-18,-55] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 156.374224318156.374224318
Analytic rank: 11
Dimension: 1111
Coefficient field: Q[x]/(x11)\mathbb{Q}[x]/(x^{11} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x112x10286x9+442x8+28715x729138x61208172x5+509768x4++55036800 x^{11} - 2 x^{10} - 286 x^{9} + 442 x^{8} + 28715 x^{7} - 29138 x^{6} - 1208172 x^{5} + 509768 x^{4} + \cdots + 55036800 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2535311 2^{5}\cdot 3\cdot 5^{3}\cdot 11
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.10
Root 9.288479.28847 of defining polynomial
Character χ\chi == 975.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+9.28847q29.00000q3+54.2758q483.5963q6+85.6782q7+206.908q8+81.0000q9+119.113q11488.482q12+169.000q13+795.820q14+185.034q16763.350q17+752.366q182433.97q19771.104q21+1106.38q224050.77q231862.17q24+1569.75q26729.000q27+4650.25q285525.35q29+9537.22q314902.37q321072.02q337090.35q34+4396.34q36+5704.17q3722607.9q381521.00q3910517.8q417162.38q42+6708.08q43+6464.96q4437625.5q46577.173q471665.31q489466.24q49+6870.15q51+9172.60q52+12025.3q536771.30q54+17727.5q56+21905.7q5751322.0q5839563.2q59+49752.0q61+88586.3q62+6939.94q6351456.6q649957.42q6620394.4q6741431.4q68+36456.9q69+29124.8q71+16759.5q7257924.8q73+52983.0q74132106.q76+10205.4q7714127.8q78+88938.2q79+6561.00q8197694.5q8268552.2q8341852.3q84+62307.8q86+49728.1q87+24645.5q88130659.q89+14479.6q91219859.q9285835.0q935361.06q94+44121.3q96+84079.6q9787927.0q98+9648.17q99+O(q100)q+9.28847 q^{2} -9.00000 q^{3} +54.2758 q^{4} -83.5963 q^{6} +85.6782 q^{7} +206.908 q^{8} +81.0000 q^{9} +119.113 q^{11} -488.482 q^{12} +169.000 q^{13} +795.820 q^{14} +185.034 q^{16} -763.350 q^{17} +752.366 q^{18} -2433.97 q^{19} -771.104 q^{21} +1106.38 q^{22} -4050.77 q^{23} -1862.17 q^{24} +1569.75 q^{26} -729.000 q^{27} +4650.25 q^{28} -5525.35 q^{29} +9537.22 q^{31} -4902.37 q^{32} -1072.02 q^{33} -7090.35 q^{34} +4396.34 q^{36} +5704.17 q^{37} -22607.9 q^{38} -1521.00 q^{39} -10517.8 q^{41} -7162.38 q^{42} +6708.08 q^{43} +6464.96 q^{44} -37625.5 q^{46} -577.173 q^{47} -1665.31 q^{48} -9466.24 q^{49} +6870.15 q^{51} +9172.60 q^{52} +12025.3 q^{53} -6771.30 q^{54} +17727.5 q^{56} +21905.7 q^{57} -51322.0 q^{58} -39563.2 q^{59} +49752.0 q^{61} +88586.3 q^{62} +6939.94 q^{63} -51456.6 q^{64} -9957.42 q^{66} -20394.4 q^{67} -41431.4 q^{68} +36456.9 q^{69} +29124.8 q^{71} +16759.5 q^{72} -57924.8 q^{73} +52983.0 q^{74} -132106. q^{76} +10205.4 q^{77} -14127.8 q^{78} +88938.2 q^{79} +6561.00 q^{81} -97694.5 q^{82} -68552.2 q^{83} -41852.3 q^{84} +62307.8 q^{86} +49728.1 q^{87} +24645.5 q^{88} -130659. q^{89} +14479.6 q^{91} -219859. q^{92} -85835.0 q^{93} -5361.06 q^{94} +44121.3 q^{96} +84079.6 q^{97} -87927.0 q^{98} +9648.17 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 11q+2q299q3+224q418q655q7+270q8+891q9125q112016q12+1859q131311q14+5756q164507q17+162q18+142q19+495q21+10125q99+O(q100) 11 q + 2 q^{2} - 99 q^{3} + 224 q^{4} - 18 q^{6} - 55 q^{7} + 270 q^{8} + 891 q^{9} - 125 q^{11} - 2016 q^{12} + 1859 q^{13} - 1311 q^{14} + 5756 q^{16} - 4507 q^{17} + 162 q^{18} + 142 q^{19} + 495 q^{21}+ \cdots - 10125 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 9.28847 1.64199 0.820993 0.570938i 0.193420π-0.193420\pi
0.820993 + 0.570938i 0.193420π0.193420\pi
33 −9.00000 −0.577350
44 54.2758 1.69612
55 0 0
66 −83.5963 −0.948001
77 85.6782 0.660884 0.330442 0.943826i 0.392802π-0.392802\pi
0.330442 + 0.943826i 0.392802π0.392802\pi
88 206.908 1.14302
99 81.0000 0.333333
1010 0 0
1111 119.113 0.296810 0.148405 0.988927i 0.452586π-0.452586\pi
0.148405 + 0.988927i 0.452586π0.452586\pi
1212 −488.482 −0.979254
1313 169.000 0.277350
1414 795.820 1.08516
1515 0 0
1616 185.034 0.180697
1717 −763.350 −0.640621 −0.320311 0.947313i 0.603787π-0.603787\pi
−0.320311 + 0.947313i 0.603787π0.603787\pi
1818 752.366 0.547329
1919 −2433.97 −1.54679 −0.773395 0.633925i 0.781443π-0.781443\pi
−0.773395 + 0.633925i 0.781443π0.781443\pi
2020 0 0
2121 −771.104 −0.381562
2222 1106.38 0.487358
2323 −4050.77 −1.59668 −0.798340 0.602207i 0.794288π-0.794288\pi
−0.798340 + 0.602207i 0.794288π0.794288\pi
2424 −1862.17 −0.659920
2525 0 0
2626 1569.75 0.455405
2727 −729.000 −0.192450
2828 4650.25 1.12094
2929 −5525.35 −1.22001 −0.610007 0.792396i 0.708833π-0.708833\pi
−0.610007 + 0.792396i 0.708833π0.708833\pi
3030 0 0
3131 9537.22 1.78245 0.891226 0.453560i 0.149846π-0.149846\pi
0.891226 + 0.453560i 0.149846π0.149846\pi
3232 −4902.37 −0.846313
3333 −1072.02 −0.171363
3434 −7090.35 −1.05189
3535 0 0
3636 4396.34 0.565373
3737 5704.17 0.684996 0.342498 0.939519i 0.388727π-0.388727\pi
0.342498 + 0.939519i 0.388727π0.388727\pi
3838 −22607.9 −2.53981
3939 −1521.00 −0.160128
4040 0 0
4141 −10517.8 −0.977161 −0.488581 0.872519i 0.662485π-0.662485\pi
−0.488581 + 0.872519i 0.662485π0.662485\pi
4242 −7162.38 −0.626519
4343 6708.08 0.553257 0.276629 0.960977i 0.410783π-0.410783\pi
0.276629 + 0.960977i 0.410783π0.410783\pi
4444 6464.96 0.503425
4545 0 0
4646 −37625.5 −2.62173
4747 −577.173 −0.0381120 −0.0190560 0.999818i 0.506066π-0.506066\pi
−0.0190560 + 0.999818i 0.506066π0.506066\pi
4848 −1665.31 −0.104326
4949 −9466.24 −0.563232
5050 0 0
5151 6870.15 0.369863
5252 9172.60 0.470418
5353 12025.3 0.588037 0.294019 0.955800i 0.405007π-0.405007\pi
0.294019 + 0.955800i 0.405007π0.405007\pi
5454 −6771.30 −0.316000
5555 0 0
5656 17727.5 0.755401
5757 21905.7 0.893039
5858 −51322.0 −2.00324
5959 −39563.2 −1.47966 −0.739830 0.672794i 0.765094π-0.765094\pi
−0.739830 + 0.672794i 0.765094π0.765094\pi
6060 0 0
6161 49752.0 1.71193 0.855964 0.517035i 0.172964π-0.172964\pi
0.855964 + 0.517035i 0.172964π0.172964\pi
6262 88586.3 2.92676
6363 6939.94 0.220295
6464 −51456.6 −1.57033
6565 0 0
6666 −9957.42 −0.281376
6767 −20394.4 −0.555041 −0.277520 0.960720i 0.589513π-0.589513\pi
−0.277520 + 0.960720i 0.589513π0.589513\pi
6868 −41431.4 −1.08657
6969 36456.9 0.921844
7070 0 0
7171 29124.8 0.685672 0.342836 0.939395i 0.388612π-0.388612\pi
0.342836 + 0.939395i 0.388612π0.388612\pi
7272 16759.5 0.381005
7373 −57924.8 −1.27221 −0.636103 0.771604i 0.719455π-0.719455\pi
−0.636103 + 0.771604i 0.719455π0.719455\pi
7474 52983.0 1.12475
7575 0 0
7676 −132106. −2.62354
7777 10205.4 0.196157
7878 −14127.8 −0.262928
7979 88938.2 1.60332 0.801661 0.597779i 0.203950π-0.203950\pi
0.801661 + 0.597779i 0.203950π0.203950\pi
8080 0 0
8181 6561.00 0.111111
8282 −97694.5 −1.60448
8383 −68552.2 −1.09226 −0.546130 0.837701i 0.683899π-0.683899\pi
−0.546130 + 0.837701i 0.683899π0.683899\pi
8484 −41852.3 −0.647173
8585 0 0
8686 62307.8 0.908440
8787 49728.1 0.704375
8888 24645.5 0.339258
8989 −130659. −1.74850 −0.874249 0.485478i 0.838646π-0.838646\pi
−0.874249 + 0.485478i 0.838646π0.838646\pi
9090 0 0
9191 14479.6 0.183296
9292 −219859. −2.70816
9393 −85835.0 −1.02910
9494 −5361.06 −0.0625793
9595 0 0
9696 44121.3 0.488619
9797 84079.6 0.907322 0.453661 0.891174i 0.350118π-0.350118\pi
0.453661 + 0.891174i 0.350118π0.350118\pi
9898 −87927.0 −0.924819
9999 9648.17 0.0989366
100100 0 0
101101 13354.3 0.130262 0.0651308 0.997877i 0.479254π-0.479254\pi
0.0651308 + 0.997877i 0.479254π0.479254\pi
102102 63813.2 0.607309
103103 −139847. −1.29885 −0.649426 0.760425i 0.724991π-0.724991\pi
−0.649426 + 0.760425i 0.724991π0.724991\pi
104104 34967.4 0.317015
105105 0 0
106106 111696. 0.965549
107107 −42834.2 −0.361686 −0.180843 0.983512i 0.557883π-0.557883\pi
−0.180843 + 0.983512i 0.557883π0.557883\pi
108108 −39567.0 −0.326418
109109 −92100.9 −0.742502 −0.371251 0.928532i 0.621071π-0.621071\pi
−0.371251 + 0.928532i 0.621071π0.621071\pi
110110 0 0
111111 −51337.5 −0.395483
112112 15853.4 0.119420
113113 80661.8 0.594254 0.297127 0.954838i 0.403972π-0.403972\pi
0.297127 + 0.954838i 0.403972π0.403972\pi
114114 203471. 1.46636
115115 0 0
116116 −299892. −2.06929
117117 13689.0 0.0924500
118118 −367482. −2.42958
119119 −65402.4 −0.423376
120120 0 0
121121 −146863. −0.911904
122122 462120. 2.81096
123123 94660.4 0.564164
124124 517640. 3.02325
125125 0 0
126126 64461.4 0.361721
127127 −209632. −1.15332 −0.576658 0.816986i 0.695644π-0.695644\pi
−0.576658 + 0.816986i 0.695644π0.695644\pi
128128 −321078. −1.73215
129129 −60372.7 −0.319423
130130 0 0
131131 −236797. −1.20559 −0.602793 0.797897i 0.705946π-0.705946\pi
−0.602793 + 0.797897i 0.705946π0.705946\pi
132132 −58184.7 −0.290652
133133 −208538. −1.02225
134134 −189433. −0.911369
135135 0 0
136136 −157943. −0.732240
137137 −113905. −0.518490 −0.259245 0.965812i 0.583474π-0.583474\pi
−0.259245 + 0.965812i 0.583474π0.583474\pi
138138 338629. 1.51365
139139 166120. 0.729266 0.364633 0.931151i 0.381195π-0.381195\pi
0.364633 + 0.931151i 0.381195π0.381195\pi
140140 0 0
141141 5194.56 0.0220040
142142 270525. 1.12586
143143 20130.1 0.0823203
144144 14987.8 0.0602324
145145 0 0
146146 −538033. −2.08894
147147 85196.2 0.325182
148148 309598. 1.16183
149149 −319768. −1.17997 −0.589983 0.807416i 0.700866π-0.700866\pi
−0.589983 + 0.807416i 0.700866π0.700866\pi
150150 0 0
151151 −449813. −1.60542 −0.802712 0.596367i 0.796610π-0.796610\pi
−0.802712 + 0.596367i 0.796610π0.796610\pi
152152 −503607. −1.76800
153153 −61831.3 −0.213540
154154 94792.7 0.322087
155155 0 0
156156 −82553.4 −0.271596
157157 7895.85 0.0255652 0.0127826 0.999918i 0.495931π-0.495931\pi
0.0127826 + 0.999918i 0.495931π0.495931\pi
158158 826101. 2.63263
159159 −108227. −0.339503
160160 0 0
161161 −347063. −1.05522
162162 60941.7 0.182443
163163 −235832. −0.695240 −0.347620 0.937636i 0.613010π-0.613010\pi
−0.347620 + 0.937636i 0.613010π0.613010\pi
164164 −570863. −1.65738
165165 0 0
166166 −636745. −1.79348
167167 −177897. −0.493604 −0.246802 0.969066i 0.579380π-0.579380\pi
−0.246802 + 0.969066i 0.579380π0.579380\pi
168168 −159547. −0.436131
169169 28561.0 0.0769231
170170 0 0
171171 −197152. −0.515596
172172 364086. 0.938389
173173 129563. 0.329129 0.164564 0.986366i 0.447378π-0.447378\pi
0.164564 + 0.986366i 0.447378π0.447378\pi
174174 461898. 1.15657
175175 0 0
176176 22040.0 0.0536327
177177 356069. 0.854282
178178 −1.21363e6 −2.87101
179179 90173.3 0.210351 0.105176 0.994454i 0.466459π-0.466459\pi
0.105176 + 0.994454i 0.466459π0.466459\pi
180180 0 0
181181 235482. 0.534271 0.267135 0.963659i 0.413923π-0.413923\pi
0.267135 + 0.963659i 0.413923π0.413923\pi
182182 134494. 0.300970
183183 −447768. −0.988382
184184 −838136. −1.82503
185185 0 0
186186 −797276. −1.68977
187187 −90925.1 −0.190143
188188 −31326.5 −0.0646424
189189 −62459.4 −0.127187
190190 0 0
191191 208853. 0.414245 0.207122 0.978315i 0.433590π-0.433590\pi
0.207122 + 0.978315i 0.433590π0.433590\pi
192192 463109. 0.906631
193193 930559. 1.79825 0.899126 0.437690i 0.144203π-0.144203\pi
0.899126 + 0.437690i 0.144203π0.144203\pi
194194 780971. 1.48981
195195 0 0
196196 −513788. −0.955308
197197 −343197. −0.630054 −0.315027 0.949083i 0.602014π-0.602014\pi
−0.315027 + 0.949083i 0.602014π0.602014\pi
198198 89616.8 0.162453
199199 589911. 1.05598 0.527988 0.849252i 0.322947π-0.322947\pi
0.527988 + 0.849252i 0.322947π0.322947\pi
200200 0 0
201201 183550. 0.320453
202202 124041. 0.213888
203203 −473402. −0.806287
204204 372882. 0.627331
205205 0 0
206206 −1.29896e6 −2.13270
207207 −328112. −0.532227
208208 31270.7 0.0501164
209209 −289918. −0.459102
210210 0 0
211211 235802. 0.364621 0.182311 0.983241i 0.441642π-0.441642\pi
0.182311 + 0.983241i 0.441642π0.441642\pi
212212 652680. 0.997380
213213 −262123. −0.395873
214214 −397865. −0.593883
215215 0 0
216216 −150836. −0.219973
217217 817132. 1.17799
218218 −855477. −1.21918
219219 521323. 0.734508
220220 0 0
221221 −129006. −0.177676
222222 −476847. −0.649377
223223 380770. 0.512744 0.256372 0.966578i 0.417473π-0.417473\pi
0.256372 + 0.966578i 0.417473π0.417473\pi
224224 −420026. −0.559315
225225 0 0
226226 749225. 0.975756
227227 970558. 1.25014 0.625068 0.780571i 0.285071π-0.285071\pi
0.625068 + 0.780571i 0.285071π0.285071\pi
228228 1.18895e6 1.51470
229229 −735622. −0.926970 −0.463485 0.886105i 0.653401π-0.653401\pi
−0.463485 + 0.886105i 0.653401π0.653401\pi
230230 0 0
231231 −91848.7 −0.113251
232232 −1.14324e6 −1.39449
233233 1.20744e6 1.45705 0.728526 0.685018i 0.240206π-0.240206\pi
0.728526 + 0.685018i 0.240206π0.240206\pi
234234 127150. 0.151802
235235 0 0
236236 −2.14733e6 −2.50968
237237 −800444. −0.925679
238238 −607489. −0.695178
239239 350894. 0.397357 0.198678 0.980065i 0.436335π-0.436335\pi
0.198678 + 0.980065i 0.436335π0.436335\pi
240240 0 0
241241 1.32445e6 1.46890 0.734449 0.678664i 0.237441π-0.237441\pi
0.734449 + 0.678664i 0.237441π0.237441\pi
242242 −1.36413e6 −1.49733
243243 −59049.0 −0.0641500
244244 2.70033e6 2.90363
245245 0 0
246246 879251. 0.926350
247247 −411341. −0.429002
248248 1.97333e6 2.03737
249249 616969. 0.630616
250250 0 0
251251 336335. 0.336967 0.168483 0.985704i 0.446113π-0.446113\pi
0.168483 + 0.985704i 0.446113π0.446113\pi
252252 376670. 0.373646
253253 −482500. −0.473911
254254 −1.94716e6 −1.89373
255255 0 0
256256 −1.33571e6 −1.27383
257257 −1.35530e6 −1.27997 −0.639987 0.768386i 0.721060π-0.721060\pi
−0.639987 + 0.768386i 0.721060π0.721060\pi
258258 −560770. −0.524488
259259 488723. 0.452703
260260 0 0
261261 −447553. −0.406671
262262 −2.19948e6 −1.97956
263263 −649642. −0.579141 −0.289571 0.957157i 0.593513π-0.593513\pi
−0.289571 + 0.957157i 0.593513π0.593513\pi
264264 −221809. −0.195871
265265 0 0
266266 −1.93700e6 −1.67852
267267 1.17593e6 1.00950
268268 −1.10692e6 −0.941415
269269 941767. 0.793529 0.396765 0.917920i 0.370133π-0.370133\pi
0.396765 + 0.917920i 0.370133π0.370133\pi
270270 0 0
271271 244104. 0.201907 0.100954 0.994891i 0.467811π-0.467811\pi
0.100954 + 0.994891i 0.467811π0.467811\pi
272272 −141246. −0.115758
273273 −130317. −0.105826
274274 −1.05800e6 −0.851353
275275 0 0
276276 1.97873e6 1.56356
277277 581955. 0.455711 0.227856 0.973695i 0.426829π-0.426829\pi
0.227856 + 0.973695i 0.426829π0.426829\pi
278278 1.54300e6 1.19744
279279 772515. 0.594150
280280 0 0
281281 1.56647e6 1.18347 0.591733 0.806134i 0.298444π-0.298444\pi
0.591733 + 0.806134i 0.298444π0.298444\pi
282282 48249.5 0.0361302
283283 166122. 0.123300 0.0616498 0.998098i 0.480364π-0.480364\pi
0.0616498 + 0.998098i 0.480364π0.480364\pi
284284 1.58077e6 1.16298
285285 0 0
286286 186978. 0.135169
287287 −901148. −0.645790
288288 −397092. −0.282104
289289 −837154. −0.589605
290290 0 0
291291 −756717. −0.523843
292292 −3.14391e6 −2.15781
293293 −1.96523e6 −1.33735 −0.668674 0.743555i 0.733138π-0.733138\pi
−0.668674 + 0.743555i 0.733138π0.733138\pi
294294 791343. 0.533945
295295 0 0
296296 1.18024e6 0.782961
297297 −86833.6 −0.0571211
298298 −2.97016e6 −1.93749
299299 −684580. −0.442839
300300 0 0
301301 574736. 0.365639
302302 −4.17808e6 −2.63608
303303 −120188. −0.0752065
304304 −450367. −0.279501
305305 0 0
306306 −574319. −0.350630
307307 2.09330e6 1.26761 0.633805 0.773493i 0.281492π-0.281492\pi
0.633805 + 0.773493i 0.281492π0.281492\pi
308308 553907. 0.332705
309309 1.25862e6 0.749892
310310 0 0
311311 −1.26784e6 −0.743299 −0.371650 0.928373i 0.621208π-0.621208\pi
−0.371650 + 0.928373i 0.621208π0.621208\pi
312312 −314707. −0.183029
313313 −2.90120e6 −1.67385 −0.836925 0.547317i 0.815649π-0.815649\pi
−0.836925 + 0.547317i 0.815649π0.815649\pi
314314 73340.4 0.0419777
315315 0 0
316316 4.82719e6 2.71942
317317 −3.09468e6 −1.72969 −0.864844 0.502040i 0.832583π-0.832583\pi
−0.864844 + 0.502040i 0.832583π0.832583\pi
318318 −1.00527e6 −0.557460
319319 −658142. −0.362112
320320 0 0
321321 385508. 0.208819
322322 −3.22368e6 −1.73266
323323 1.85797e6 0.990906
324324 356103. 0.188458
325325 0 0
326326 −2.19052e6 −1.14157
327327 828908. 0.428684
328328 −2.17622e6 −1.11691
329329 −49451.2 −0.0251876
330330 0 0
331331 2.33082e6 1.16934 0.584668 0.811273i 0.301225π-0.301225\pi
0.584668 + 0.811273i 0.301225π0.301225\pi
332332 −3.72072e6 −1.85260
333333 462038. 0.228332
334334 −1.65240e6 −0.810490
335335 0 0
336336 −142680. −0.0689471
337337 −1.31758e6 −0.631977 −0.315988 0.948763i 0.602336π-0.602336\pi
−0.315988 + 0.948763i 0.602336π0.602336\pi
338338 265288. 0.126307
339339 −725956. −0.343093
340340 0 0
341341 1.13601e6 0.529049
342342 −1.83124e6 −0.846602
343343 −2.25104e6 −1.03312
344344 1.38795e6 0.632381
345345 0 0
346346 1.20344e6 0.540425
347347 1.67075e6 0.744883 0.372442 0.928056i 0.378521π-0.378521\pi
0.372442 + 0.928056i 0.378521π0.378521\pi
348348 2.69903e6 1.19470
349349 −3.19784e6 −1.40538 −0.702688 0.711498i 0.748017π-0.748017\pi
−0.702688 + 0.711498i 0.748017π0.748017\pi
350350 0 0
351351 −123201. −0.0533761
352352 −583937. −0.251194
353353 170177. 0.0726883 0.0363442 0.999339i 0.488429π-0.488429\pi
0.0363442 + 0.999339i 0.488429π0.488429\pi
354354 3.30734e6 1.40272
355355 0 0
356356 −7.09163e6 −2.96566
357357 588622. 0.244436
358358 837573. 0.345394
359359 647400. 0.265116 0.132558 0.991175i 0.457681π-0.457681\pi
0.132558 + 0.991175i 0.457681π0.457681\pi
360360 0 0
361361 3.44811e6 1.39256
362362 2.18727e6 0.877265
363363 1.32177e6 0.526488
364364 785892. 0.310892
365365 0 0
366366 −4.15908e6 −1.62291
367367 −2.63522e6 −1.02130 −0.510648 0.859790i 0.670594π-0.670594\pi
−0.510648 + 0.859790i 0.670594π0.670594\pi
368368 −749530. −0.288516
369369 −851944. −0.325720
370370 0 0
371371 1.03030e6 0.388624
372372 −4.65876e6 −1.74547
373373 −3.87103e6 −1.44064 −0.720318 0.693644i 0.756004π-0.756004\pi
−0.720318 + 0.693644i 0.756004π0.756004\pi
374374 −844555. −0.312212
375375 0 0
376376 −119422. −0.0435626
377377 −933784. −0.338371
378378 −580153. −0.208840
379379 2.54174e6 0.908936 0.454468 0.890763i 0.349829π-0.349829\pi
0.454468 + 0.890763i 0.349829π0.349829\pi
380380 0 0
381381 1.88669e6 0.665868
382382 1.93992e6 0.680184
383383 3.54092e6 1.23344 0.616721 0.787182i 0.288461π-0.288461\pi
0.616721 + 0.787182i 0.288461π0.288461\pi
384384 2.88970e6 1.00006
385385 0 0
386386 8.64347e6 2.95270
387387 543354. 0.184419
388388 4.56349e6 1.53892
389389 1.95942e6 0.656527 0.328263 0.944586i 0.393537π-0.393537\pi
0.328263 + 0.944586i 0.393537π0.393537\pi
390390 0 0
391391 3.09215e6 1.02287
392392 −1.95864e6 −0.643783
393393 2.13117e6 0.696046
394394 −3.18778e6 −1.03454
395395 0 0
396396 523662. 0.167808
397397 −5.10515e6 −1.62567 −0.812835 0.582494i 0.802077π-0.802077\pi
−0.812835 + 0.582494i 0.802077π0.802077\pi
398398 5.47937e6 1.73390
399399 1.87684e6 0.590195
400400 0 0
401401 −596902. −0.185371 −0.0926855 0.995695i 0.529545π-0.529545\pi
−0.0926855 + 0.995695i 0.529545π0.529545\pi
402402 1.70490e6 0.526179
403403 1.61179e6 0.494363
404404 724812. 0.220939
405405 0 0
406406 −4.39718e6 −1.32391
407407 679442. 0.203314
408408 1.42149e6 0.422759
409409 2.88580e6 0.853018 0.426509 0.904483i 0.359743π-0.359743\pi
0.426509 + 0.904483i 0.359743π0.359743\pi
410410 0 0
411411 1.02514e6 0.299350
412412 −7.59029e6 −2.20301
413413 −3.38971e6 −0.977884
414414 −3.04766e6 −0.873909
415415 0 0
416416 −828500. −0.234725
417417 −1.49508e6 −0.421042
418418 −2.69290e6 −0.753840
419419 5.48041e6 1.52503 0.762515 0.646971i 0.223965π-0.223965\pi
0.762515 + 0.646971i 0.223965π0.223965\pi
420420 0 0
421421 4.48786e6 1.23405 0.617026 0.786943i 0.288337π-0.288337\pi
0.617026 + 0.786943i 0.288337π0.288337\pi
422422 2.19024e6 0.598703
423423 −46751.0 −0.0127040
424424 2.48812e6 0.672135
425425 0 0
426426 −2.43472e6 −0.650018
427427 4.26266e6 1.13139
428428 −2.32486e6 −0.613462
429429 −181171. −0.0475276
430430 0 0
431431 −139450. −0.0361597 −0.0180798 0.999837i 0.505755π-0.505755\pi
−0.0180798 + 0.999837i 0.505755π0.505755\pi
432432 −134890. −0.0347752
433433 2.04709e6 0.524708 0.262354 0.964972i 0.415501π-0.415501\pi
0.262354 + 0.964972i 0.415501π0.415501\pi
434434 7.58991e6 1.93425
435435 0 0
436436 −4.99885e6 −1.25937
437437 9.85945e6 2.46973
438438 4.84230e6 1.20605
439439 5.07121e6 1.25589 0.627943 0.778259i 0.283897π-0.283897\pi
0.627943 + 0.778259i 0.283897π0.283897\pi
440440 0 0
441441 −766766. −0.187744
442442 −1.19827e6 −0.291742
443443 −2.31892e6 −0.561406 −0.280703 0.959795i 0.590568π-0.590568\pi
−0.280703 + 0.959795i 0.590568π0.590568\pi
444444 −2.78638e6 −0.670785
445445 0 0
446446 3.53678e6 0.841919
447447 2.87791e6 0.681254
448448 −4.40871e6 −1.03781
449449 7.95151e6 1.86137 0.930687 0.365816i 0.119210π-0.119210\pi
0.930687 + 0.365816i 0.119210π0.119210\pi
450450 0 0
451451 −1.25281e6 −0.290031
452452 4.37798e6 1.00792
453453 4.04832e6 0.926892
454454 9.01501e6 2.05270
455455 0 0
456456 4.53247e6 1.02076
457457 528506. 0.118375 0.0591874 0.998247i 0.481149π-0.481149\pi
0.0591874 + 0.998247i 0.481149π0.481149\pi
458458 −6.83280e6 −1.52207
459459 556482. 0.123288
460460 0 0
461461 −3.79727e6 −0.832183 −0.416091 0.909323i 0.636600π-0.636600\pi
−0.416091 + 0.909323i 0.636600π0.636600\pi
462462 −853134. −0.185957
463463 −8.19835e6 −1.77735 −0.888677 0.458533i 0.848375π-0.848375\pi
−0.888677 + 0.458533i 0.848375π0.848375\pi
464464 −1.02238e6 −0.220453
465465 0 0
466466 1.12153e7 2.39246
467467 2.15445e6 0.457135 0.228568 0.973528i 0.426596π-0.426596\pi
0.228568 + 0.973528i 0.426596π0.426596\pi
468468 742981. 0.156806
469469 −1.74736e6 −0.366818
470470 0 0
471471 −71062.6 −0.0147601
472472 −8.18595e6 −1.69127
473473 799021. 0.164212
474474 −7.43491e6 −1.51995
475475 0 0
476476 −3.54977e6 −0.718096
477477 974046. 0.196012
478478 3.25927e6 0.652455
479479 −2.04730e6 −0.407702 −0.203851 0.979002i 0.565346π-0.565346\pi
−0.203851 + 0.979002i 0.565346π0.565346\pi
480480 0 0
481481 964004. 0.189984
482482 1.23021e7 2.41191
483483 3.12356e6 0.609232
484484 −7.97110e6 −1.54670
485485 0 0
486486 −548475. −0.105333
487487 −2.21510e6 −0.423225 −0.211612 0.977354i 0.567871π-0.567871\pi
−0.211612 + 0.977354i 0.567871π0.567871\pi
488488 1.02941e7 1.95676
489489 2.12249e6 0.401397
490490 0 0
491491 −6.52362e6 −1.22119 −0.610597 0.791941i 0.709070π-0.709070\pi
−0.610597 + 0.791941i 0.709070π0.709070\pi
492492 5.13777e6 0.956889
493493 4.21777e6 0.781566
494494 −3.82073e6 −0.704415
495495 0 0
496496 1.76471e6 0.322084
497497 2.49536e6 0.453150
498498 5.73071e6 1.03546
499499 −3.53790e6 −0.636055 −0.318027 0.948082i 0.603020π-0.603020\pi
−0.318027 + 0.948082i 0.603020π0.603020\pi
500500 0 0
501501 1.60108e6 0.284982
502502 3.12403e6 0.553295
503503 3.76357e6 0.663254 0.331627 0.943411i 0.392402π-0.392402\pi
0.331627 + 0.943411i 0.392402π0.392402\pi
504504 1.43593e6 0.251800
505505 0 0
506506 −4.48169e6 −0.778154
507507 −257049. −0.0444116
508508 −1.13779e7 −1.95616
509509 8.60164e6 1.47159 0.735795 0.677204i 0.236809π-0.236809\pi
0.735795 + 0.677204i 0.236809π0.236809\pi
510510 0 0
511511 −4.96289e6 −0.840781
512512 −2.13222e6 −0.359466
513513 1.77436e6 0.297680
514514 −1.25886e7 −2.10170
515515 0 0
516516 −3.27677e6 −0.541779
517517 −68749.0 −0.0113120
518518 4.53949e6 0.743332
519519 −1.16607e6 −0.190023
520520 0 0
521521 −3.20683e6 −0.517585 −0.258792 0.965933i 0.583325π-0.583325\pi
−0.258792 + 0.965933i 0.583325π0.583325\pi
522522 −4.15709e6 −0.667748
523523 −4.37109e6 −0.698772 −0.349386 0.936979i 0.613610π-0.613610\pi
−0.349386 + 0.936979i 0.613610π0.613610\pi
524524 −1.28523e7 −2.04482
525525 0 0
526526 −6.03418e6 −0.950942
527527 −7.28024e6 −1.14188
528528 −198360. −0.0309649
529529 9.97239e6 1.54939
530530 0 0
531531 −3.20462e6 −0.493220
532532 −1.13186e7 −1.73385
533533 −1.77751e6 −0.271016
534534 1.09226e7 1.65758
535535 0 0
536536 −4.21977e6 −0.634420
537537 −811560. −0.121446
538538 8.74758e6 1.30296
539539 −1.12755e6 −0.167173
540540 0 0
541541 8.19236e6 1.20342 0.601708 0.798716i 0.294487π-0.294487\pi
0.601708 + 0.798716i 0.294487π0.294487\pi
542542 2.26735e6 0.331529
543543 −2.11934e6 −0.308461
544544 3.74222e6 0.542166
545545 0 0
546546 −1.21044e6 −0.173765
547547 −5.17040e6 −0.738849 −0.369425 0.929261i 0.620445π-0.620445\pi
−0.369425 + 0.929261i 0.620445π0.620445\pi
548548 −6.18227e6 −0.879420
549549 4.02991e6 0.570643
550550 0 0
551551 1.34485e7 1.88710
552552 7.54322e6 1.05368
553553 7.62007e6 1.05961
554554 5.40547e6 0.748272
555555 0 0
556556 9.01631e6 1.23692
557557 1.30342e7 1.78011 0.890055 0.455853i 0.150666π-0.150666\pi
0.890055 + 0.455853i 0.150666π0.150666\pi
558558 7.17549e6 0.975587
559559 1.13367e6 0.153446
560560 0 0
561561 818326. 0.109779
562562 1.45501e7 1.94324
563563 −6.23908e6 −0.829563 −0.414781 0.909921i 0.636142π-0.636142\pi
−0.414781 + 0.909921i 0.636142π0.636142\pi
564564 281939. 0.0373213
565565 0 0
566566 1.54302e6 0.202456
567567 562135. 0.0734316
568568 6.02614e6 0.783734
569569 9.96520e6 1.29034 0.645172 0.764038i 0.276786π-0.276786\pi
0.645172 + 0.764038i 0.276786π0.276786\pi
570570 0 0
571571 −5.09148e6 −0.653513 −0.326756 0.945109i 0.605956π-0.605956\pi
−0.326756 + 0.945109i 0.605956π0.605956\pi
572572 1.09258e6 0.139625
573573 −1.87968e6 −0.239164
574574 −8.37029e6 −1.06038
575575 0 0
576576 −4.16799e6 −0.523444
577577 3.40798e6 0.426145 0.213073 0.977036i 0.431653π-0.431653\pi
0.213073 + 0.977036i 0.431653π0.431653\pi
578578 −7.77589e6 −0.968123
579579 −8.37503e6 −1.03822
580580 0 0
581581 −5.87343e6 −0.721857
582582 −7.02874e6 −0.860142
583583 1.43237e6 0.174535
584584 −1.19851e7 −1.45415
585585 0 0
586586 −1.82540e7 −2.19591
587587 −4.58327e6 −0.549010 −0.274505 0.961586i 0.588514π-0.588514\pi
−0.274505 + 0.961586i 0.588514π0.588514\pi
588588 4.62409e6 0.551547
589589 −2.32133e7 −2.75708
590590 0 0
591591 3.08877e6 0.363762
592592 1.05546e6 0.123777
593593 −1.55994e7 −1.82168 −0.910838 0.412765i 0.864563π-0.864563\pi
−0.910838 + 0.412765i 0.864563π0.864563\pi
594594 −806551. −0.0937920
595595 0 0
596596 −1.73557e7 −2.00136
597597 −5.30920e6 −0.609668
598598 −6.35870e6 −0.727136
599599 −223331. −0.0254321 −0.0127161 0.999919i 0.504048π-0.504048\pi
−0.0127161 + 0.999919i 0.504048π0.504048\pi
600600 0 0
601601 3.14524e6 0.355195 0.177598 0.984103i 0.443167π-0.443167\pi
0.177598 + 0.984103i 0.443167π0.443167\pi
602602 5.33842e6 0.600374
603603 −1.65195e6 −0.185014
604604 −2.44140e7 −2.72299
605605 0 0
606606 −1.11637e6 −0.123488
607607 −774656. −0.0853370 −0.0426685 0.999089i 0.513586π-0.513586\pi
−0.0426685 + 0.999089i 0.513586π0.513586\pi
608608 1.19322e7 1.30907
609609 4.26062e6 0.465510
610610 0 0
611611 −97542.3 −0.0105704
612612 −3.35594e6 −0.362190
613613 −4.51473e6 −0.485267 −0.242633 0.970118i 0.578011π-0.578011\pi
−0.242633 + 0.970118i 0.578011π0.578011\pi
614614 1.94436e7 2.08140
615615 0 0
616616 2.11158e6 0.224210
617617 1.89227e6 0.200111 0.100056 0.994982i 0.468098π-0.468098\pi
0.100056 + 0.994982i 0.468098π0.468098\pi
618618 1.16907e7 1.23131
619619 1.13652e7 1.19220 0.596099 0.802911i 0.296716π-0.296716\pi
0.596099 + 0.802911i 0.296716π0.296716\pi
620620 0 0
621621 2.95301e6 0.307281
622622 −1.17763e7 −1.22049
623623 −1.11947e7 −1.15555
624624 −281437. −0.0289347
625625 0 0
626626 −2.69477e7 −2.74844
627627 2.60926e6 0.265063
628628 428553. 0.0433616
629629 −4.35427e6 −0.438823
630630 0 0
631631 9.66441e6 0.966278 0.483139 0.875544i 0.339497π-0.339497\pi
0.483139 + 0.875544i 0.339497π0.339497\pi
632632 1.84020e7 1.83262
633633 −2.12222e6 −0.210514
634634 −2.87449e7 −2.84012
635635 0 0
636636 −5.87412e6 −0.575838
637637 −1.59979e6 −0.156212
638638 −6.11314e6 −0.594583
639639 2.35911e6 0.228557
640640 0 0
641641 1.42384e7 1.36873 0.684363 0.729141i 0.260080π-0.260080\pi
0.684363 + 0.729141i 0.260080π0.260080\pi
642642 3.58078e6 0.342879
643643 −1.28164e7 −1.22248 −0.611238 0.791447i 0.709328π-0.709328\pi
−0.611238 + 0.791447i 0.709328π0.709328\pi
644644 −1.88371e7 −1.78978
645645 0 0
646646 1.72577e7 1.62705
647647 −1.07646e7 −1.01097 −0.505485 0.862836i 0.668686π-0.668686\pi
−0.505485 + 0.862836i 0.668686π0.668686\pi
648648 1.35752e6 0.127002
649649 −4.71251e6 −0.439178
650650 0 0
651651 −7.35419e6 −0.680115
652652 −1.28000e7 −1.17921
653653 2.77756e6 0.254906 0.127453 0.991845i 0.459320π-0.459320\pi
0.127453 + 0.991845i 0.459320π0.459320\pi
654654 7.69930e6 0.703893
655655 0 0
656656 −1.94615e6 −0.176570
657657 −4.69191e6 −0.424069
658658 −459326. −0.0413577
659659 40832.4 0.00366262 0.00183131 0.999998i 0.499417π-0.499417\pi
0.00183131 + 0.999998i 0.499417π0.499417\pi
660660 0 0
661661 −3.77383e6 −0.335953 −0.167977 0.985791i 0.553723π-0.553723\pi
−0.167977 + 0.985791i 0.553723π0.553723\pi
662662 2.16498e7 1.92003
663663 1.16105e6 0.102581
664664 −1.41840e7 −1.24847
665665 0 0
666666 4.29162e6 0.374918
667667 2.23819e7 1.94797
668668 −9.65552e6 −0.837210
669669 −3.42693e6 −0.296033
670670 0 0
671671 5.92612e6 0.508117
672672 3.78024e6 0.322921
673673 −1.78358e7 −1.51794 −0.758970 0.651126i 0.774297π-0.774297\pi
−0.758970 + 0.651126i 0.774297π0.774297\pi
674674 −1.22383e7 −1.03770
675675 0 0
676676 1.55017e6 0.130471
677677 1.34680e7 1.12936 0.564681 0.825310i 0.308999π-0.308999\pi
0.564681 + 0.825310i 0.308999π0.308999\pi
678678 −6.74303e6 −0.563353
679679 7.20379e6 0.599635
680680 0 0
681681 −8.73503e6 −0.721766
682682 1.05518e7 0.868691
683683 1.13143e7 0.928059 0.464030 0.885820i 0.346403π-0.346403\pi
0.464030 + 0.885820i 0.346403π0.346403\pi
684684 −1.07005e7 −0.874512
685685 0 0
686686 −2.09088e7 −1.69636
687687 6.62059e6 0.535186
688688 1.24122e6 0.0999720
689689 2.03227e6 0.163092
690690 0 0
691691 −1.61896e7 −1.28986 −0.644929 0.764242i 0.723113π-0.723113\pi
−0.644929 + 0.764242i 0.723113π0.723113\pi
692692 7.03213e6 0.558241
693693 826638. 0.0653857
694694 1.55187e7 1.22309
695695 0 0
696696 1.02891e7 0.805111
697697 8.02878e6 0.625990
698698 −2.97030e7 −2.30761
699699 −1.08669e7 −0.841229
700700 0 0
701701 5.30840e6 0.408008 0.204004 0.978970i 0.434604π-0.434604\pi
0.204004 + 0.978970i 0.434604π0.434604\pi
702702 −1.14435e6 −0.0876427
703703 −1.38838e7 −1.05954
704704 −6.12916e6 −0.466090
705705 0 0
706706 1.58069e6 0.119353
707707 1.14417e6 0.0860878
708708 1.93259e7 1.44896
709709 4.99200e6 0.372957 0.186478 0.982459i 0.440293π-0.440293\pi
0.186478 + 0.982459i 0.440293π0.440293\pi
710710 0 0
711711 7.20400e6 0.534441
712712 −2.70344e7 −1.99856
713713 −3.86331e7 −2.84601
714714 5.46740e6 0.401361
715715 0 0
716716 4.89423e6 0.356781
717717 −3.15804e6 −0.229414
718718 6.01336e6 0.435317
719719 −7.83351e6 −0.565111 −0.282556 0.959251i 0.591182π-0.591182\pi
−0.282556 + 0.959251i 0.591182π0.591182\pi
720720 0 0
721721 −1.19818e7 −0.858390
722722 3.20277e7 2.28656
723723 −1.19200e7 −0.848069
724724 1.27810e7 0.906186
725725 0 0
726726 1.22772e7 0.864486
727727 2.20732e7 1.54892 0.774460 0.632622i 0.218021π-0.218021\pi
0.774460 + 0.632622i 0.218021π0.218021\pi
728728 2.99595e6 0.209510
729729 531441. 0.0370370
730730 0 0
731731 −5.12061e6 −0.354428
732732 −2.43029e7 −1.67641
733733 1.89500e7 1.30272 0.651358 0.758770i 0.274199π-0.274199\pi
0.651358 + 0.758770i 0.274199π0.274199\pi
734734 −2.44772e7 −1.67695
735735 0 0
736736 1.98584e7 1.35129
737737 −2.42925e6 −0.164742
738738 −7.91326e6 −0.534828
739739 −9.68780e6 −0.652550 −0.326275 0.945275i 0.605794π-0.605794\pi
−0.326275 + 0.945275i 0.605794π0.605794\pi
740740 0 0
741741 3.70207e6 0.247685
742742 9.56994e6 0.638116
743743 −1.93530e6 −0.128610 −0.0643051 0.997930i 0.520483π-0.520483\pi
−0.0643051 + 0.997930i 0.520483π0.520483\pi
744744 −1.77599e7 −1.17628
745745 0 0
746746 −3.59560e7 −2.36551
747747 −5.55273e6 −0.364087
748748 −4.93503e6 −0.322504
749749 −3.66996e6 −0.239032
750750 0 0
751751 1.66142e7 1.07493 0.537464 0.843287i 0.319383π-0.319383\pi
0.537464 + 0.843287i 0.319383π0.319383\pi
752752 −106797. −0.00688673
753753 −3.02701e6 −0.194548
754754 −8.67342e6 −0.555600
755755 0 0
756756 −3.39003e6 −0.215724
757757 1.89893e7 1.20439 0.602196 0.798348i 0.294292π-0.294292\pi
0.602196 + 0.798348i 0.294292π0.294292\pi
758758 2.36089e7 1.49246
759759 4.34250e6 0.273612
760760 0 0
761761 −2.11475e7 −1.32373 −0.661863 0.749625i 0.730234π-0.730234\pi
−0.661863 + 0.749625i 0.730234π0.730234\pi
762762 1.75245e7 1.09335
763763 −7.89104e6 −0.490708
764764 1.13356e7 0.702608
765765 0 0
766766 3.28897e7 2.02530
767767 −6.68619e6 −0.410384
768768 1.20214e7 0.735447
769769 −2.47106e7 −1.50684 −0.753420 0.657540i 0.771597π-0.771597\pi
−0.753420 + 0.657540i 0.771597π0.771597\pi
770770 0 0
771771 1.21977e7 0.738993
772772 5.05068e7 3.05005
773773 2.84076e7 1.70996 0.854980 0.518660i 0.173569π-0.173569\pi
0.854980 + 0.518660i 0.173569π0.173569\pi
774774 5.04693e6 0.302813
775775 0 0
776776 1.73967e7 1.03708
777777 −4.39851e6 −0.261368
778778 1.82000e7 1.07801
779779 2.56001e7 1.51146
780780 0 0
781781 3.46915e6 0.203514
782782 2.87214e7 1.67953
783783 4.02798e6 0.234792
784784 −1.75158e6 −0.101774
785785 0 0
786786 1.97954e7 1.14290
787787 1.57312e6 0.0905365 0.0452683 0.998975i 0.485586π-0.485586\pi
0.0452683 + 0.998975i 0.485586π0.485586\pi
788788 −1.86273e7 −1.06865
789789 5.84678e6 0.334367
790790 0 0
791791 6.91096e6 0.392733
792792 1.99628e6 0.113086
793793 8.40808e6 0.474804
794794 −4.74191e7 −2.66933
795795 0 0
796796 3.20179e7 1.79106
797797 −3.10824e7 −1.73328 −0.866641 0.498932i 0.833726π-0.833726\pi
−0.866641 + 0.498932i 0.833726π0.833726\pi
798798 1.74330e7 0.969093
799799 440585. 0.0244153
800800 0 0
801801 −1.05834e7 −0.582833
802802 −5.54431e6 −0.304377
803803 −6.89961e6 −0.377603
804804 9.96232e6 0.543526
805805 0 0
806806 1.49711e7 0.811737
807807 −8.47591e6 −0.458144
808808 2.76310e6 0.148891
809809 2.30163e7 1.23642 0.618208 0.786014i 0.287859π-0.287859\pi
0.618208 + 0.786014i 0.287859π0.287859\pi
810810 0 0
811811 3.15218e7 1.68290 0.841451 0.540334i 0.181702π-0.181702\pi
0.841451 + 0.540334i 0.181702π0.181702\pi
812812 −2.56942e7 −1.36756
813813 −2.19694e6 −0.116571
814814 6.31098e6 0.333838
815815 0 0
816816 1.27121e6 0.0668332
817817 −1.63273e7 −0.855772
818818 2.68047e7 1.40064
819819 1.17285e6 0.0610988
820820 0 0
821821 2.55863e7 1.32480 0.662398 0.749152i 0.269539π-0.269539\pi
0.662398 + 0.749152i 0.269539π0.269539\pi
822822 9.52201e6 0.491529
823823 −2.24169e7 −1.15365 −0.576826 0.816867i 0.695709π-0.695709\pi
−0.576826 + 0.816867i 0.695709π0.695709\pi
824824 −2.89354e7 −1.48461
825825 0 0
826826 −3.14852e7 −1.60567
827827 3.61037e7 1.83564 0.917822 0.396992i 0.129946π-0.129946\pi
0.917822 + 0.396992i 0.129946π0.129946\pi
828828 −1.78085e7 −0.902719
829829 −173851. −0.00878599 −0.00439300 0.999990i 0.501398π-0.501398\pi
−0.00439300 + 0.999990i 0.501398π0.501398\pi
830830 0 0
831831 −5.23759e6 −0.263105
832832 −8.69617e6 −0.435531
833833 7.22605e6 0.360818
834834 −1.38870e7 −0.691345
835835 0 0
836836 −1.57355e7 −0.778692
837837 −6.95264e6 −0.343033
838838 5.09047e7 2.50408
839839 −1.92270e7 −0.942987 −0.471493 0.881870i 0.656285π-0.656285\pi
−0.471493 + 0.881870i 0.656285π0.656285\pi
840840 0 0
841841 1.00183e7 0.488432
842842 4.16853e7 2.02630
843843 −1.40982e7 −0.683275
844844 1.27984e7 0.618441
845845 0 0
846846 −434246. −0.0208598
847847 −1.25830e7 −0.602663
848848 2.22508e6 0.106257
849849 −1.49510e6 −0.0711870
850850 0 0
851851 −2.31063e7 −1.09372
852852 −1.42269e7 −0.671447
853853 −1.35017e7 −0.635352 −0.317676 0.948199i 0.602902π-0.602902\pi
−0.317676 + 0.948199i 0.602902π0.602902\pi
854854 3.95936e7 1.85772
855855 0 0
856856 −8.86274e6 −0.413412
857857 −1.86409e7 −0.866992 −0.433496 0.901156i 0.642720π-0.642720\pi
−0.433496 + 0.901156i 0.642720π0.642720\pi
858858 −1.68280e6 −0.0780397
859859 1.54673e7 0.715208 0.357604 0.933873i 0.383594π-0.383594\pi
0.357604 + 0.933873i 0.383594π0.383594\pi
860860 0 0
861861 8.11034e6 0.372847
862862 −1.29528e6 −0.0593737
863863 −7.44388e6 −0.340230 −0.170115 0.985424i 0.554414π-0.554414\pi
−0.170115 + 0.985424i 0.554414π0.554414\pi
864864 3.57383e6 0.162873
865865 0 0
866866 1.90144e7 0.861564
867867 7.53439e6 0.340408
868868 4.43505e7 1.99802
869869 1.05937e7 0.475882
870870 0 0
871871 −3.44666e6 −0.153941
872872 −1.90564e7 −0.848691
873873 6.81045e6 0.302441
874874 9.15793e7 4.05526
875875 0 0
876876 2.82952e7 1.24581
877877 1.50507e7 0.660783 0.330391 0.943844i 0.392819π-0.392819\pi
0.330391 + 0.943844i 0.392819π0.392819\pi
878878 4.71038e7 2.06215
879879 1.76871e7 0.772119
880880 0 0
881881 4.50487e7 1.95543 0.977716 0.209932i 0.0673244π-0.0673244\pi
0.977716 + 0.209932i 0.0673244π0.0673244\pi
882882 −7.12208e6 −0.308273
883883 −1.45280e7 −0.627053 −0.313527 0.949579i 0.601510π-0.601510\pi
−0.313527 + 0.949579i 0.601510π0.601510\pi
884884 −7.00190e6 −0.301360
885885 0 0
886886 −2.15393e7 −0.921820
887887 −2.50271e7 −1.06807 −0.534037 0.845461i 0.679326π-0.679326\pi
−0.534037 + 0.845461i 0.679326π0.679326\pi
888888 −1.06221e7 −0.452043
889889 −1.79609e7 −0.762209
890890 0 0
891891 781502. 0.0329789
892892 2.06666e7 0.869675
893893 1.40482e6 0.0589512
894894 2.67314e7 1.11861
895895 0 0
896896 −2.75094e7 −1.14475
897897 6.16122e6 0.255673
898898 7.38574e7 3.05635
899899 −5.26965e7 −2.17461
900900 0 0
901901 −9.17948e6 −0.376709
902902 −1.16367e7 −0.476227
903903 −5.17263e6 −0.211102
904904 1.66896e7 0.679241
905905 0 0
906906 3.76027e7 1.52194
907907 1.25157e7 0.505168 0.252584 0.967575i 0.418720π-0.418720\pi
0.252584 + 0.967575i 0.418720π0.418720\pi
908908 5.26778e7 2.12038
909909 1.08169e6 0.0434205
910910 0 0
911911 3.94640e6 0.157545 0.0787727 0.996893i 0.474900π-0.474900\pi
0.0787727 + 0.996893i 0.474900π0.474900\pi
912912 4.05330e6 0.161370
913913 −8.16547e6 −0.324194
914914 4.90901e6 0.194370
915915 0 0
916916 −3.99264e7 −1.57225
917917 −2.02884e7 −0.796753
918918 5.16887e6 0.202436
919919 9.49362e6 0.370803 0.185401 0.982663i 0.440641π-0.440641\pi
0.185401 + 0.982663i 0.440641π0.440641\pi
920920 0 0
921921 −1.88397e7 −0.731855
922922 −3.52708e7 −1.36643
923923 4.92209e6 0.190171
924924 −4.98516e6 −0.192087
925925 0 0
926926 −7.61502e7 −2.91839
927927 −1.13276e7 −0.432951
928928 2.70873e7 1.03251
929929 −3.50533e7 −1.33257 −0.666284 0.745698i 0.732116π-0.732116\pi
−0.666284 + 0.745698i 0.732116π0.732116\pi
930930 0 0
931931 2.30405e7 0.871201
932932 6.55346e7 2.47133
933933 1.14106e7 0.429144
934934 2.00116e7 0.750610
935935 0 0
936936 2.83236e6 0.105672
937937 2.44398e6 0.0909388 0.0454694 0.998966i 0.485522π-0.485522\pi
0.0454694 + 0.998966i 0.485522π0.485522\pi
938938 −1.62303e7 −0.602310
939939 2.61108e7 0.966398
940940 0 0
941941 −5.35649e7 −1.97200 −0.985998 0.166759i 0.946670π-0.946670\pi
−0.985998 + 0.166759i 0.946670π0.946670\pi
942942 −660063. −0.0242359
943943 4.26053e7 1.56021
944944 −7.32054e6 −0.267370
945945 0 0
946946 7.42169e6 0.269634
947947 4.21959e7 1.52896 0.764478 0.644650i 0.222997π-0.222997\pi
0.764478 + 0.644650i 0.222997π0.222997\pi
948948 −4.34447e7 −1.57006
949949 −9.78929e6 −0.352846
950950 0 0
951951 2.78521e7 0.998636
952952 −1.35323e7 −0.483926
953953 1.76524e7 0.629608 0.314804 0.949157i 0.398061π-0.398061\pi
0.314804 + 0.949157i 0.398061π0.398061\pi
954954 9.04740e6 0.321850
955955 0 0
956956 1.90450e7 0.673964
957957 5.92328e6 0.209065
958958 −1.90163e7 −0.669441
959959 −9.75916e6 −0.342662
960960 0 0
961961 6.23295e7 2.17713
962962 8.95413e6 0.311951
963963 −3.46957e6 −0.120562
964964 7.18853e7 2.49142
965965 0 0
966966 2.90132e7 1.00035
967967 3.24710e6 0.111668 0.0558340 0.998440i 0.482218π-0.482218\pi
0.0558340 + 0.998440i 0.482218π0.482218\pi
968968 −3.03871e7 −1.04232
969969 −1.67217e7 −0.572100
970970 0 0
971971 −989341. −0.0336743 −0.0168371 0.999858i 0.505360π-0.505360\pi
−0.0168371 + 0.999858i 0.505360π0.505360\pi
972972 −3.20493e6 −0.108806
973973 1.42329e7 0.481960
974974 −2.05749e7 −0.694929
975975 0 0
976976 9.20580e6 0.309341
977977 −1.01621e7 −0.340603 −0.170301 0.985392i 0.554474π-0.554474\pi
−0.170301 + 0.985392i 0.554474π0.554474\pi
978978 1.97147e7 0.659088
979979 −1.55633e7 −0.518972
980980 0 0
981981 −7.46018e6 −0.247501
982982 −6.05944e7 −2.00518
983983 −4.05016e7 −1.33687 −0.668433 0.743772i 0.733035π-0.733035\pi
−0.668433 + 0.743772i 0.733035π0.733035\pi
984984 1.95860e7 0.644848
985985 0 0
986986 3.91767e7 1.28332
987987 445061. 0.0145421
988988 −2.23258e7 −0.727638
989989 −2.71729e7 −0.883375
990990 0 0
991991 −2.37017e7 −0.766648 −0.383324 0.923614i 0.625221π-0.625221\pi
−0.383324 + 0.923614i 0.625221π0.625221\pi
992992 −4.67550e7 −1.50851
993993 −2.09774e7 −0.675117
994994 2.31781e7 0.744066
995995 0 0
996996 3.34865e7 1.06960
997997 3.98801e7 1.27063 0.635315 0.772253i 0.280870π-0.280870\pi
0.635315 + 0.772253i 0.280870π0.280870\pi
998998 −3.28617e7 −1.04439
999999 −4.15834e6 −0.131828
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.6.a.u.1.10 yes 11
5.4 even 2 975.6.a.r.1.2 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
975.6.a.r.1.2 11 5.4 even 2
975.6.a.u.1.10 yes 11 1.1 even 1 trivial