Properties

Label 975.6.a.u.1.6
Level 975975
Weight 66
Character 975.1
Self dual yes
Analytic conductor 156.374156.374
Analytic rank 11
Dimension 1111
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,6,Mod(1,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: N N == 975=35213 975 = 3 \cdot 5^{2} \cdot 13
Weight: k k == 6 6
Character orbit: [χ][\chi] == 975.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [11,2,-99,224,0,-18,-55] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 156.374224318156.374224318
Analytic rank: 11
Dimension: 1111
Coefficient field: Q[x]/(x11)\mathbb{Q}[x]/(x^{11} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x112x10286x9+442x8+28715x729138x61208172x5+509768x4++55036800 x^{11} - 2 x^{10} - 286 x^{9} + 442 x^{8} + 28715 x^{7} - 29138 x^{6} - 1208172 x^{5} + 509768 x^{4} + \cdots + 55036800 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2535311 2^{5}\cdot 3\cdot 5^{3}\cdot 11
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.6
Root 0.5926120.592612 of defining polynomial
Character χ\chi == 975.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+0.592612q29.00000q331.6488q45.33351q6+209.544q737.7190q8+81.0000q9237.848q11+284.839q12+169.000q13+124.178q14+990.409q16395.630q17+48.0016q18+76.9152q191885.89q21140.951q221225.63q23+339.471q24+100.151q26729.000q276631.81q287424.29q297897.86q31+1793.94q32+2140.63q33234.455q342563.55q36+14219.0q37+45.5808q381521.00q396518.30q411117.60q42+16867.4q43+7527.59q44726.323q46+28838.8q478913.68q48+27101.6q49+3560.67q515348.65q5227895.5q53432.014q547903.79q56692.237q574399.72q58+9602.62q59+1884.63q614680.36q62+16973.1q6330630.0q64+1268.56q66+1281.38q67+12521.2q68+11030.7q6965168.1q713055.24q72+80657.5q73+8426.34q742434.27q7649839.5q77901.362q78+48672.5q79+6561.00q813862.82q8277761.1q83+59686.3q84+9995.84q86+66818.6q87+8971.38q88+103091.q89+35412.9q91+38789.8q92+71080.7q93+17090.2q9416145.4q96101727.q97+16060.7q9819265.6q99+O(q100)q+0.592612 q^{2} -9.00000 q^{3} -31.6488 q^{4} -5.33351 q^{6} +209.544 q^{7} -37.7190 q^{8} +81.0000 q^{9} -237.848 q^{11} +284.839 q^{12} +169.000 q^{13} +124.178 q^{14} +990.409 q^{16} -395.630 q^{17} +48.0016 q^{18} +76.9152 q^{19} -1885.89 q^{21} -140.951 q^{22} -1225.63 q^{23} +339.471 q^{24} +100.151 q^{26} -729.000 q^{27} -6631.81 q^{28} -7424.29 q^{29} -7897.86 q^{31} +1793.94 q^{32} +2140.63 q^{33} -234.455 q^{34} -2563.55 q^{36} +14219.0 q^{37} +45.5808 q^{38} -1521.00 q^{39} -6518.30 q^{41} -1117.60 q^{42} +16867.4 q^{43} +7527.59 q^{44} -726.323 q^{46} +28838.8 q^{47} -8913.68 q^{48} +27101.6 q^{49} +3560.67 q^{51} -5348.65 q^{52} -27895.5 q^{53} -432.014 q^{54} -7903.79 q^{56} -692.237 q^{57} -4399.72 q^{58} +9602.62 q^{59} +1884.63 q^{61} -4680.36 q^{62} +16973.1 q^{63} -30630.0 q^{64} +1268.56 q^{66} +1281.38 q^{67} +12521.2 q^{68} +11030.7 q^{69} -65168.1 q^{71} -3055.24 q^{72} +80657.5 q^{73} +8426.34 q^{74} -2434.27 q^{76} -49839.5 q^{77} -901.362 q^{78} +48672.5 q^{79} +6561.00 q^{81} -3862.82 q^{82} -77761.1 q^{83} +59686.3 q^{84} +9995.84 q^{86} +66818.6 q^{87} +8971.38 q^{88} +103091. q^{89} +35412.9 q^{91} +38789.8 q^{92} +71080.7 q^{93} +17090.2 q^{94} -16145.4 q^{96} -101727. q^{97} +16060.7 q^{98} -19265.6 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 11q+2q299q3+224q418q655q7+270q8+891q9125q112016q12+1859q131311q14+5756q164507q17+162q18+142q19+495q21+10125q99+O(q100) 11 q + 2 q^{2} - 99 q^{3} + 224 q^{4} - 18 q^{6} - 55 q^{7} + 270 q^{8} + 891 q^{9} - 125 q^{11} - 2016 q^{12} + 1859 q^{13} - 1311 q^{14} + 5756 q^{16} - 4507 q^{17} + 162 q^{18} + 142 q^{19} + 495 q^{21}+ \cdots - 10125 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.592612 0.104760 0.0523800 0.998627i 0.483319π-0.483319\pi
0.0523800 + 0.998627i 0.483319π0.483319\pi
33 −9.00000 −0.577350
44 −31.6488 −0.989025
55 0 0
66 −5.33351 −0.0604832
77 209.544 1.61633 0.808165 0.588957i 0.200461π-0.200461\pi
0.808165 + 0.588957i 0.200461π0.200461\pi
88 −37.7190 −0.208370
99 81.0000 0.333333
1010 0 0
1111 −237.848 −0.592675 −0.296338 0.955083i 0.595765π-0.595765\pi
−0.296338 + 0.955083i 0.595765π0.595765\pi
1212 284.839 0.571014
1313 169.000 0.277350
1414 124.178 0.169327
1515 0 0
1616 990.409 0.967197
1717 −395.630 −0.332022 −0.166011 0.986124i 0.553089π-0.553089\pi
−0.166011 + 0.986124i 0.553089π0.553089\pi
1818 48.0016 0.0349200
1919 76.9152 0.0488797 0.0244398 0.999701i 0.492220π-0.492220\pi
0.0244398 + 0.999701i 0.492220π0.492220\pi
2020 0 0
2121 −1885.89 −0.933188
2222 −140.951 −0.0620886
2323 −1225.63 −0.483103 −0.241552 0.970388i 0.577656π-0.577656\pi
−0.241552 + 0.970388i 0.577656π0.577656\pi
2424 339.471 0.120303
2525 0 0
2626 100.151 0.0290552
2727 −729.000 −0.192450
2828 −6631.81 −1.59859
2929 −7424.29 −1.63930 −0.819652 0.572861i 0.805833π-0.805833\pi
−0.819652 + 0.572861i 0.805833π0.805833\pi
3030 0 0
3131 −7897.86 −1.47606 −0.738032 0.674766i 0.764245π-0.764245\pi
−0.738032 + 0.674766i 0.764245π0.764245\pi
3232 1793.94 0.309694
3333 2140.63 0.342181
3434 −234.455 −0.0347826
3535 0 0
3636 −2563.55 −0.329675
3737 14219.0 1.70751 0.853757 0.520672i 0.174318π-0.174318\pi
0.853757 + 0.520672i 0.174318π0.174318\pi
3838 45.5808 0.00512063
3939 −1521.00 −0.160128
4040 0 0
4141 −6518.30 −0.605584 −0.302792 0.953057i 0.597919π-0.597919\pi
−0.302792 + 0.953057i 0.597919π0.597919\pi
4242 −1117.60 −0.0977607
4343 16867.4 1.39116 0.695581 0.718447i 0.255147π-0.255147\pi
0.695581 + 0.718447i 0.255147π0.255147\pi
4444 7527.59 0.586171
4545 0 0
4646 −726.323 −0.0506099
4747 28838.8 1.90429 0.952144 0.305649i 0.0988735π-0.0988735\pi
0.952144 + 0.305649i 0.0988735π0.0988735\pi
4848 −8913.68 −0.558411
4949 27101.6 1.61252
5050 0 0
5151 3560.67 0.191693
5252 −5348.65 −0.274306
5353 −27895.5 −1.36409 −0.682046 0.731309i 0.738910π-0.738910\pi
−0.682046 + 0.731309i 0.738910π0.738910\pi
5454 −432.014 −0.0201611
5555 0 0
5656 −7903.79 −0.336795
5757 −692.237 −0.0282207
5858 −4399.72 −0.171734
5959 9602.62 0.359137 0.179568 0.983745i 0.442530π-0.442530\pi
0.179568 + 0.983745i 0.442530π0.442530\pi
6060 0 0
6161 1884.63 0.0648488 0.0324244 0.999474i 0.489677π-0.489677\pi
0.0324244 + 0.999474i 0.489677π0.489677\pi
6262 −4680.36 −0.154632
6363 16973.1 0.538776
6464 −30630.0 −0.934753
6565 0 0
6666 1268.56 0.0358469
6767 1281.38 0.0348731 0.0174366 0.999848i 0.494449π-0.494449\pi
0.0174366 + 0.999848i 0.494449π0.494449\pi
6868 12521.2 0.328378
6969 11030.7 0.278920
7070 0 0
7171 −65168.1 −1.53423 −0.767113 0.641512i 0.778307π-0.778307\pi
−0.767113 + 0.641512i 0.778307π0.778307\pi
7272 −3055.24 −0.0694567
7373 80657.5 1.77148 0.885742 0.464177i 0.153650π-0.153650\pi
0.885742 + 0.464177i 0.153650π0.153650\pi
7474 8426.34 0.178879
7575 0 0
7676 −2434.27 −0.0483432
7777 −49839.5 −0.957958
7878 −901.362 −0.0167750
7979 48672.5 0.877437 0.438719 0.898624i 0.355432π-0.355432\pi
0.438719 + 0.898624i 0.355432π0.355432\pi
8080 0 0
8181 6561.00 0.111111
8282 −3862.82 −0.0634410
8383 −77761.1 −1.23899 −0.619494 0.785001i 0.712662π-0.712662\pi
−0.619494 + 0.785001i 0.712662π0.712662\pi
8484 59686.3 0.922947
8585 0 0
8686 9995.84 0.145738
8787 66818.6 0.946453
8888 8971.38 0.123496
8989 103091. 1.37957 0.689787 0.724013i 0.257704π-0.257704\pi
0.689787 + 0.724013i 0.257704π0.257704\pi
9090 0 0
9191 35412.9 0.448289
9292 38789.8 0.477801
9393 71080.7 0.852206
9494 17090.2 0.199493
9595 0 0
9696 −16145.4 −0.178802
9797 −101727. −1.09776 −0.548878 0.835902i 0.684945π-0.684945\pi
−0.548878 + 0.835902i 0.684945π0.684945\pi
9898 16060.7 0.168927
9999 −19265.6 −0.197558
100100 0 0
101101 49647.1 0.484273 0.242137 0.970242i 0.422152π-0.422152\pi
0.242137 + 0.970242i 0.422152π0.422152\pi
102102 2110.09 0.0200817
103103 111189. 1.03269 0.516344 0.856381i 0.327293π-0.327293\pi
0.516344 + 0.856381i 0.327293π0.327293\pi
104104 −6374.52 −0.0577915
105105 0 0
106106 −16531.2 −0.142902
107107 −140837. −1.18920 −0.594602 0.804020i 0.702690π-0.702690\pi
−0.594602 + 0.804020i 0.702690π0.702690\pi
108108 23072.0 0.190338
109109 65953.1 0.531702 0.265851 0.964014i 0.414347π-0.414347\pi
0.265851 + 0.964014i 0.414347π0.414347\pi
110110 0 0
111111 −127971. −0.985834
112112 207534. 1.56331
113113 −187956. −1.38471 −0.692357 0.721555i 0.743428π-0.743428\pi
−0.692357 + 0.721555i 0.743428π0.743428\pi
114114 −410.228 −0.00295640
115115 0 0
116116 234970. 1.62131
117117 13689.0 0.0924500
118118 5690.63 0.0376231
119119 −82901.7 −0.536656
120120 0 0
121121 −104480. −0.648736
122122 1116.86 0.00679356
123123 58664.7 0.349634
124124 249958. 1.45986
125125 0 0
126126 10058.4 0.0564422
127127 −119369. −0.656720 −0.328360 0.944553i 0.606496π-0.606496\pi
−0.328360 + 0.944553i 0.606496π0.606496\pi
128128 −75557.7 −0.407618
129129 −151807. −0.803188
130130 0 0
131131 322045. 1.63960 0.819801 0.572648i 0.194084π-0.194084\pi
0.819801 + 0.572648i 0.194084π0.194084\pi
132132 −67748.3 −0.338426
133133 16117.1 0.0790056
134134 759.361 0.00365331
135135 0 0
136136 14922.8 0.0691834
137137 264585. 1.20438 0.602191 0.798352i 0.294295π-0.294295\pi
0.602191 + 0.798352i 0.294295π0.294295\pi
138138 6536.91 0.0292196
139139 −195552. −0.858472 −0.429236 0.903192i 0.641217π-0.641217\pi
−0.429236 + 0.903192i 0.641217π0.641217\pi
140140 0 0
141141 −259549. −1.09944
142142 −38619.4 −0.160725
143143 −40196.2 −0.164379
144144 80223.1 0.322399
145145 0 0
146146 47798.6 0.185581
147147 −243915. −0.930989
148148 −450014. −1.68877
149149 59840.9 0.220817 0.110409 0.993886i 0.464784π-0.464784\pi
0.110409 + 0.993886i 0.464784π0.464784\pi
150150 0 0
151151 −147696. −0.527139 −0.263570 0.964640i 0.584900π-0.584900\pi
−0.263570 + 0.964640i 0.584900π0.584900\pi
152152 −2901.17 −0.0101851
153153 −32046.0 −0.110674
154154 −29535.5 −0.100356
155155 0 0
156156 48137.8 0.158371
157157 164713. 0.533308 0.266654 0.963792i 0.414082π-0.414082\pi
0.266654 + 0.963792i 0.414082π0.414082\pi
158158 28843.9 0.0919203
159159 251059. 0.787559
160160 0 0
161161 −256823. −0.780854
162162 3888.13 0.0116400
163163 −123359. −0.363666 −0.181833 0.983329i 0.558203π-0.558203\pi
−0.181833 + 0.983329i 0.558203π0.558203\pi
164164 206296. 0.598938
165165 0 0
166166 −46082.1 −0.129796
167167 −630892. −1.75051 −0.875254 0.483663i 0.839306π-0.839306\pi
−0.875254 + 0.483663i 0.839306π0.839306\pi
168168 71134.1 0.194449
169169 28561.0 0.0769231
170170 0 0
171171 6230.13 0.0162932
172172 −533834. −1.37589
173173 −310137. −0.787841 −0.393920 0.919145i 0.628881π-0.628881\pi
−0.393920 + 0.919145i 0.628881π0.628881\pi
174174 39597.5 0.0991504
175175 0 0
176176 −235566. −0.573234
177177 −86423.6 −0.207348
178178 61092.8 0.144524
179179 173768. 0.405357 0.202678 0.979245i 0.435035π-0.435035\pi
0.202678 + 0.979245i 0.435035π0.435035\pi
180180 0 0
181181 40809.7 0.0925907 0.0462953 0.998928i 0.485258π-0.485258\pi
0.0462953 + 0.998928i 0.485258π0.485258\pi
182182 20986.1 0.0469627
183183 −16961.7 −0.0374405
184184 46229.6 0.100664
185185 0 0
186186 42123.3 0.0892771
187187 94099.5 0.196781
188188 −912714. −1.88339
189189 −152757. −0.311063
190190 0 0
191191 −524380. −1.04007 −0.520035 0.854145i 0.674081π-0.674081\pi
−0.520035 + 0.854145i 0.674081π0.674081\pi
192192 275670. 0.539680
193193 −187971. −0.363243 −0.181621 0.983369i 0.558135π-0.558135\pi
−0.181621 + 0.983369i 0.558135π0.558135\pi
194194 −60284.5 −0.115001
195195 0 0
196196 −857734. −1.59482
197197 −731510. −1.34293 −0.671467 0.741034i 0.734336π-0.734336\pi
−0.671467 + 0.741034i 0.734336π0.734336\pi
198198 −11417.0 −0.0206962
199199 −555001. −0.993484 −0.496742 0.867898i 0.665470π-0.665470\pi
−0.496742 + 0.867898i 0.665470π0.665470\pi
200200 0 0
201201 −11532.4 −0.0201340
202202 29421.4 0.0507324
203203 −1.55571e6 −2.64966
204204 −112691. −0.189589
205205 0 0
206206 65891.9 0.108184
207207 −99276.1 −0.161034
208208 167379. 0.268252
209209 −18294.1 −0.0289698
210210 0 0
211211 −116540. −0.180205 −0.0901026 0.995932i 0.528720π-0.528720\pi
−0.0901026 + 0.995932i 0.528720π0.528720\pi
212212 882858. 1.34912
213213 586513. 0.885786
214214 −83461.4 −0.124581
215215 0 0
216216 27497.2 0.0401009
217217 −1.65495e6 −2.38581
218218 39084.6 0.0557011
219219 −725917. −1.02277
220220 0 0
221221 −66861.4 −0.0920863
222222 −75837.0 −0.103276
223223 710939. 0.957349 0.478674 0.877992i 0.341117π-0.341117\pi
0.478674 + 0.877992i 0.341117π0.341117\pi
224224 375908. 0.500567
225225 0 0
226226 −111385. −0.145063
227227 666892. 0.858996 0.429498 0.903068i 0.358691π-0.358691\pi
0.429498 + 0.903068i 0.358691π0.358691\pi
228228 21908.5 0.0279110
229229 −1.15830e6 −1.45960 −0.729799 0.683662i 0.760386π-0.760386\pi
−0.729799 + 0.683662i 0.760386π0.760386\pi
230230 0 0
231231 448555. 0.553078
232232 280037. 0.341582
233233 1.10558e6 1.33414 0.667071 0.744994i 0.267548π-0.267548\pi
0.667071 + 0.744994i 0.267548π0.267548\pi
234234 8112.26 0.00968506
235235 0 0
236236 −303912. −0.355195
237237 −438053. −0.506589
238238 −49128.6 −0.0562201
239239 417955. 0.473298 0.236649 0.971595i 0.423951π-0.423951\pi
0.236649 + 0.971595i 0.423951π0.423951\pi
240240 0 0
241241 −812480. −0.901094 −0.450547 0.892753i 0.648771π-0.648771\pi
−0.450547 + 0.892753i 0.648771π0.648771\pi
242242 −61915.8 −0.0679615
243243 −59049.0 −0.0641500
244244 −59646.4 −0.0641371
245245 0 0
246246 34765.4 0.0366277
247247 12998.7 0.0135568
248248 297900. 0.307568
249249 699850. 0.715330
250250 0 0
251251 955016. 0.956812 0.478406 0.878139i 0.341215π-0.341215\pi
0.478406 + 0.878139i 0.341215π0.341215\pi
252252 −537177. −0.532863
253253 291513. 0.286323
254254 −70739.2 −0.0687980
255255 0 0
256256 935383. 0.892051
257257 −1.07522e6 −1.01546 −0.507730 0.861516i 0.669515π-0.669515\pi
−0.507730 + 0.861516i 0.669515π0.669515\pi
258258 −89962.6 −0.0841419
259259 2.97950e6 2.75990
260260 0 0
261261 −601367. −0.546435
262262 190848. 0.171765
263263 179082. 0.159647 0.0798237 0.996809i 0.474564π-0.474564\pi
0.0798237 + 0.996809i 0.474564π0.474564\pi
264264 −80742.4 −0.0713004
265265 0 0
266266 9551.19 0.00827662
267267 −927817. −0.796497
268268 −40554.2 −0.0344904
269269 840441. 0.708152 0.354076 0.935217i 0.384795π-0.384795\pi
0.354076 + 0.935217i 0.384795π0.384795\pi
270270 0 0
271271 −874424. −0.723267 −0.361634 0.932320i 0.617781π-0.617781\pi
−0.361634 + 0.932320i 0.617781π0.617781\pi
272272 −391835. −0.321130
273273 −318716. −0.258820
274274 156796. 0.126171
275275 0 0
276276 −349108. −0.275859
277277 −2.13281e6 −1.67014 −0.835070 0.550143i 0.814573π-0.814573\pi
−0.835070 + 0.550143i 0.814573π0.814573\pi
278278 −115887. −0.0899335
279279 −639727. −0.492021
280280 0 0
281281 −2.21279e6 −1.67177 −0.835883 0.548908i 0.815044π-0.815044\pi
−0.835883 + 0.548908i 0.815044π0.815044\pi
282282 −153812. −0.115177
283283 −2.37960e6 −1.76619 −0.883095 0.469194i 0.844544π-0.844544\pi
−0.883095 + 0.469194i 0.844544π0.844544\pi
284284 2.06249e6 1.51739
285285 0 0
286286 −23820.8 −0.0172203
287287 −1.36587e6 −0.978823
288288 145309. 0.103231
289289 −1.26333e6 −0.889762
290290 0 0
291291 915541. 0.633790
292292 −2.55271e6 −1.75204
293293 2.57230e6 1.75046 0.875232 0.483704i 0.160709π-0.160709\pi
0.875232 + 0.483704i 0.160709π0.160709\pi
294294 −144547. −0.0975303
295295 0 0
296296 −536326. −0.355795
297297 173391. 0.114060
298298 35462.4 0.0231328
299299 −207132. −0.133989
300300 0 0
301301 3.53447e6 2.24858
302302 −87526.2 −0.0552231
303303 −446824. −0.279595
304304 76177.5 0.0472762
305305 0 0
306306 −18990.8 −0.0115942
307307 −1.55047e6 −0.938897 −0.469449 0.882960i 0.655547π-0.655547\pi
−0.469449 + 0.882960i 0.655547π0.655547\pi
308308 1.57736e6 0.947445
309309 −1.00070e6 −0.596222
310310 0 0
311311 −2.27644e6 −1.33461 −0.667305 0.744784i 0.732552π-0.732552\pi
−0.667305 + 0.744784i 0.732552π0.732552\pi
312312 57370.7 0.0333659
313313 84961.1 0.0490184 0.0245092 0.999700i 0.492198π-0.492198\pi
0.0245092 + 0.999700i 0.492198π0.492198\pi
314314 97610.7 0.0558693
315315 0 0
316316 −1.54043e6 −0.867808
317317 277900. 0.155325 0.0776623 0.996980i 0.475254π-0.475254\pi
0.0776623 + 0.996980i 0.475254π0.475254\pi
318318 148781. 0.0825047
319319 1.76585e6 0.971576
320320 0 0
321321 1.26753e6 0.686587
322322 −152197. −0.0818022
323323 −30429.9 −0.0162291
324324 −207648. −0.109892
325325 0 0
326326 −73104.0 −0.0380976
327327 −593577. −0.306979
328328 245864. 0.126186
329329 6.04300e6 3.07796
330330 0 0
331331 −544837. −0.273336 −0.136668 0.990617i 0.543639π-0.543639\pi
−0.136668 + 0.990617i 0.543639π0.543639\pi
332332 2.46105e6 1.22539
333333 1.15174e6 0.569171
334334 −373874. −0.183383
335335 0 0
336336 −1.86781e6 −0.902576
337337 −1.62448e6 −0.779185 −0.389592 0.920987i 0.627384π-0.627384\pi
−0.389592 + 0.920987i 0.627384π0.627384\pi
338338 16925.6 0.00805846
339339 1.69160e6 0.799465
340340 0 0
341341 1.87849e6 0.874827
342342 3692.05 0.00170688
343343 2.15717e6 0.990033
344344 −636223. −0.289877
345345 0 0
346346 −183791. −0.0825342
347347 865578. 0.385907 0.192953 0.981208i 0.438193π-0.438193\pi
0.192953 + 0.981208i 0.438193π0.438193\pi
348348 −2.11473e6 −0.936066
349349 −131105. −0.0576178 −0.0288089 0.999585i 0.509171π-0.509171\pi
−0.0288089 + 0.999585i 0.509171π0.509171\pi
350350 0 0
351351 −123201. −0.0533761
352352 −426684. −0.183548
353353 −4.16672e6 −1.77974 −0.889871 0.456211i 0.849206π-0.849206\pi
−0.889871 + 0.456211i 0.849206π0.849206\pi
354354 −51215.6 −0.0217217
355355 0 0
356356 −3.26270e6 −1.36443
357357 746116. 0.309839
358358 102977. 0.0424651
359359 −827904. −0.339034 −0.169517 0.985527i 0.554221π-0.554221\pi
−0.169517 + 0.985527i 0.554221π0.554221\pi
360360 0 0
361361 −2.47018e6 −0.997611
362362 24184.3 0.00969979
363363 940316. 0.374548
364364 −1.12078e6 −0.443369
365365 0 0
366366 −10051.7 −0.00392226
367367 4.51043e6 1.74805 0.874023 0.485884i 0.161502π-0.161502\pi
0.874023 + 0.485884i 0.161502π0.161502\pi
368368 −1.21388e6 −0.467256
369369 −527982. −0.201861
370370 0 0
371371 −5.84532e6 −2.20482
372372 −2.24962e6 −0.842853
373373 −2.89506e6 −1.07742 −0.538711 0.842490i 0.681089π-0.681089\pi
−0.538711 + 0.842490i 0.681089π0.681089\pi
374374 55764.5 0.0206148
375375 0 0
376376 −1.08777e6 −0.396797
377377 −1.25470e6 −0.454661
378378 −90525.9 −0.0325869
379379 1.90622e6 0.681673 0.340836 0.940123i 0.389290π-0.389290\pi
0.340836 + 0.940123i 0.389290π0.389290\pi
380380 0 0
381381 1.07432e6 0.379158
382382 −310754. −0.108958
383383 −1.96221e6 −0.683514 −0.341757 0.939788i 0.611022π-0.611022\pi
−0.341757 + 0.939788i 0.611022π0.611022\pi
384384 680019. 0.235339
385385 0 0
386386 −111394. −0.0380533
387387 1.36626e6 0.463721
388388 3.21953e6 1.08571
389389 3.01996e6 1.01188 0.505938 0.862570i 0.331147π-0.331147\pi
0.505938 + 0.862570i 0.331147π0.331147\pi
390390 0 0
391391 484896. 0.160401
392392 −1.02225e6 −0.336001
393393 −2.89841e6 −0.946625
394394 −433501. −0.140686
395395 0 0
396396 609735. 0.195390
397397 −346453. −0.110323 −0.0551617 0.998477i 0.517567π-0.517567\pi
−0.0551617 + 0.998477i 0.517567π0.517567\pi
398398 −328900. −0.104077
399399 −145054. −0.0456139
400400 0 0
401401 1.22322e6 0.379878 0.189939 0.981796i 0.439171π-0.439171\pi
0.189939 + 0.981796i 0.439171π0.439171\pi
402402 −6834.25 −0.00210924
403403 −1.33474e6 −0.409387
404404 −1.57127e6 −0.478958
405405 0 0
406406 −921934. −0.277578
407407 −3.38195e6 −1.01200
408408 −134305. −0.0399431
409409 835795. 0.247054 0.123527 0.992341i 0.460579π-0.460579\pi
0.123527 + 0.992341i 0.460579π0.460579\pi
410410 0 0
411411 −2.38127e6 −0.695350
412412 −3.51900e6 −1.02135
413413 2.01217e6 0.580483
414414 −58832.2 −0.0168700
415415 0 0
416416 303175. 0.0858936
417417 1.75997e6 0.495639
418418 −10841.3 −0.00303487
419419 −4.82020e6 −1.34131 −0.670656 0.741768i 0.733987π-0.733987\pi
−0.670656 + 0.741768i 0.733987π0.733987\pi
420420 0 0
421421 5.66795e6 1.55855 0.779276 0.626681i 0.215587π-0.215587\pi
0.779276 + 0.626681i 0.215587π0.215587\pi
422422 −69062.8 −0.0188783
423423 2.33594e6 0.634763
424424 1.05219e6 0.284236
425425 0 0
426426 347575. 0.0927949
427427 394913. 0.104817
428428 4.45731e6 1.17615
429429 361766. 0.0949040
430430 0 0
431431 −6.02344e6 −1.56189 −0.780947 0.624597i 0.785263π-0.785263\pi
−0.780947 + 0.624597i 0.785263π0.785263\pi
432432 −722008. −0.186137
433433 −6.78059e6 −1.73799 −0.868996 0.494820i 0.835234π-0.835234\pi
−0.868996 + 0.494820i 0.835234π0.835234\pi
434434 −980742. −0.249937
435435 0 0
436436 −2.08734e6 −0.525867
437437 −94269.6 −0.0236139
438438 −430187. −0.107145
439439 1.06487e6 0.263716 0.131858 0.991269i 0.457906π-0.457906\pi
0.131858 + 0.991269i 0.457906π0.457906\pi
440440 0 0
441441 2.19523e6 0.537507
442442 −39622.9 −0.00964695
443443 −3.68799e6 −0.892854 −0.446427 0.894820i 0.647304π-0.647304\pi
−0.446427 + 0.894820i 0.647304π0.647304\pi
444444 4.05013e6 0.975014
445445 0 0
446446 421311. 0.100292
447447 −538568. −0.127489
448448 −6.41832e6 −1.51087
449449 6.69503e6 1.56724 0.783622 0.621238i 0.213370π-0.213370\pi
0.783622 + 0.621238i 0.213370π0.213370\pi
450450 0 0
451451 1.55036e6 0.358915
452452 5.94859e6 1.36952
453453 1.32926e6 0.304344
454454 395208. 0.0899884
455455 0 0
456456 26110.5 0.00588035
457457 2.68543e6 0.601483 0.300741 0.953706i 0.402766π-0.402766\pi
0.300741 + 0.953706i 0.402766π0.402766\pi
458458 −686423. −0.152907
459459 288414. 0.0638976
460460 0 0
461461 5.41249e6 1.18616 0.593082 0.805142i 0.297911π-0.297911\pi
0.593082 + 0.805142i 0.297911π0.297911\pi
462462 265819. 0.0579404
463463 2.42560e6 0.525856 0.262928 0.964815i 0.415312π-0.415312\pi
0.262928 + 0.964815i 0.415312π0.415312\pi
464464 −7.35308e6 −1.58553
465465 0 0
466466 655182. 0.139765
467467 2.26854e6 0.481343 0.240672 0.970607i 0.422632π-0.422632\pi
0.240672 + 0.970607i 0.422632π0.422632\pi
468468 −433241. −0.0914354
469469 268505. 0.0563665
470470 0 0
471471 −1.48241e6 −0.307905
472472 −362202. −0.0748334
473473 −4.01188e6 −0.824508
474474 −259595. −0.0530702
475475 0 0
476476 2.62374e6 0.530767
477477 −2.25953e6 −0.454698
478478 247685. 0.0495827
479479 879181. 0.175081 0.0875406 0.996161i 0.472099π-0.472099\pi
0.0875406 + 0.996161i 0.472099π0.472099\pi
480480 0 0
481481 2.40301e6 0.473579
482482 −481485. −0.0943985
483483 2.31141e6 0.450826
484484 3.30665e6 0.641616
485485 0 0
486486 −34993.1 −0.00672035
487487 −3.00595e6 −0.574327 −0.287163 0.957882i 0.592712π-0.592712\pi
−0.287163 + 0.957882i 0.592712π0.592712\pi
488488 −71086.5 −0.0135126
489489 1.11023e6 0.209962
490490 0 0
491491 −884317. −0.165540 −0.0827702 0.996569i 0.526377π-0.526377\pi
−0.0827702 + 0.996569i 0.526377π0.526377\pi
492492 −1.85667e6 −0.345797
493493 2.93727e6 0.544285
494494 7703.16 0.00142021
495495 0 0
496496 −7.82211e6 −1.42764
497497 −1.36556e7 −2.47981
498498 414739. 0.0749380
499499 8.24181e6 1.48174 0.740869 0.671650i 0.234414π-0.234414\pi
0.740869 + 0.671650i 0.234414π0.234414\pi
500500 0 0
501501 5.67803e6 1.01066
502502 565954. 0.100236
503503 −3.40773e6 −0.600545 −0.300273 0.953853i 0.597078π-0.597078\pi
−0.300273 + 0.953853i 0.597078π0.597078\pi
504504 −640207. −0.112265
505505 0 0
506506 172754. 0.0299952
507507 −257049. −0.0444116
508508 3.77787e6 0.649513
509509 −8.95621e6 −1.53225 −0.766125 0.642691i 0.777818π-0.777818\pi
−0.766125 + 0.642691i 0.777818π0.777818\pi
510510 0 0
511511 1.69013e7 2.86330
512512 2.97216e6 0.501070
513513 −56071.2 −0.00940689
514514 −637186. −0.106380
515515 0 0
516516 4.80451e6 0.794373
517517 −6.85924e6 −1.12862
518518 1.76569e6 0.289127
519519 2.79123e6 0.454860
520520 0 0
521521 2.70744e6 0.436982 0.218491 0.975839i 0.429887π-0.429887\pi
0.218491 + 0.975839i 0.429887π0.429887\pi
522522 −356377. −0.0572445
523523 −2.72225e6 −0.435185 −0.217593 0.976040i 0.569820π-0.569820\pi
−0.217593 + 0.976040i 0.569820π0.569820\pi
524524 −1.01923e7 −1.62161
525525 0 0
526526 106126. 0.0167247
527527 3.12463e6 0.490085
528528 2.12010e6 0.330957
529529 −4.93417e6 −0.766611
530530 0 0
531531 777812. 0.119712
532532 −510087. −0.0781385
533533 −1.10159e6 −0.167959
534534 −549835. −0.0834410
535535 0 0
536536 −48332.4 −0.00726652
537537 −1.56391e6 −0.234033
538538 498055. 0.0741860
539539 −6.44605e6 −0.955701
540540 0 0
541541 2.49859e6 0.367030 0.183515 0.983017i 0.441252π-0.441252\pi
0.183515 + 0.983017i 0.441252π0.441252\pi
542542 −518194. −0.0757695
543543 −367287. −0.0534572
544544 −709735. −0.102825
545545 0 0
546546 −188875. −0.0271139
547547 6.43873e6 0.920093 0.460046 0.887895i 0.347833π-0.347833\pi
0.460046 + 0.887895i 0.347833π0.347833\pi
548548 −8.37381e6 −1.19116
549549 152655. 0.0216163
550550 0 0
551551 −571040. −0.0801287
552552 −416066. −0.0581186
553553 1.01990e7 1.41823
554554 −1.26393e6 −0.174964
555555 0 0
556556 6.18900e6 0.849051
557557 −2.84713e6 −0.388838 −0.194419 0.980919i 0.562282π-0.562282\pi
−0.194419 + 0.980919i 0.562282π0.562282\pi
558558 −379110. −0.0515441
559559 2.85060e6 0.385839
560560 0 0
561561 −846896. −0.113612
562562 −1.31133e6 −0.175134
563563 −1.29070e7 −1.71615 −0.858075 0.513524i 0.828340π-0.828340\pi
−0.858075 + 0.513524i 0.828340π0.828340\pi
564564 8.21443e6 1.08738
565565 0 0
566566 −1.41018e6 −0.185026
567567 1.37482e6 0.179592
568568 2.45808e6 0.319687
569569 −2.35627e6 −0.305102 −0.152551 0.988296i 0.548749π-0.548749\pi
−0.152551 + 0.988296i 0.548749π0.548749\pi
570570 0 0
571571 −1.23131e7 −1.58044 −0.790221 0.612823i 0.790034π-0.790034\pi
−0.790221 + 0.612823i 0.790034π0.790034\pi
572572 1.27216e6 0.162575
573573 4.71942e6 0.600484
574574 −809430. −0.102541
575575 0 0
576576 −2.48103e6 −0.311584
577577 1.55443e6 0.194371 0.0971855 0.995266i 0.469016π-0.469016\pi
0.0971855 + 0.995266i 0.469016π0.469016\pi
578578 −748667. −0.0932114
579579 1.69174e6 0.209718
580580 0 0
581581 −1.62944e7 −2.00261
582582 542560. 0.0663958
583583 6.63487e6 0.808464
584584 −3.04232e6 −0.369125
585585 0 0
586586 1.52438e6 0.183378
587587 1.03799e7 1.24336 0.621680 0.783271i 0.286450π-0.286450\pi
0.621680 + 0.783271i 0.286450π0.286450\pi
588588 7.71961e6 0.920771
589589 −607465. −0.0721495
590590 0 0
591591 6.58359e6 0.775343
592592 1.40826e7 1.65150
593593 −4.16373e6 −0.486234 −0.243117 0.969997i 0.578170π-0.578170\pi
−0.243117 + 0.969997i 0.578170π0.578170\pi
594594 102753. 0.0119490
595595 0 0
596596 −1.89389e6 −0.218394
597597 4.99501e6 0.573588
598598 −122749. −0.0140367
599599 −2.96108e6 −0.337196 −0.168598 0.985685i 0.553924π-0.553924\pi
−0.168598 + 0.985685i 0.553924π0.553924\pi
600600 0 0
601601 619340. 0.0699428 0.0349714 0.999388i 0.488866π-0.488866\pi
0.0349714 + 0.999388i 0.488866π0.488866\pi
602602 2.09457e6 0.235561
603603 103792. 0.0116244
604604 4.67439e6 0.521354
605605 0 0
606606 −264793. −0.0292904
607607 −2.93963e6 −0.323833 −0.161916 0.986805i 0.551767π-0.551767\pi
−0.161916 + 0.986805i 0.551767π0.551767\pi
608608 137981. 0.0151377
609609 1.40014e7 1.52978
610610 0 0
611611 4.87376e6 0.528155
612612 1.01422e6 0.109459
613613 9.30961e6 1.00065 0.500323 0.865839i 0.333215π-0.333215\pi
0.500323 + 0.865839i 0.333215π0.333215\pi
614614 −918828. −0.0983588
615615 0 0
616616 1.87990e6 0.199610
617617 −7.00275e6 −0.740552 −0.370276 0.928922i 0.620737π-0.620737\pi
−0.370276 + 0.928922i 0.620737π0.620737\pi
618618 −593027. −0.0624602
619619 −1.30205e7 −1.36585 −0.682923 0.730490i 0.739292π-0.739292\pi
−0.682923 + 0.730490i 0.739292π0.739292\pi
620620 0 0
621621 893485. 0.0929733
622622 −1.34904e6 −0.139814
623623 2.16020e7 2.22984
624624 −1.50641e6 −0.154875
625625 0 0
626626 50349.0 0.00513517
627627 164647. 0.0167257
628628 −5.21296e6 −0.527455
629629 −5.62545e6 −0.566932
630630 0 0
631631 1.89038e6 0.189006 0.0945031 0.995525i 0.469874π-0.469874\pi
0.0945031 + 0.995525i 0.469874π0.469874\pi
632632 −1.83588e6 −0.182832
633633 1.04886e6 0.104042
634634 164687. 0.0162718
635635 0 0
636636 −7.94572e6 −0.778916
637637 4.58017e6 0.447232
638638 1.04646e6 0.101782
639639 −5.27862e6 −0.511409
640640 0 0
641641 −9.94745e6 −0.956240 −0.478120 0.878295i 0.658682π-0.658682\pi
−0.478120 + 0.878295i 0.658682π0.658682\pi
642642 751153. 0.0719268
643643 −1.86174e7 −1.77579 −0.887894 0.460048i 0.847832π-0.847832\pi
−0.887894 + 0.460048i 0.847832π0.847832\pi
644644 8.12815e6 0.772284
645645 0 0
646646 −18033.1 −0.00170016
647647 1.08663e7 1.02052 0.510259 0.860021i 0.329550π-0.329550\pi
0.510259 + 0.860021i 0.329550π0.329550\pi
648648 −247475. −0.0231522
649649 −2.28396e6 −0.212852
650650 0 0
651651 1.48945e7 1.37745
652652 3.90417e6 0.359674
653653 −1.06902e7 −0.981075 −0.490537 0.871420i 0.663199π-0.663199\pi
−0.490537 + 0.871420i 0.663199π0.663199\pi
654654 −351761. −0.0321591
655655 0 0
656656 −6.45578e6 −0.585719
657657 6.53325e6 0.590495
658658 3.58115e6 0.322447
659659 −1.47827e7 −1.32599 −0.662993 0.748626i 0.730714π-0.730714\pi
−0.662993 + 0.748626i 0.730714π0.730714\pi
660660 0 0
661661 −5.48442e6 −0.488233 −0.244116 0.969746i 0.578498π-0.578498\pi
−0.244116 + 0.969746i 0.578498π0.578498\pi
662662 −322877. −0.0286347
663663 601753. 0.0531660
664664 2.93307e6 0.258168
665665 0 0
666666 682533. 0.0596264
667667 9.09943e6 0.791954
668668 1.99670e7 1.73130
669669 −6.39845e6 −0.552726
670670 0 0
671671 −448255. −0.0384343
672672 −3.38318e6 −0.289002
673673 1.69559e6 0.144305 0.0721526 0.997394i 0.477013π-0.477013\pi
0.0721526 + 0.997394i 0.477013π0.477013\pi
674674 −962688. −0.0816273
675675 0 0
676676 −903922. −0.0760789
677677 1.29586e7 1.08664 0.543320 0.839525i 0.317167π-0.317167\pi
0.543320 + 0.839525i 0.317167π0.317167\pi
678678 1.00246e6 0.0837519
679679 −2.13162e7 −1.77434
680680 0 0
681681 −6.00203e6 −0.495942
682682 1.11321e6 0.0916468
683683 −2.14578e6 −0.176008 −0.0880041 0.996120i 0.528049π-0.528049\pi
−0.0880041 + 0.996120i 0.528049π0.528049\pi
684684 −197176. −0.0161144
685685 0 0
686686 1.27837e6 0.103716
687687 1.04247e7 0.842699
688688 1.67057e7 1.34553
689689 −4.71433e6 −0.378331
690690 0 0
691691 2.52870e6 0.201466 0.100733 0.994913i 0.467881π-0.467881\pi
0.100733 + 0.994913i 0.467881π0.467881\pi
692692 9.81547e6 0.779194
693693 −4.03700e6 −0.319319
694694 512951. 0.0404276
695695 0 0
696696 −2.52033e6 −0.197213
697697 2.57883e6 0.201067
698698 −77694.5 −0.00603603
699699 −9.95026e6 −0.770267
700700 0 0
701701 −2.06075e7 −1.58391 −0.791953 0.610581i 0.790936π-0.790936\pi
−0.791953 + 0.610581i 0.790936π0.790936\pi
702702 −73010.4 −0.00559167
703703 1.09366e6 0.0834627
704704 7.28527e6 0.554005
705705 0 0
706706 −2.46925e6 −0.186446
707707 1.04032e7 0.782745
708708 2.73520e6 0.205072
709709 4.44682e6 0.332227 0.166113 0.986107i 0.446878π-0.446878\pi
0.166113 + 0.986107i 0.446878π0.446878\pi
710710 0 0
711711 3.94247e6 0.292479
712712 −3.88849e6 −0.287462
713713 9.67986e6 0.713092
714714 442157. 0.0324587
715715 0 0
716716 −5.49955e6 −0.400908
717717 −3.76159e6 −0.273259
718718 −490625. −0.0355172
719719 −6.90228e6 −0.497932 −0.248966 0.968512i 0.580091π-0.580091\pi
−0.248966 + 0.968512i 0.580091π0.580091\pi
720720 0 0
721721 2.32990e7 1.66916
722722 −1.46386e6 −0.104510
723723 7.31232e6 0.520247
724724 −1.29158e6 −0.0915745
725725 0 0
726726 557242. 0.0392376
727727 8.09243e6 0.567862 0.283931 0.958845i 0.408361π-0.408361\pi
0.283931 + 0.958845i 0.408361π0.408361\pi
728728 −1.33574e6 −0.0934101
729729 531441. 0.0370370
730730 0 0
731731 −6.67326e6 −0.461896
732732 536818. 0.0370296
733733 1.45926e7 1.00316 0.501582 0.865110i 0.332751π-0.332751\pi
0.501582 + 0.865110i 0.332751π0.332751\pi
734734 2.67294e6 0.183125
735735 0 0
736736 −2.19870e6 −0.149614
737737 −304773. −0.0206685
738738 −312888. −0.0211470
739739 7.53378e6 0.507460 0.253730 0.967275i 0.418343π-0.418343\pi
0.253730 + 0.967275i 0.418343π0.418343\pi
740740 0 0
741741 −116988. −0.00782701
742742 −3.46401e6 −0.230977
743743 −1.37801e7 −0.915759 −0.457880 0.889014i 0.651391π-0.651391\pi
−0.457880 + 0.889014i 0.651391π0.651391\pi
744744 −2.68110e6 −0.177574
745745 0 0
746746 −1.71565e6 −0.112871
747747 −6.29865e6 −0.412996
748748 −2.97814e6 −0.194622
749749 −2.95114e7 −1.92214
750750 0 0
751751 1.52138e7 0.984321 0.492160 0.870505i 0.336207π-0.336207\pi
0.492160 + 0.870505i 0.336207π0.336207\pi
752752 2.85622e7 1.84182
753753 −8.59515e6 −0.552415
754754 −743553. −0.0476303
755755 0 0
756756 4.83459e6 0.307649
757757 −1.39902e7 −0.887329 −0.443664 0.896193i 0.646322π-0.646322\pi
−0.443664 + 0.896193i 0.646322π0.646322\pi
758758 1.12965e6 0.0714120
759759 −2.62362e6 −0.165309
760760 0 0
761761 2.81683e7 1.76319 0.881594 0.472009i 0.156471π-0.156471\pi
0.881594 + 0.472009i 0.156471π0.156471\pi
762762 636653. 0.0397205
763763 1.38201e7 0.859406
764764 1.65960e7 1.02866
765765 0 0
766766 −1.16283e6 −0.0716049
767767 1.62284e6 0.0996066
768768 −8.41845e6 −0.515026
769769 2.07358e7 1.26446 0.632231 0.774780i 0.282139π-0.282139\pi
0.632231 + 0.774780i 0.282139π0.282139\pi
770770 0 0
771771 9.67694e6 0.586276
772772 5.94905e6 0.359256
773773 1.26313e7 0.760325 0.380162 0.924920i 0.375868π-0.375868\pi
0.380162 + 0.924920i 0.375868π0.375868\pi
774774 809663. 0.0485794
775775 0 0
776776 3.83704e6 0.228740
777777 −2.68155e7 −1.59343
778778 1.78966e6 0.106004
779779 −501356. −0.0296007
780780 0 0
781781 1.55001e7 0.909298
782782 287355. 0.0168036
783783 5.41231e6 0.315484
784784 2.68417e7 1.55962
785785 0 0
786786 −1.71763e6 −0.0991684
787787 −5.87368e6 −0.338044 −0.169022 0.985612i 0.554061π-0.554061\pi
−0.169022 + 0.985612i 0.554061π0.554061\pi
788788 2.31514e7 1.32820
789789 −1.61174e6 −0.0921725
790790 0 0
791791 −3.93850e7 −2.23815
792792 726682. 0.0411653
793793 318503. 0.0179858
794794 −205312. −0.0115575
795795 0 0
796796 1.75651e7 0.982581
797797 4.96813e6 0.277043 0.138522 0.990359i 0.455765π-0.455765\pi
0.138522 + 0.990359i 0.455765π0.455765\pi
798798 −85960.7 −0.00477851
799799 −1.14095e7 −0.632265
800800 0 0
801801 8.35035e6 0.459858
802802 724896. 0.0397961
803803 −1.91842e7 −1.04992
804804 364987. 0.0199131
805805 0 0
806806 −790982. −0.0428873
807807 −7.56397e6 −0.408852
808808 −1.87264e6 −0.100908
809809 −2.25969e7 −1.21389 −0.606943 0.794745i 0.707604π-0.707604\pi
−0.606943 + 0.794745i 0.707604π0.707604\pi
810810 0 0
811811 −7.31663e6 −0.390624 −0.195312 0.980741i 0.562572π-0.562572\pi
−0.195312 + 0.980741i 0.562572π0.562572\pi
812812 4.92365e7 2.62058
813813 7.86982e6 0.417579
814814 −2.00418e6 −0.106017
815815 0 0
816816 3.52652e6 0.185405
817817 1.29736e6 0.0679995
818818 495302. 0.0258813
819819 2.86845e6 0.149430
820820 0 0
821821 2.23939e7 1.15950 0.579751 0.814794i 0.303150π-0.303150\pi
0.579751 + 0.814794i 0.303150π0.303150\pi
822822 −1.41117e6 −0.0728449
823823 −3.22046e7 −1.65737 −0.828683 0.559719i 0.810909π-0.810909\pi
−0.828683 + 0.559719i 0.810909π0.810909\pi
824824 −4.19394e6 −0.215181
825825 0 0
826826 1.19244e6 0.0608114
827827 8.56536e6 0.435494 0.217747 0.976005i 0.430129π-0.430129\pi
0.217747 + 0.976005i 0.430129π0.430129\pi
828828 3.14197e6 0.159267
829829 −2.46321e7 −1.24485 −0.622423 0.782681i 0.713852π-0.713852\pi
−0.622423 + 0.782681i 0.713852π0.713852\pi
830830 0 0
831831 1.91953e7 0.964256
832832 −5.17647e6 −0.259254
833833 −1.07222e7 −0.535392
834834 1.04298e6 0.0519231
835835 0 0
836836 578986. 0.0286518
837837 5.75754e6 0.284069
838838 −2.85651e6 −0.140516
839839 1.05438e7 0.517119 0.258560 0.965995i 0.416752π-0.416752\pi
0.258560 + 0.965995i 0.416752π0.416752\pi
840840 0 0
841841 3.46089e7 1.68732
842842 3.35890e6 0.163274
843843 1.99152e7 0.965194
844844 3.68834e6 0.178228
845845 0 0
846846 1.38431e6 0.0664977
847847 −2.18930e7 −1.04857
848848 −2.76279e7 −1.31935
849849 2.14164e7 1.01971
850850 0 0
851851 −1.74272e7 −0.824906
852852 −1.85624e7 −0.876064
853853 1.18131e7 0.555895 0.277948 0.960596i 0.410346π-0.410346\pi
0.277948 + 0.960596i 0.410346π0.410346\pi
854854 234030. 0.0109806
855855 0 0
856856 5.31222e6 0.247795
857857 −3.45083e6 −0.160499 −0.0802494 0.996775i 0.525572π-0.525572\pi
−0.0802494 + 0.996775i 0.525572π0.525572\pi
858858 214387. 0.00994214
859859 −2.37296e7 −1.09725 −0.548627 0.836068i 0.684849π-0.684849\pi
−0.548627 + 0.836068i 0.684849π0.684849\pi
860860 0 0
861861 1.22928e7 0.565124
862862 −3.56956e6 −0.163624
863863 −3.66091e6 −0.167325 −0.0836626 0.996494i 0.526662π-0.526662\pi
−0.0836626 + 0.996494i 0.526662π0.526662\pi
864864 −1.30778e6 −0.0596006
865865 0 0
866866 −4.01826e6 −0.182072
867867 1.13700e7 0.513704
868868 5.23771e7 2.35962
869869 −1.15766e7 −0.520035
870870 0 0
871871 216553. 0.00967207
872872 −2.48769e6 −0.110791
873873 −8.23987e6 −0.365919
874874 −55865.3 −0.00247379
875875 0 0
876876 2.29744e7 1.01154
877877 5.00580e6 0.219773 0.109887 0.993944i 0.464951π-0.464951\pi
0.109887 + 0.993944i 0.464951π0.464951\pi
878878 631057. 0.0276269
879879 −2.31507e7 −1.01063
880880 0 0
881881 −246502. −0.0106999 −0.00534997 0.999986i 0.501703π-0.501703\pi
−0.00534997 + 0.999986i 0.501703π0.501703\pi
882882 1.30092e6 0.0563092
883883 −3.11271e7 −1.34350 −0.671749 0.740779i 0.734457π-0.734457\pi
−0.671749 + 0.740779i 0.734457π0.734457\pi
884884 2.11608e6 0.0910756
885885 0 0
886886 −2.18555e6 −0.0935354
887887 1.82476e7 0.778746 0.389373 0.921080i 0.372692π-0.372692\pi
0.389373 + 0.921080i 0.372692π0.372692\pi
888888 4.82694e6 0.205418
889889 −2.50129e7 −1.06148
890890 0 0
891891 −1.56052e6 −0.0658528
892892 −2.25004e7 −0.946842
893893 2.21814e6 0.0930810
894894 −319162. −0.0133557
895895 0 0
896896 −1.58326e7 −0.658845
897897 1.86418e6 0.0773585
898898 3.96755e6 0.164184
899899 5.86360e7 2.41972
900900 0 0
901901 1.10363e7 0.452908
902902 918762. 0.0375999
903903 −3.18102e7 −1.29822
904904 7.08952e6 0.288533
905905 0 0
906906 787736. 0.0318831
907907 2.12243e7 0.856675 0.428337 0.903619i 0.359100π-0.359100\pi
0.428337 + 0.903619i 0.359100π0.359100\pi
908908 −2.11064e7 −0.849569
909909 4.02141e6 0.161424
910910 0 0
911911 −3.18110e7 −1.26993 −0.634967 0.772540i 0.718986π-0.718986\pi
−0.634967 + 0.772540i 0.718986π0.718986\pi
912912 −685598. −0.0272949
913913 1.84953e7 0.734318
914914 1.59142e6 0.0630113
915915 0 0
916916 3.66589e7 1.44358
917917 6.74826e7 2.65014
918918 170918. 0.00669391
919919 −2.08307e7 −0.813606 −0.406803 0.913516i 0.633357π-0.633357\pi
−0.406803 + 0.913516i 0.633357π0.633357\pi
920920 0 0
921921 1.39542e7 0.542073
922922 3.20750e6 0.124262
923923 −1.10134e7 −0.425518
924924 −1.41962e7 −0.547008
925925 0 0
926926 1.43744e6 0.0550887
927927 9.00631e6 0.344229
928928 −1.33187e7 −0.507682
929929 2.46999e7 0.938980 0.469490 0.882938i 0.344438π-0.344438\pi
0.469490 + 0.882938i 0.344438π0.344438\pi
930930 0 0
931931 2.08453e6 0.0788194
932932 −3.49904e7 −1.31950
933933 2.04879e7 0.770538
934934 1.34436e6 0.0504255
935935 0 0
936936 −516336. −0.0192638
937937 −8.66681e6 −0.322486 −0.161243 0.986915i 0.551550π-0.551550\pi
−0.161243 + 0.986915i 0.551550π0.551550\pi
938938 159119. 0.00590495
939939 −764650. −0.0283008
940940 0 0
941941 6.11509e6 0.225127 0.112564 0.993645i 0.464094π-0.464094\pi
0.112564 + 0.993645i 0.464094π0.464094\pi
942942 −878496. −0.0322561
943943 7.98902e6 0.292560
944944 9.51053e6 0.347356
945945 0 0
946946 −2.37749e6 −0.0863754
947947 −3.15310e6 −0.114252 −0.0571259 0.998367i 0.518194π-0.518194\pi
−0.0571259 + 0.998367i 0.518194π0.518194\pi
948948 1.38638e7 0.501029
949949 1.36311e7 0.491321
950950 0 0
951951 −2.50110e6 −0.0896767
952952 3.12697e6 0.111823
953953 −2.87392e7 −1.02504 −0.512522 0.858674i 0.671289π-0.671289\pi
−0.512522 + 0.858674i 0.671289π0.671289\pi
954954 −1.33903e6 −0.0476341
955955 0 0
956956 −1.32278e7 −0.468104
957957 −1.58926e7 −0.560939
958958 521013. 0.0183415
959959 5.54422e7 1.94668
960960 0 0
961961 3.37470e7 1.17877
962962 1.42405e6 0.0496121
963963 −1.14078e7 −0.396401
964964 2.57140e7 0.891204
965965 0 0
966966 1.36977e6 0.0472285
967967 5.04557e7 1.73518 0.867590 0.497281i 0.165668π-0.165668\pi
0.867590 + 0.497281i 0.165668π0.165668\pi
968968 3.94087e6 0.135177
969969 273869. 0.00936988
970970 0 0
971971 6.26481e6 0.213236 0.106618 0.994300i 0.465998π-0.465998\pi
0.106618 + 0.994300i 0.465998π0.465998\pi
972972 1.86883e6 0.0634460
973973 −4.09768e7 −1.38757
974974 −1.78136e6 −0.0601665
975975 0 0
976976 1.86656e6 0.0627216
977977 2.54287e7 0.852292 0.426146 0.904655i 0.359871π-0.359871\pi
0.426146 + 0.904655i 0.359871π0.359871\pi
978978 657936. 0.0219956
979979 −2.45199e7 −0.817639
980980 0 0
981981 5.34220e6 0.177234
982982 −524056. −0.0173420
983983 −2.73152e7 −0.901614 −0.450807 0.892621i 0.648864π-0.648864\pi
−0.450807 + 0.892621i 0.648864π0.648864\pi
984984 −2.21277e6 −0.0728533
985985 0 0
986986 1.74066e6 0.0570193
987987 −5.43870e7 −1.77706
988988 −411392. −0.0134080
989989 −2.06732e7 −0.672075
990990 0 0
991991 −5.79527e7 −1.87452 −0.937259 0.348633i 0.886646π-0.886646\pi
−0.937259 + 0.348633i 0.886646π0.886646\pi
992992 −1.41683e7 −0.457128
993993 4.90353e6 0.157811
994994 −8.09245e6 −0.259785
995995 0 0
996996 −2.21494e7 −0.707480
997997 −6.87536e6 −0.219057 −0.109529 0.993984i 0.534934π-0.534934\pi
−0.109529 + 0.993984i 0.534934π0.534934\pi
998998 4.88420e6 0.155227
999999 −1.03656e7 −0.328611
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.6.a.u.1.6 yes 11
5.4 even 2 975.6.a.r.1.6 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
975.6.a.r.1.6 11 5.4 even 2
975.6.a.u.1.6 yes 11 1.1 even 1 trivial