Properties

Label 975.6.a.u.1.6
Level $975$
Weight $6$
Character 975.1
Self dual yes
Analytic conductor $156.374$
Analytic rank $1$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,6,Mod(1,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 975.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(156.374224318\)
Analytic rank: \(1\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 2 x^{10} - 286 x^{9} + 442 x^{8} + 28715 x^{7} - 29138 x^{6} - 1208172 x^{5} + 509768 x^{4} + \cdots + 55036800 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5}\cdot 3\cdot 5^{3}\cdot 11 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(0.592612\) of defining polynomial
Character \(\chi\) \(=\) 975.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.592612 q^{2} -9.00000 q^{3} -31.6488 q^{4} -5.33351 q^{6} +209.544 q^{7} -37.7190 q^{8} +81.0000 q^{9} -237.848 q^{11} +284.839 q^{12} +169.000 q^{13} +124.178 q^{14} +990.409 q^{16} -395.630 q^{17} +48.0016 q^{18} +76.9152 q^{19} -1885.89 q^{21} -140.951 q^{22} -1225.63 q^{23} +339.471 q^{24} +100.151 q^{26} -729.000 q^{27} -6631.81 q^{28} -7424.29 q^{29} -7897.86 q^{31} +1793.94 q^{32} +2140.63 q^{33} -234.455 q^{34} -2563.55 q^{36} +14219.0 q^{37} +45.5808 q^{38} -1521.00 q^{39} -6518.30 q^{41} -1117.60 q^{42} +16867.4 q^{43} +7527.59 q^{44} -726.323 q^{46} +28838.8 q^{47} -8913.68 q^{48} +27101.6 q^{49} +3560.67 q^{51} -5348.65 q^{52} -27895.5 q^{53} -432.014 q^{54} -7903.79 q^{56} -692.237 q^{57} -4399.72 q^{58} +9602.62 q^{59} +1884.63 q^{61} -4680.36 q^{62} +16973.1 q^{63} -30630.0 q^{64} +1268.56 q^{66} +1281.38 q^{67} +12521.2 q^{68} +11030.7 q^{69} -65168.1 q^{71} -3055.24 q^{72} +80657.5 q^{73} +8426.34 q^{74} -2434.27 q^{76} -49839.5 q^{77} -901.362 q^{78} +48672.5 q^{79} +6561.00 q^{81} -3862.82 q^{82} -77761.1 q^{83} +59686.3 q^{84} +9995.84 q^{86} +66818.6 q^{87} +8971.38 q^{88} +103091. q^{89} +35412.9 q^{91} +38789.8 q^{92} +71080.7 q^{93} +17090.2 q^{94} -16145.4 q^{96} -101727. q^{97} +16060.7 q^{98} -19265.6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q + 2 q^{2} - 99 q^{3} + 224 q^{4} - 18 q^{6} - 55 q^{7} + 270 q^{8} + 891 q^{9} - 125 q^{11} - 2016 q^{12} + 1859 q^{13} - 1311 q^{14} + 5756 q^{16} - 4507 q^{17} + 162 q^{18} + 142 q^{19} + 495 q^{21}+ \cdots - 10125 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.592612 0.104760 0.0523800 0.998627i \(-0.483319\pi\)
0.0523800 + 0.998627i \(0.483319\pi\)
\(3\) −9.00000 −0.577350
\(4\) −31.6488 −0.989025
\(5\) 0 0
\(6\) −5.33351 −0.0604832
\(7\) 209.544 1.61633 0.808165 0.588957i \(-0.200461\pi\)
0.808165 + 0.588957i \(0.200461\pi\)
\(8\) −37.7190 −0.208370
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) −237.848 −0.592675 −0.296338 0.955083i \(-0.595765\pi\)
−0.296338 + 0.955083i \(0.595765\pi\)
\(12\) 284.839 0.571014
\(13\) 169.000 0.277350
\(14\) 124.178 0.169327
\(15\) 0 0
\(16\) 990.409 0.967197
\(17\) −395.630 −0.332022 −0.166011 0.986124i \(-0.553089\pi\)
−0.166011 + 0.986124i \(0.553089\pi\)
\(18\) 48.0016 0.0349200
\(19\) 76.9152 0.0488797 0.0244398 0.999701i \(-0.492220\pi\)
0.0244398 + 0.999701i \(0.492220\pi\)
\(20\) 0 0
\(21\) −1885.89 −0.933188
\(22\) −140.951 −0.0620886
\(23\) −1225.63 −0.483103 −0.241552 0.970388i \(-0.577656\pi\)
−0.241552 + 0.970388i \(0.577656\pi\)
\(24\) 339.471 0.120303
\(25\) 0 0
\(26\) 100.151 0.0290552
\(27\) −729.000 −0.192450
\(28\) −6631.81 −1.59859
\(29\) −7424.29 −1.63930 −0.819652 0.572861i \(-0.805833\pi\)
−0.819652 + 0.572861i \(0.805833\pi\)
\(30\) 0 0
\(31\) −7897.86 −1.47606 −0.738032 0.674766i \(-0.764245\pi\)
−0.738032 + 0.674766i \(0.764245\pi\)
\(32\) 1793.94 0.309694
\(33\) 2140.63 0.342181
\(34\) −234.455 −0.0347826
\(35\) 0 0
\(36\) −2563.55 −0.329675
\(37\) 14219.0 1.70751 0.853757 0.520672i \(-0.174318\pi\)
0.853757 + 0.520672i \(0.174318\pi\)
\(38\) 45.5808 0.00512063
\(39\) −1521.00 −0.160128
\(40\) 0 0
\(41\) −6518.30 −0.605584 −0.302792 0.953057i \(-0.597919\pi\)
−0.302792 + 0.953057i \(0.597919\pi\)
\(42\) −1117.60 −0.0977607
\(43\) 16867.4 1.39116 0.695581 0.718447i \(-0.255147\pi\)
0.695581 + 0.718447i \(0.255147\pi\)
\(44\) 7527.59 0.586171
\(45\) 0 0
\(46\) −726.323 −0.0506099
\(47\) 28838.8 1.90429 0.952144 0.305649i \(-0.0988735\pi\)
0.952144 + 0.305649i \(0.0988735\pi\)
\(48\) −8913.68 −0.558411
\(49\) 27101.6 1.61252
\(50\) 0 0
\(51\) 3560.67 0.191693
\(52\) −5348.65 −0.274306
\(53\) −27895.5 −1.36409 −0.682046 0.731309i \(-0.738910\pi\)
−0.682046 + 0.731309i \(0.738910\pi\)
\(54\) −432.014 −0.0201611
\(55\) 0 0
\(56\) −7903.79 −0.336795
\(57\) −692.237 −0.0282207
\(58\) −4399.72 −0.171734
\(59\) 9602.62 0.359137 0.179568 0.983745i \(-0.442530\pi\)
0.179568 + 0.983745i \(0.442530\pi\)
\(60\) 0 0
\(61\) 1884.63 0.0648488 0.0324244 0.999474i \(-0.489677\pi\)
0.0324244 + 0.999474i \(0.489677\pi\)
\(62\) −4680.36 −0.154632
\(63\) 16973.1 0.538776
\(64\) −30630.0 −0.934753
\(65\) 0 0
\(66\) 1268.56 0.0358469
\(67\) 1281.38 0.0348731 0.0174366 0.999848i \(-0.494449\pi\)
0.0174366 + 0.999848i \(0.494449\pi\)
\(68\) 12521.2 0.328378
\(69\) 11030.7 0.278920
\(70\) 0 0
\(71\) −65168.1 −1.53423 −0.767113 0.641512i \(-0.778307\pi\)
−0.767113 + 0.641512i \(0.778307\pi\)
\(72\) −3055.24 −0.0694567
\(73\) 80657.5 1.77148 0.885742 0.464177i \(-0.153650\pi\)
0.885742 + 0.464177i \(0.153650\pi\)
\(74\) 8426.34 0.178879
\(75\) 0 0
\(76\) −2434.27 −0.0483432
\(77\) −49839.5 −0.957958
\(78\) −901.362 −0.0167750
\(79\) 48672.5 0.877437 0.438719 0.898624i \(-0.355432\pi\)
0.438719 + 0.898624i \(0.355432\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) −3862.82 −0.0634410
\(83\) −77761.1 −1.23899 −0.619494 0.785001i \(-0.712662\pi\)
−0.619494 + 0.785001i \(0.712662\pi\)
\(84\) 59686.3 0.922947
\(85\) 0 0
\(86\) 9995.84 0.145738
\(87\) 66818.6 0.946453
\(88\) 8971.38 0.123496
\(89\) 103091. 1.37957 0.689787 0.724013i \(-0.257704\pi\)
0.689787 + 0.724013i \(0.257704\pi\)
\(90\) 0 0
\(91\) 35412.9 0.448289
\(92\) 38789.8 0.477801
\(93\) 71080.7 0.852206
\(94\) 17090.2 0.199493
\(95\) 0 0
\(96\) −16145.4 −0.178802
\(97\) −101727. −1.09776 −0.548878 0.835902i \(-0.684945\pi\)
−0.548878 + 0.835902i \(0.684945\pi\)
\(98\) 16060.7 0.168927
\(99\) −19265.6 −0.197558
\(100\) 0 0
\(101\) 49647.1 0.484273 0.242137 0.970242i \(-0.422152\pi\)
0.242137 + 0.970242i \(0.422152\pi\)
\(102\) 2110.09 0.0200817
\(103\) 111189. 1.03269 0.516344 0.856381i \(-0.327293\pi\)
0.516344 + 0.856381i \(0.327293\pi\)
\(104\) −6374.52 −0.0577915
\(105\) 0 0
\(106\) −16531.2 −0.142902
\(107\) −140837. −1.18920 −0.594602 0.804020i \(-0.702690\pi\)
−0.594602 + 0.804020i \(0.702690\pi\)
\(108\) 23072.0 0.190338
\(109\) 65953.1 0.531702 0.265851 0.964014i \(-0.414347\pi\)
0.265851 + 0.964014i \(0.414347\pi\)
\(110\) 0 0
\(111\) −127971. −0.985834
\(112\) 207534. 1.56331
\(113\) −187956. −1.38471 −0.692357 0.721555i \(-0.743428\pi\)
−0.692357 + 0.721555i \(0.743428\pi\)
\(114\) −410.228 −0.00295640
\(115\) 0 0
\(116\) 234970. 1.62131
\(117\) 13689.0 0.0924500
\(118\) 5690.63 0.0376231
\(119\) −82901.7 −0.536656
\(120\) 0 0
\(121\) −104480. −0.648736
\(122\) 1116.86 0.00679356
\(123\) 58664.7 0.349634
\(124\) 249958. 1.45986
\(125\) 0 0
\(126\) 10058.4 0.0564422
\(127\) −119369. −0.656720 −0.328360 0.944553i \(-0.606496\pi\)
−0.328360 + 0.944553i \(0.606496\pi\)
\(128\) −75557.7 −0.407618
\(129\) −151807. −0.803188
\(130\) 0 0
\(131\) 322045. 1.63960 0.819801 0.572648i \(-0.194084\pi\)
0.819801 + 0.572648i \(0.194084\pi\)
\(132\) −67748.3 −0.338426
\(133\) 16117.1 0.0790056
\(134\) 759.361 0.00365331
\(135\) 0 0
\(136\) 14922.8 0.0691834
\(137\) 264585. 1.20438 0.602191 0.798352i \(-0.294295\pi\)
0.602191 + 0.798352i \(0.294295\pi\)
\(138\) 6536.91 0.0292196
\(139\) −195552. −0.858472 −0.429236 0.903192i \(-0.641217\pi\)
−0.429236 + 0.903192i \(0.641217\pi\)
\(140\) 0 0
\(141\) −259549. −1.09944
\(142\) −38619.4 −0.160725
\(143\) −40196.2 −0.164379
\(144\) 80223.1 0.322399
\(145\) 0 0
\(146\) 47798.6 0.185581
\(147\) −243915. −0.930989
\(148\) −450014. −1.68877
\(149\) 59840.9 0.220817 0.110409 0.993886i \(-0.464784\pi\)
0.110409 + 0.993886i \(0.464784\pi\)
\(150\) 0 0
\(151\) −147696. −0.527139 −0.263570 0.964640i \(-0.584900\pi\)
−0.263570 + 0.964640i \(0.584900\pi\)
\(152\) −2901.17 −0.0101851
\(153\) −32046.0 −0.110674
\(154\) −29535.5 −0.100356
\(155\) 0 0
\(156\) 48137.8 0.158371
\(157\) 164713. 0.533308 0.266654 0.963792i \(-0.414082\pi\)
0.266654 + 0.963792i \(0.414082\pi\)
\(158\) 28843.9 0.0919203
\(159\) 251059. 0.787559
\(160\) 0 0
\(161\) −256823. −0.780854
\(162\) 3888.13 0.0116400
\(163\) −123359. −0.363666 −0.181833 0.983329i \(-0.558203\pi\)
−0.181833 + 0.983329i \(0.558203\pi\)
\(164\) 206296. 0.598938
\(165\) 0 0
\(166\) −46082.1 −0.129796
\(167\) −630892. −1.75051 −0.875254 0.483663i \(-0.839306\pi\)
−0.875254 + 0.483663i \(0.839306\pi\)
\(168\) 71134.1 0.194449
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 6230.13 0.0162932
\(172\) −533834. −1.37589
\(173\) −310137. −0.787841 −0.393920 0.919145i \(-0.628881\pi\)
−0.393920 + 0.919145i \(0.628881\pi\)
\(174\) 39597.5 0.0991504
\(175\) 0 0
\(176\) −235566. −0.573234
\(177\) −86423.6 −0.207348
\(178\) 61092.8 0.144524
\(179\) 173768. 0.405357 0.202678 0.979245i \(-0.435035\pi\)
0.202678 + 0.979245i \(0.435035\pi\)
\(180\) 0 0
\(181\) 40809.7 0.0925907 0.0462953 0.998928i \(-0.485258\pi\)
0.0462953 + 0.998928i \(0.485258\pi\)
\(182\) 20986.1 0.0469627
\(183\) −16961.7 −0.0374405
\(184\) 46229.6 0.100664
\(185\) 0 0
\(186\) 42123.3 0.0892771
\(187\) 94099.5 0.196781
\(188\) −912714. −1.88339
\(189\) −152757. −0.311063
\(190\) 0 0
\(191\) −524380. −1.04007 −0.520035 0.854145i \(-0.674081\pi\)
−0.520035 + 0.854145i \(0.674081\pi\)
\(192\) 275670. 0.539680
\(193\) −187971. −0.363243 −0.181621 0.983369i \(-0.558135\pi\)
−0.181621 + 0.983369i \(0.558135\pi\)
\(194\) −60284.5 −0.115001
\(195\) 0 0
\(196\) −857734. −1.59482
\(197\) −731510. −1.34293 −0.671467 0.741034i \(-0.734336\pi\)
−0.671467 + 0.741034i \(0.734336\pi\)
\(198\) −11417.0 −0.0206962
\(199\) −555001. −0.993484 −0.496742 0.867898i \(-0.665470\pi\)
−0.496742 + 0.867898i \(0.665470\pi\)
\(200\) 0 0
\(201\) −11532.4 −0.0201340
\(202\) 29421.4 0.0507324
\(203\) −1.55571e6 −2.64966
\(204\) −112691. −0.189589
\(205\) 0 0
\(206\) 65891.9 0.108184
\(207\) −99276.1 −0.161034
\(208\) 167379. 0.268252
\(209\) −18294.1 −0.0289698
\(210\) 0 0
\(211\) −116540. −0.180205 −0.0901026 0.995932i \(-0.528720\pi\)
−0.0901026 + 0.995932i \(0.528720\pi\)
\(212\) 882858. 1.34912
\(213\) 586513. 0.885786
\(214\) −83461.4 −0.124581
\(215\) 0 0
\(216\) 27497.2 0.0401009
\(217\) −1.65495e6 −2.38581
\(218\) 39084.6 0.0557011
\(219\) −725917. −1.02277
\(220\) 0 0
\(221\) −66861.4 −0.0920863
\(222\) −75837.0 −0.103276
\(223\) 710939. 0.957349 0.478674 0.877992i \(-0.341117\pi\)
0.478674 + 0.877992i \(0.341117\pi\)
\(224\) 375908. 0.500567
\(225\) 0 0
\(226\) −111385. −0.145063
\(227\) 666892. 0.858996 0.429498 0.903068i \(-0.358691\pi\)
0.429498 + 0.903068i \(0.358691\pi\)
\(228\) 21908.5 0.0279110
\(229\) −1.15830e6 −1.45960 −0.729799 0.683662i \(-0.760386\pi\)
−0.729799 + 0.683662i \(0.760386\pi\)
\(230\) 0 0
\(231\) 448555. 0.553078
\(232\) 280037. 0.341582
\(233\) 1.10558e6 1.33414 0.667071 0.744994i \(-0.267548\pi\)
0.667071 + 0.744994i \(0.267548\pi\)
\(234\) 8112.26 0.00968506
\(235\) 0 0
\(236\) −303912. −0.355195
\(237\) −438053. −0.506589
\(238\) −49128.6 −0.0562201
\(239\) 417955. 0.473298 0.236649 0.971595i \(-0.423951\pi\)
0.236649 + 0.971595i \(0.423951\pi\)
\(240\) 0 0
\(241\) −812480. −0.901094 −0.450547 0.892753i \(-0.648771\pi\)
−0.450547 + 0.892753i \(0.648771\pi\)
\(242\) −61915.8 −0.0679615
\(243\) −59049.0 −0.0641500
\(244\) −59646.4 −0.0641371
\(245\) 0 0
\(246\) 34765.4 0.0366277
\(247\) 12998.7 0.0135568
\(248\) 297900. 0.307568
\(249\) 699850. 0.715330
\(250\) 0 0
\(251\) 955016. 0.956812 0.478406 0.878139i \(-0.341215\pi\)
0.478406 + 0.878139i \(0.341215\pi\)
\(252\) −537177. −0.532863
\(253\) 291513. 0.286323
\(254\) −70739.2 −0.0687980
\(255\) 0 0
\(256\) 935383. 0.892051
\(257\) −1.07522e6 −1.01546 −0.507730 0.861516i \(-0.669515\pi\)
−0.507730 + 0.861516i \(0.669515\pi\)
\(258\) −89962.6 −0.0841419
\(259\) 2.97950e6 2.75990
\(260\) 0 0
\(261\) −601367. −0.546435
\(262\) 190848. 0.171765
\(263\) 179082. 0.159647 0.0798237 0.996809i \(-0.474564\pi\)
0.0798237 + 0.996809i \(0.474564\pi\)
\(264\) −80742.4 −0.0713004
\(265\) 0 0
\(266\) 9551.19 0.00827662
\(267\) −927817. −0.796497
\(268\) −40554.2 −0.0344904
\(269\) 840441. 0.708152 0.354076 0.935217i \(-0.384795\pi\)
0.354076 + 0.935217i \(0.384795\pi\)
\(270\) 0 0
\(271\) −874424. −0.723267 −0.361634 0.932320i \(-0.617781\pi\)
−0.361634 + 0.932320i \(0.617781\pi\)
\(272\) −391835. −0.321130
\(273\) −318716. −0.258820
\(274\) 156796. 0.126171
\(275\) 0 0
\(276\) −349108. −0.275859
\(277\) −2.13281e6 −1.67014 −0.835070 0.550143i \(-0.814573\pi\)
−0.835070 + 0.550143i \(0.814573\pi\)
\(278\) −115887. −0.0899335
\(279\) −639727. −0.492021
\(280\) 0 0
\(281\) −2.21279e6 −1.67177 −0.835883 0.548908i \(-0.815044\pi\)
−0.835883 + 0.548908i \(0.815044\pi\)
\(282\) −153812. −0.115177
\(283\) −2.37960e6 −1.76619 −0.883095 0.469194i \(-0.844544\pi\)
−0.883095 + 0.469194i \(0.844544\pi\)
\(284\) 2.06249e6 1.51739
\(285\) 0 0
\(286\) −23820.8 −0.0172203
\(287\) −1.36587e6 −0.978823
\(288\) 145309. 0.103231
\(289\) −1.26333e6 −0.889762
\(290\) 0 0
\(291\) 915541. 0.633790
\(292\) −2.55271e6 −1.75204
\(293\) 2.57230e6 1.75046 0.875232 0.483704i \(-0.160709\pi\)
0.875232 + 0.483704i \(0.160709\pi\)
\(294\) −144547. −0.0975303
\(295\) 0 0
\(296\) −536326. −0.355795
\(297\) 173391. 0.114060
\(298\) 35462.4 0.0231328
\(299\) −207132. −0.133989
\(300\) 0 0
\(301\) 3.53447e6 2.24858
\(302\) −87526.2 −0.0552231
\(303\) −446824. −0.279595
\(304\) 76177.5 0.0472762
\(305\) 0 0
\(306\) −18990.8 −0.0115942
\(307\) −1.55047e6 −0.938897 −0.469449 0.882960i \(-0.655547\pi\)
−0.469449 + 0.882960i \(0.655547\pi\)
\(308\) 1.57736e6 0.947445
\(309\) −1.00070e6 −0.596222
\(310\) 0 0
\(311\) −2.27644e6 −1.33461 −0.667305 0.744784i \(-0.732552\pi\)
−0.667305 + 0.744784i \(0.732552\pi\)
\(312\) 57370.7 0.0333659
\(313\) 84961.1 0.0490184 0.0245092 0.999700i \(-0.492198\pi\)
0.0245092 + 0.999700i \(0.492198\pi\)
\(314\) 97610.7 0.0558693
\(315\) 0 0
\(316\) −1.54043e6 −0.867808
\(317\) 277900. 0.155325 0.0776623 0.996980i \(-0.475254\pi\)
0.0776623 + 0.996980i \(0.475254\pi\)
\(318\) 148781. 0.0825047
\(319\) 1.76585e6 0.971576
\(320\) 0 0
\(321\) 1.26753e6 0.686587
\(322\) −152197. −0.0818022
\(323\) −30429.9 −0.0162291
\(324\) −207648. −0.109892
\(325\) 0 0
\(326\) −73104.0 −0.0380976
\(327\) −593577. −0.306979
\(328\) 245864. 0.126186
\(329\) 6.04300e6 3.07796
\(330\) 0 0
\(331\) −544837. −0.273336 −0.136668 0.990617i \(-0.543639\pi\)
−0.136668 + 0.990617i \(0.543639\pi\)
\(332\) 2.46105e6 1.22539
\(333\) 1.15174e6 0.569171
\(334\) −373874. −0.183383
\(335\) 0 0
\(336\) −1.86781e6 −0.902576
\(337\) −1.62448e6 −0.779185 −0.389592 0.920987i \(-0.627384\pi\)
−0.389592 + 0.920987i \(0.627384\pi\)
\(338\) 16925.6 0.00805846
\(339\) 1.69160e6 0.799465
\(340\) 0 0
\(341\) 1.87849e6 0.874827
\(342\) 3692.05 0.00170688
\(343\) 2.15717e6 0.990033
\(344\) −636223. −0.289877
\(345\) 0 0
\(346\) −183791. −0.0825342
\(347\) 865578. 0.385907 0.192953 0.981208i \(-0.438193\pi\)
0.192953 + 0.981208i \(0.438193\pi\)
\(348\) −2.11473e6 −0.936066
\(349\) −131105. −0.0576178 −0.0288089 0.999585i \(-0.509171\pi\)
−0.0288089 + 0.999585i \(0.509171\pi\)
\(350\) 0 0
\(351\) −123201. −0.0533761
\(352\) −426684. −0.183548
\(353\) −4.16672e6 −1.77974 −0.889871 0.456211i \(-0.849206\pi\)
−0.889871 + 0.456211i \(0.849206\pi\)
\(354\) −51215.6 −0.0217217
\(355\) 0 0
\(356\) −3.26270e6 −1.36443
\(357\) 746116. 0.309839
\(358\) 102977. 0.0424651
\(359\) −827904. −0.339034 −0.169517 0.985527i \(-0.554221\pi\)
−0.169517 + 0.985527i \(0.554221\pi\)
\(360\) 0 0
\(361\) −2.47018e6 −0.997611
\(362\) 24184.3 0.00969979
\(363\) 940316. 0.374548
\(364\) −1.12078e6 −0.443369
\(365\) 0 0
\(366\) −10051.7 −0.00392226
\(367\) 4.51043e6 1.74805 0.874023 0.485884i \(-0.161502\pi\)
0.874023 + 0.485884i \(0.161502\pi\)
\(368\) −1.21388e6 −0.467256
\(369\) −527982. −0.201861
\(370\) 0 0
\(371\) −5.84532e6 −2.20482
\(372\) −2.24962e6 −0.842853
\(373\) −2.89506e6 −1.07742 −0.538711 0.842490i \(-0.681089\pi\)
−0.538711 + 0.842490i \(0.681089\pi\)
\(374\) 55764.5 0.0206148
\(375\) 0 0
\(376\) −1.08777e6 −0.396797
\(377\) −1.25470e6 −0.454661
\(378\) −90525.9 −0.0325869
\(379\) 1.90622e6 0.681673 0.340836 0.940123i \(-0.389290\pi\)
0.340836 + 0.940123i \(0.389290\pi\)
\(380\) 0 0
\(381\) 1.07432e6 0.379158
\(382\) −310754. −0.108958
\(383\) −1.96221e6 −0.683514 −0.341757 0.939788i \(-0.611022\pi\)
−0.341757 + 0.939788i \(0.611022\pi\)
\(384\) 680019. 0.235339
\(385\) 0 0
\(386\) −111394. −0.0380533
\(387\) 1.36626e6 0.463721
\(388\) 3.21953e6 1.08571
\(389\) 3.01996e6 1.01188 0.505938 0.862570i \(-0.331147\pi\)
0.505938 + 0.862570i \(0.331147\pi\)
\(390\) 0 0
\(391\) 484896. 0.160401
\(392\) −1.02225e6 −0.336001
\(393\) −2.89841e6 −0.946625
\(394\) −433501. −0.140686
\(395\) 0 0
\(396\) 609735. 0.195390
\(397\) −346453. −0.110323 −0.0551617 0.998477i \(-0.517567\pi\)
−0.0551617 + 0.998477i \(0.517567\pi\)
\(398\) −328900. −0.104077
\(399\) −145054. −0.0456139
\(400\) 0 0
\(401\) 1.22322e6 0.379878 0.189939 0.981796i \(-0.439171\pi\)
0.189939 + 0.981796i \(0.439171\pi\)
\(402\) −6834.25 −0.00210924
\(403\) −1.33474e6 −0.409387
\(404\) −1.57127e6 −0.478958
\(405\) 0 0
\(406\) −921934. −0.277578
\(407\) −3.38195e6 −1.01200
\(408\) −134305. −0.0399431
\(409\) 835795. 0.247054 0.123527 0.992341i \(-0.460579\pi\)
0.123527 + 0.992341i \(0.460579\pi\)
\(410\) 0 0
\(411\) −2.38127e6 −0.695350
\(412\) −3.51900e6 −1.02135
\(413\) 2.01217e6 0.580483
\(414\) −58832.2 −0.0168700
\(415\) 0 0
\(416\) 303175. 0.0858936
\(417\) 1.75997e6 0.495639
\(418\) −10841.3 −0.00303487
\(419\) −4.82020e6 −1.34131 −0.670656 0.741768i \(-0.733987\pi\)
−0.670656 + 0.741768i \(0.733987\pi\)
\(420\) 0 0
\(421\) 5.66795e6 1.55855 0.779276 0.626681i \(-0.215587\pi\)
0.779276 + 0.626681i \(0.215587\pi\)
\(422\) −69062.8 −0.0188783
\(423\) 2.33594e6 0.634763
\(424\) 1.05219e6 0.284236
\(425\) 0 0
\(426\) 347575. 0.0927949
\(427\) 394913. 0.104817
\(428\) 4.45731e6 1.17615
\(429\) 361766. 0.0949040
\(430\) 0 0
\(431\) −6.02344e6 −1.56189 −0.780947 0.624597i \(-0.785263\pi\)
−0.780947 + 0.624597i \(0.785263\pi\)
\(432\) −722008. −0.186137
\(433\) −6.78059e6 −1.73799 −0.868996 0.494820i \(-0.835234\pi\)
−0.868996 + 0.494820i \(0.835234\pi\)
\(434\) −980742. −0.249937
\(435\) 0 0
\(436\) −2.08734e6 −0.525867
\(437\) −94269.6 −0.0236139
\(438\) −430187. −0.107145
\(439\) 1.06487e6 0.263716 0.131858 0.991269i \(-0.457906\pi\)
0.131858 + 0.991269i \(0.457906\pi\)
\(440\) 0 0
\(441\) 2.19523e6 0.537507
\(442\) −39622.9 −0.00964695
\(443\) −3.68799e6 −0.892854 −0.446427 0.894820i \(-0.647304\pi\)
−0.446427 + 0.894820i \(0.647304\pi\)
\(444\) 4.05013e6 0.975014
\(445\) 0 0
\(446\) 421311. 0.100292
\(447\) −538568. −0.127489
\(448\) −6.41832e6 −1.51087
\(449\) 6.69503e6 1.56724 0.783622 0.621238i \(-0.213370\pi\)
0.783622 + 0.621238i \(0.213370\pi\)
\(450\) 0 0
\(451\) 1.55036e6 0.358915
\(452\) 5.94859e6 1.36952
\(453\) 1.32926e6 0.304344
\(454\) 395208. 0.0899884
\(455\) 0 0
\(456\) 26110.5 0.00588035
\(457\) 2.68543e6 0.601483 0.300741 0.953706i \(-0.402766\pi\)
0.300741 + 0.953706i \(0.402766\pi\)
\(458\) −686423. −0.152907
\(459\) 288414. 0.0638976
\(460\) 0 0
\(461\) 5.41249e6 1.18616 0.593082 0.805142i \(-0.297911\pi\)
0.593082 + 0.805142i \(0.297911\pi\)
\(462\) 265819. 0.0579404
\(463\) 2.42560e6 0.525856 0.262928 0.964815i \(-0.415312\pi\)
0.262928 + 0.964815i \(0.415312\pi\)
\(464\) −7.35308e6 −1.58553
\(465\) 0 0
\(466\) 655182. 0.139765
\(467\) 2.26854e6 0.481343 0.240672 0.970607i \(-0.422632\pi\)
0.240672 + 0.970607i \(0.422632\pi\)
\(468\) −433241. −0.0914354
\(469\) 268505. 0.0563665
\(470\) 0 0
\(471\) −1.48241e6 −0.307905
\(472\) −362202. −0.0748334
\(473\) −4.01188e6 −0.824508
\(474\) −259595. −0.0530702
\(475\) 0 0
\(476\) 2.62374e6 0.530767
\(477\) −2.25953e6 −0.454698
\(478\) 247685. 0.0495827
\(479\) 879181. 0.175081 0.0875406 0.996161i \(-0.472099\pi\)
0.0875406 + 0.996161i \(0.472099\pi\)
\(480\) 0 0
\(481\) 2.40301e6 0.473579
\(482\) −481485. −0.0943985
\(483\) 2.31141e6 0.450826
\(484\) 3.30665e6 0.641616
\(485\) 0 0
\(486\) −34993.1 −0.00672035
\(487\) −3.00595e6 −0.574327 −0.287163 0.957882i \(-0.592712\pi\)
−0.287163 + 0.957882i \(0.592712\pi\)
\(488\) −71086.5 −0.0135126
\(489\) 1.11023e6 0.209962
\(490\) 0 0
\(491\) −884317. −0.165540 −0.0827702 0.996569i \(-0.526377\pi\)
−0.0827702 + 0.996569i \(0.526377\pi\)
\(492\) −1.85667e6 −0.345797
\(493\) 2.93727e6 0.544285
\(494\) 7703.16 0.00142021
\(495\) 0 0
\(496\) −7.82211e6 −1.42764
\(497\) −1.36556e7 −2.47981
\(498\) 414739. 0.0749380
\(499\) 8.24181e6 1.48174 0.740869 0.671650i \(-0.234414\pi\)
0.740869 + 0.671650i \(0.234414\pi\)
\(500\) 0 0
\(501\) 5.67803e6 1.01066
\(502\) 565954. 0.100236
\(503\) −3.40773e6 −0.600545 −0.300273 0.953853i \(-0.597078\pi\)
−0.300273 + 0.953853i \(0.597078\pi\)
\(504\) −640207. −0.112265
\(505\) 0 0
\(506\) 172754. 0.0299952
\(507\) −257049. −0.0444116
\(508\) 3.77787e6 0.649513
\(509\) −8.95621e6 −1.53225 −0.766125 0.642691i \(-0.777818\pi\)
−0.766125 + 0.642691i \(0.777818\pi\)
\(510\) 0 0
\(511\) 1.69013e7 2.86330
\(512\) 2.97216e6 0.501070
\(513\) −56071.2 −0.00940689
\(514\) −637186. −0.106380
\(515\) 0 0
\(516\) 4.80451e6 0.794373
\(517\) −6.85924e6 −1.12862
\(518\) 1.76569e6 0.289127
\(519\) 2.79123e6 0.454860
\(520\) 0 0
\(521\) 2.70744e6 0.436982 0.218491 0.975839i \(-0.429887\pi\)
0.218491 + 0.975839i \(0.429887\pi\)
\(522\) −356377. −0.0572445
\(523\) −2.72225e6 −0.435185 −0.217593 0.976040i \(-0.569820\pi\)
−0.217593 + 0.976040i \(0.569820\pi\)
\(524\) −1.01923e7 −1.62161
\(525\) 0 0
\(526\) 106126. 0.0167247
\(527\) 3.12463e6 0.490085
\(528\) 2.12010e6 0.330957
\(529\) −4.93417e6 −0.766611
\(530\) 0 0
\(531\) 777812. 0.119712
\(532\) −510087. −0.0781385
\(533\) −1.10159e6 −0.167959
\(534\) −549835. −0.0834410
\(535\) 0 0
\(536\) −48332.4 −0.00726652
\(537\) −1.56391e6 −0.234033
\(538\) 498055. 0.0741860
\(539\) −6.44605e6 −0.955701
\(540\) 0 0
\(541\) 2.49859e6 0.367030 0.183515 0.983017i \(-0.441252\pi\)
0.183515 + 0.983017i \(0.441252\pi\)
\(542\) −518194. −0.0757695
\(543\) −367287. −0.0534572
\(544\) −709735. −0.102825
\(545\) 0 0
\(546\) −188875. −0.0271139
\(547\) 6.43873e6 0.920093 0.460046 0.887895i \(-0.347833\pi\)
0.460046 + 0.887895i \(0.347833\pi\)
\(548\) −8.37381e6 −1.19116
\(549\) 152655. 0.0216163
\(550\) 0 0
\(551\) −571040. −0.0801287
\(552\) −416066. −0.0581186
\(553\) 1.01990e7 1.41823
\(554\) −1.26393e6 −0.174964
\(555\) 0 0
\(556\) 6.18900e6 0.849051
\(557\) −2.84713e6 −0.388838 −0.194419 0.980919i \(-0.562282\pi\)
−0.194419 + 0.980919i \(0.562282\pi\)
\(558\) −379110. −0.0515441
\(559\) 2.85060e6 0.385839
\(560\) 0 0
\(561\) −846896. −0.113612
\(562\) −1.31133e6 −0.175134
\(563\) −1.29070e7 −1.71615 −0.858075 0.513524i \(-0.828340\pi\)
−0.858075 + 0.513524i \(0.828340\pi\)
\(564\) 8.21443e6 1.08738
\(565\) 0 0
\(566\) −1.41018e6 −0.185026
\(567\) 1.37482e6 0.179592
\(568\) 2.45808e6 0.319687
\(569\) −2.35627e6 −0.305102 −0.152551 0.988296i \(-0.548749\pi\)
−0.152551 + 0.988296i \(0.548749\pi\)
\(570\) 0 0
\(571\) −1.23131e7 −1.58044 −0.790221 0.612823i \(-0.790034\pi\)
−0.790221 + 0.612823i \(0.790034\pi\)
\(572\) 1.27216e6 0.162575
\(573\) 4.71942e6 0.600484
\(574\) −809430. −0.102541
\(575\) 0 0
\(576\) −2.48103e6 −0.311584
\(577\) 1.55443e6 0.194371 0.0971855 0.995266i \(-0.469016\pi\)
0.0971855 + 0.995266i \(0.469016\pi\)
\(578\) −748667. −0.0932114
\(579\) 1.69174e6 0.209718
\(580\) 0 0
\(581\) −1.62944e7 −2.00261
\(582\) 542560. 0.0663958
\(583\) 6.63487e6 0.808464
\(584\) −3.04232e6 −0.369125
\(585\) 0 0
\(586\) 1.52438e6 0.183378
\(587\) 1.03799e7 1.24336 0.621680 0.783271i \(-0.286450\pi\)
0.621680 + 0.783271i \(0.286450\pi\)
\(588\) 7.71961e6 0.920771
\(589\) −607465. −0.0721495
\(590\) 0 0
\(591\) 6.58359e6 0.775343
\(592\) 1.40826e7 1.65150
\(593\) −4.16373e6 −0.486234 −0.243117 0.969997i \(-0.578170\pi\)
−0.243117 + 0.969997i \(0.578170\pi\)
\(594\) 102753. 0.0119490
\(595\) 0 0
\(596\) −1.89389e6 −0.218394
\(597\) 4.99501e6 0.573588
\(598\) −122749. −0.0140367
\(599\) −2.96108e6 −0.337196 −0.168598 0.985685i \(-0.553924\pi\)
−0.168598 + 0.985685i \(0.553924\pi\)
\(600\) 0 0
\(601\) 619340. 0.0699428 0.0349714 0.999388i \(-0.488866\pi\)
0.0349714 + 0.999388i \(0.488866\pi\)
\(602\) 2.09457e6 0.235561
\(603\) 103792. 0.0116244
\(604\) 4.67439e6 0.521354
\(605\) 0 0
\(606\) −264793. −0.0292904
\(607\) −2.93963e6 −0.323833 −0.161916 0.986805i \(-0.551767\pi\)
−0.161916 + 0.986805i \(0.551767\pi\)
\(608\) 137981. 0.0151377
\(609\) 1.40014e7 1.52978
\(610\) 0 0
\(611\) 4.87376e6 0.528155
\(612\) 1.01422e6 0.109459
\(613\) 9.30961e6 1.00065 0.500323 0.865839i \(-0.333215\pi\)
0.500323 + 0.865839i \(0.333215\pi\)
\(614\) −918828. −0.0983588
\(615\) 0 0
\(616\) 1.87990e6 0.199610
\(617\) −7.00275e6 −0.740552 −0.370276 0.928922i \(-0.620737\pi\)
−0.370276 + 0.928922i \(0.620737\pi\)
\(618\) −593027. −0.0624602
\(619\) −1.30205e7 −1.36585 −0.682923 0.730490i \(-0.739292\pi\)
−0.682923 + 0.730490i \(0.739292\pi\)
\(620\) 0 0
\(621\) 893485. 0.0929733
\(622\) −1.34904e6 −0.139814
\(623\) 2.16020e7 2.22984
\(624\) −1.50641e6 −0.154875
\(625\) 0 0
\(626\) 50349.0 0.00513517
\(627\) 164647. 0.0167257
\(628\) −5.21296e6 −0.527455
\(629\) −5.62545e6 −0.566932
\(630\) 0 0
\(631\) 1.89038e6 0.189006 0.0945031 0.995525i \(-0.469874\pi\)
0.0945031 + 0.995525i \(0.469874\pi\)
\(632\) −1.83588e6 −0.182832
\(633\) 1.04886e6 0.104042
\(634\) 164687. 0.0162718
\(635\) 0 0
\(636\) −7.94572e6 −0.778916
\(637\) 4.58017e6 0.447232
\(638\) 1.04646e6 0.101782
\(639\) −5.27862e6 −0.511409
\(640\) 0 0
\(641\) −9.94745e6 −0.956240 −0.478120 0.878295i \(-0.658682\pi\)
−0.478120 + 0.878295i \(0.658682\pi\)
\(642\) 751153. 0.0719268
\(643\) −1.86174e7 −1.77579 −0.887894 0.460048i \(-0.847832\pi\)
−0.887894 + 0.460048i \(0.847832\pi\)
\(644\) 8.12815e6 0.772284
\(645\) 0 0
\(646\) −18033.1 −0.00170016
\(647\) 1.08663e7 1.02052 0.510259 0.860021i \(-0.329550\pi\)
0.510259 + 0.860021i \(0.329550\pi\)
\(648\) −247475. −0.0231522
\(649\) −2.28396e6 −0.212852
\(650\) 0 0
\(651\) 1.48945e7 1.37745
\(652\) 3.90417e6 0.359674
\(653\) −1.06902e7 −0.981075 −0.490537 0.871420i \(-0.663199\pi\)
−0.490537 + 0.871420i \(0.663199\pi\)
\(654\) −351761. −0.0321591
\(655\) 0 0
\(656\) −6.45578e6 −0.585719
\(657\) 6.53325e6 0.590495
\(658\) 3.58115e6 0.322447
\(659\) −1.47827e7 −1.32599 −0.662993 0.748626i \(-0.730714\pi\)
−0.662993 + 0.748626i \(0.730714\pi\)
\(660\) 0 0
\(661\) −5.48442e6 −0.488233 −0.244116 0.969746i \(-0.578498\pi\)
−0.244116 + 0.969746i \(0.578498\pi\)
\(662\) −322877. −0.0286347
\(663\) 601753. 0.0531660
\(664\) 2.93307e6 0.258168
\(665\) 0 0
\(666\) 682533. 0.0596264
\(667\) 9.09943e6 0.791954
\(668\) 1.99670e7 1.73130
\(669\) −6.39845e6 −0.552726
\(670\) 0 0
\(671\) −448255. −0.0384343
\(672\) −3.38318e6 −0.289002
\(673\) 1.69559e6 0.144305 0.0721526 0.997394i \(-0.477013\pi\)
0.0721526 + 0.997394i \(0.477013\pi\)
\(674\) −962688. −0.0816273
\(675\) 0 0
\(676\) −903922. −0.0760789
\(677\) 1.29586e7 1.08664 0.543320 0.839525i \(-0.317167\pi\)
0.543320 + 0.839525i \(0.317167\pi\)
\(678\) 1.00246e6 0.0837519
\(679\) −2.13162e7 −1.77434
\(680\) 0 0
\(681\) −6.00203e6 −0.495942
\(682\) 1.11321e6 0.0916468
\(683\) −2.14578e6 −0.176008 −0.0880041 0.996120i \(-0.528049\pi\)
−0.0880041 + 0.996120i \(0.528049\pi\)
\(684\) −197176. −0.0161144
\(685\) 0 0
\(686\) 1.27837e6 0.103716
\(687\) 1.04247e7 0.842699
\(688\) 1.67057e7 1.34553
\(689\) −4.71433e6 −0.378331
\(690\) 0 0
\(691\) 2.52870e6 0.201466 0.100733 0.994913i \(-0.467881\pi\)
0.100733 + 0.994913i \(0.467881\pi\)
\(692\) 9.81547e6 0.779194
\(693\) −4.03700e6 −0.319319
\(694\) 512951. 0.0404276
\(695\) 0 0
\(696\) −2.52033e6 −0.197213
\(697\) 2.57883e6 0.201067
\(698\) −77694.5 −0.00603603
\(699\) −9.95026e6 −0.770267
\(700\) 0 0
\(701\) −2.06075e7 −1.58391 −0.791953 0.610581i \(-0.790936\pi\)
−0.791953 + 0.610581i \(0.790936\pi\)
\(702\) −73010.4 −0.00559167
\(703\) 1.09366e6 0.0834627
\(704\) 7.28527e6 0.554005
\(705\) 0 0
\(706\) −2.46925e6 −0.186446
\(707\) 1.04032e7 0.782745
\(708\) 2.73520e6 0.205072
\(709\) 4.44682e6 0.332227 0.166113 0.986107i \(-0.446878\pi\)
0.166113 + 0.986107i \(0.446878\pi\)
\(710\) 0 0
\(711\) 3.94247e6 0.292479
\(712\) −3.88849e6 −0.287462
\(713\) 9.67986e6 0.713092
\(714\) 442157. 0.0324587
\(715\) 0 0
\(716\) −5.49955e6 −0.400908
\(717\) −3.76159e6 −0.273259
\(718\) −490625. −0.0355172
\(719\) −6.90228e6 −0.497932 −0.248966 0.968512i \(-0.580091\pi\)
−0.248966 + 0.968512i \(0.580091\pi\)
\(720\) 0 0
\(721\) 2.32990e7 1.66916
\(722\) −1.46386e6 −0.104510
\(723\) 7.31232e6 0.520247
\(724\) −1.29158e6 −0.0915745
\(725\) 0 0
\(726\) 557242. 0.0392376
\(727\) 8.09243e6 0.567862 0.283931 0.958845i \(-0.408361\pi\)
0.283931 + 0.958845i \(0.408361\pi\)
\(728\) −1.33574e6 −0.0934101
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −6.67326e6 −0.461896
\(732\) 536818. 0.0370296
\(733\) 1.45926e7 1.00316 0.501582 0.865110i \(-0.332751\pi\)
0.501582 + 0.865110i \(0.332751\pi\)
\(734\) 2.67294e6 0.183125
\(735\) 0 0
\(736\) −2.19870e6 −0.149614
\(737\) −304773. −0.0206685
\(738\) −312888. −0.0211470
\(739\) 7.53378e6 0.507460 0.253730 0.967275i \(-0.418343\pi\)
0.253730 + 0.967275i \(0.418343\pi\)
\(740\) 0 0
\(741\) −116988. −0.00782701
\(742\) −3.46401e6 −0.230977
\(743\) −1.37801e7 −0.915759 −0.457880 0.889014i \(-0.651391\pi\)
−0.457880 + 0.889014i \(0.651391\pi\)
\(744\) −2.68110e6 −0.177574
\(745\) 0 0
\(746\) −1.71565e6 −0.112871
\(747\) −6.29865e6 −0.412996
\(748\) −2.97814e6 −0.194622
\(749\) −2.95114e7 −1.92214
\(750\) 0 0
\(751\) 1.52138e7 0.984321 0.492160 0.870505i \(-0.336207\pi\)
0.492160 + 0.870505i \(0.336207\pi\)
\(752\) 2.85622e7 1.84182
\(753\) −8.59515e6 −0.552415
\(754\) −743553. −0.0476303
\(755\) 0 0
\(756\) 4.83459e6 0.307649
\(757\) −1.39902e7 −0.887329 −0.443664 0.896193i \(-0.646322\pi\)
−0.443664 + 0.896193i \(0.646322\pi\)
\(758\) 1.12965e6 0.0714120
\(759\) −2.62362e6 −0.165309
\(760\) 0 0
\(761\) 2.81683e7 1.76319 0.881594 0.472009i \(-0.156471\pi\)
0.881594 + 0.472009i \(0.156471\pi\)
\(762\) 636653. 0.0397205
\(763\) 1.38201e7 0.859406
\(764\) 1.65960e7 1.02866
\(765\) 0 0
\(766\) −1.16283e6 −0.0716049
\(767\) 1.62284e6 0.0996066
\(768\) −8.41845e6 −0.515026
\(769\) 2.07358e7 1.26446 0.632231 0.774780i \(-0.282139\pi\)
0.632231 + 0.774780i \(0.282139\pi\)
\(770\) 0 0
\(771\) 9.67694e6 0.586276
\(772\) 5.94905e6 0.359256
\(773\) 1.26313e7 0.760325 0.380162 0.924920i \(-0.375868\pi\)
0.380162 + 0.924920i \(0.375868\pi\)
\(774\) 809663. 0.0485794
\(775\) 0 0
\(776\) 3.83704e6 0.228740
\(777\) −2.68155e7 −1.59343
\(778\) 1.78966e6 0.106004
\(779\) −501356. −0.0296007
\(780\) 0 0
\(781\) 1.55001e7 0.909298
\(782\) 287355. 0.0168036
\(783\) 5.41231e6 0.315484
\(784\) 2.68417e7 1.55962
\(785\) 0 0
\(786\) −1.71763e6 −0.0991684
\(787\) −5.87368e6 −0.338044 −0.169022 0.985612i \(-0.554061\pi\)
−0.169022 + 0.985612i \(0.554061\pi\)
\(788\) 2.31514e7 1.32820
\(789\) −1.61174e6 −0.0921725
\(790\) 0 0
\(791\) −3.93850e7 −2.23815
\(792\) 726682. 0.0411653
\(793\) 318503. 0.0179858
\(794\) −205312. −0.0115575
\(795\) 0 0
\(796\) 1.75651e7 0.982581
\(797\) 4.96813e6 0.277043 0.138522 0.990359i \(-0.455765\pi\)
0.138522 + 0.990359i \(0.455765\pi\)
\(798\) −85960.7 −0.00477851
\(799\) −1.14095e7 −0.632265
\(800\) 0 0
\(801\) 8.35035e6 0.459858
\(802\) 724896. 0.0397961
\(803\) −1.91842e7 −1.04992
\(804\) 364987. 0.0199131
\(805\) 0 0
\(806\) −790982. −0.0428873
\(807\) −7.56397e6 −0.408852
\(808\) −1.87264e6 −0.100908
\(809\) −2.25969e7 −1.21389 −0.606943 0.794745i \(-0.707604\pi\)
−0.606943 + 0.794745i \(0.707604\pi\)
\(810\) 0 0
\(811\) −7.31663e6 −0.390624 −0.195312 0.980741i \(-0.562572\pi\)
−0.195312 + 0.980741i \(0.562572\pi\)
\(812\) 4.92365e7 2.62058
\(813\) 7.86982e6 0.417579
\(814\) −2.00418e6 −0.106017
\(815\) 0 0
\(816\) 3.52652e6 0.185405
\(817\) 1.29736e6 0.0679995
\(818\) 495302. 0.0258813
\(819\) 2.86845e6 0.149430
\(820\) 0 0
\(821\) 2.23939e7 1.15950 0.579751 0.814794i \(-0.303150\pi\)
0.579751 + 0.814794i \(0.303150\pi\)
\(822\) −1.41117e6 −0.0728449
\(823\) −3.22046e7 −1.65737 −0.828683 0.559719i \(-0.810909\pi\)
−0.828683 + 0.559719i \(0.810909\pi\)
\(824\) −4.19394e6 −0.215181
\(825\) 0 0
\(826\) 1.19244e6 0.0608114
\(827\) 8.56536e6 0.435494 0.217747 0.976005i \(-0.430129\pi\)
0.217747 + 0.976005i \(0.430129\pi\)
\(828\) 3.14197e6 0.159267
\(829\) −2.46321e7 −1.24485 −0.622423 0.782681i \(-0.713852\pi\)
−0.622423 + 0.782681i \(0.713852\pi\)
\(830\) 0 0
\(831\) 1.91953e7 0.964256
\(832\) −5.17647e6 −0.259254
\(833\) −1.07222e7 −0.535392
\(834\) 1.04298e6 0.0519231
\(835\) 0 0
\(836\) 578986. 0.0286518
\(837\) 5.75754e6 0.284069
\(838\) −2.85651e6 −0.140516
\(839\) 1.05438e7 0.517119 0.258560 0.965995i \(-0.416752\pi\)
0.258560 + 0.965995i \(0.416752\pi\)
\(840\) 0 0
\(841\) 3.46089e7 1.68732
\(842\) 3.35890e6 0.163274
\(843\) 1.99152e7 0.965194
\(844\) 3.68834e6 0.178228
\(845\) 0 0
\(846\) 1.38431e6 0.0664977
\(847\) −2.18930e7 −1.04857
\(848\) −2.76279e7 −1.31935
\(849\) 2.14164e7 1.01971
\(850\) 0 0
\(851\) −1.74272e7 −0.824906
\(852\) −1.85624e7 −0.876064
\(853\) 1.18131e7 0.555895 0.277948 0.960596i \(-0.410346\pi\)
0.277948 + 0.960596i \(0.410346\pi\)
\(854\) 234030. 0.0109806
\(855\) 0 0
\(856\) 5.31222e6 0.247795
\(857\) −3.45083e6 −0.160499 −0.0802494 0.996775i \(-0.525572\pi\)
−0.0802494 + 0.996775i \(0.525572\pi\)
\(858\) 214387. 0.00994214
\(859\) −2.37296e7 −1.09725 −0.548627 0.836068i \(-0.684849\pi\)
−0.548627 + 0.836068i \(0.684849\pi\)
\(860\) 0 0
\(861\) 1.22928e7 0.565124
\(862\) −3.56956e6 −0.163624
\(863\) −3.66091e6 −0.167325 −0.0836626 0.996494i \(-0.526662\pi\)
−0.0836626 + 0.996494i \(0.526662\pi\)
\(864\) −1.30778e6 −0.0596006
\(865\) 0 0
\(866\) −4.01826e6 −0.182072
\(867\) 1.13700e7 0.513704
\(868\) 5.23771e7 2.35962
\(869\) −1.15766e7 −0.520035
\(870\) 0 0
\(871\) 216553. 0.00967207
\(872\) −2.48769e6 −0.110791
\(873\) −8.23987e6 −0.365919
\(874\) −55865.3 −0.00247379
\(875\) 0 0
\(876\) 2.29744e7 1.01154
\(877\) 5.00580e6 0.219773 0.109887 0.993944i \(-0.464951\pi\)
0.109887 + 0.993944i \(0.464951\pi\)
\(878\) 631057. 0.0276269
\(879\) −2.31507e7 −1.01063
\(880\) 0 0
\(881\) −246502. −0.0106999 −0.00534997 0.999986i \(-0.501703\pi\)
−0.00534997 + 0.999986i \(0.501703\pi\)
\(882\) 1.30092e6 0.0563092
\(883\) −3.11271e7 −1.34350 −0.671749 0.740779i \(-0.734457\pi\)
−0.671749 + 0.740779i \(0.734457\pi\)
\(884\) 2.11608e6 0.0910756
\(885\) 0 0
\(886\) −2.18555e6 −0.0935354
\(887\) 1.82476e7 0.778746 0.389373 0.921080i \(-0.372692\pi\)
0.389373 + 0.921080i \(0.372692\pi\)
\(888\) 4.82694e6 0.205418
\(889\) −2.50129e7 −1.06148
\(890\) 0 0
\(891\) −1.56052e6 −0.0658528
\(892\) −2.25004e7 −0.946842
\(893\) 2.21814e6 0.0930810
\(894\) −319162. −0.0133557
\(895\) 0 0
\(896\) −1.58326e7 −0.658845
\(897\) 1.86418e6 0.0773585
\(898\) 3.96755e6 0.164184
\(899\) 5.86360e7 2.41972
\(900\) 0 0
\(901\) 1.10363e7 0.452908
\(902\) 918762. 0.0375999
\(903\) −3.18102e7 −1.29822
\(904\) 7.08952e6 0.288533
\(905\) 0 0
\(906\) 787736. 0.0318831
\(907\) 2.12243e7 0.856675 0.428337 0.903619i \(-0.359100\pi\)
0.428337 + 0.903619i \(0.359100\pi\)
\(908\) −2.11064e7 −0.849569
\(909\) 4.02141e6 0.161424
\(910\) 0 0
\(911\) −3.18110e7 −1.26993 −0.634967 0.772540i \(-0.718986\pi\)
−0.634967 + 0.772540i \(0.718986\pi\)
\(912\) −685598. −0.0272949
\(913\) 1.84953e7 0.734318
\(914\) 1.59142e6 0.0630113
\(915\) 0 0
\(916\) 3.66589e7 1.44358
\(917\) 6.74826e7 2.65014
\(918\) 170918. 0.00669391
\(919\) −2.08307e7 −0.813606 −0.406803 0.913516i \(-0.633357\pi\)
−0.406803 + 0.913516i \(0.633357\pi\)
\(920\) 0 0
\(921\) 1.39542e7 0.542073
\(922\) 3.20750e6 0.124262
\(923\) −1.10134e7 −0.425518
\(924\) −1.41962e7 −0.547008
\(925\) 0 0
\(926\) 1.43744e6 0.0550887
\(927\) 9.00631e6 0.344229
\(928\) −1.33187e7 −0.507682
\(929\) 2.46999e7 0.938980 0.469490 0.882938i \(-0.344438\pi\)
0.469490 + 0.882938i \(0.344438\pi\)
\(930\) 0 0
\(931\) 2.08453e6 0.0788194
\(932\) −3.49904e7 −1.31950
\(933\) 2.04879e7 0.770538
\(934\) 1.34436e6 0.0504255
\(935\) 0 0
\(936\) −516336. −0.0192638
\(937\) −8.66681e6 −0.322486 −0.161243 0.986915i \(-0.551550\pi\)
−0.161243 + 0.986915i \(0.551550\pi\)
\(938\) 159119. 0.00590495
\(939\) −764650. −0.0283008
\(940\) 0 0
\(941\) 6.11509e6 0.225127 0.112564 0.993645i \(-0.464094\pi\)
0.112564 + 0.993645i \(0.464094\pi\)
\(942\) −878496. −0.0322561
\(943\) 7.98902e6 0.292560
\(944\) 9.51053e6 0.347356
\(945\) 0 0
\(946\) −2.37749e6 −0.0863754
\(947\) −3.15310e6 −0.114252 −0.0571259 0.998367i \(-0.518194\pi\)
−0.0571259 + 0.998367i \(0.518194\pi\)
\(948\) 1.38638e7 0.501029
\(949\) 1.36311e7 0.491321
\(950\) 0 0
\(951\) −2.50110e6 −0.0896767
\(952\) 3.12697e6 0.111823
\(953\) −2.87392e7 −1.02504 −0.512522 0.858674i \(-0.671289\pi\)
−0.512522 + 0.858674i \(0.671289\pi\)
\(954\) −1.33903e6 −0.0476341
\(955\) 0 0
\(956\) −1.32278e7 −0.468104
\(957\) −1.58926e7 −0.560939
\(958\) 521013. 0.0183415
\(959\) 5.54422e7 1.94668
\(960\) 0 0
\(961\) 3.37470e7 1.17877
\(962\) 1.42405e6 0.0496121
\(963\) −1.14078e7 −0.396401
\(964\) 2.57140e7 0.891204
\(965\) 0 0
\(966\) 1.36977e6 0.0472285
\(967\) 5.04557e7 1.73518 0.867590 0.497281i \(-0.165668\pi\)
0.867590 + 0.497281i \(0.165668\pi\)
\(968\) 3.94087e6 0.135177
\(969\) 273869. 0.00936988
\(970\) 0 0
\(971\) 6.26481e6 0.213236 0.106618 0.994300i \(-0.465998\pi\)
0.106618 + 0.994300i \(0.465998\pi\)
\(972\) 1.86883e6 0.0634460
\(973\) −4.09768e7 −1.38757
\(974\) −1.78136e6 −0.0601665
\(975\) 0 0
\(976\) 1.86656e6 0.0627216
\(977\) 2.54287e7 0.852292 0.426146 0.904655i \(-0.359871\pi\)
0.426146 + 0.904655i \(0.359871\pi\)
\(978\) 657936. 0.0219956
\(979\) −2.45199e7 −0.817639
\(980\) 0 0
\(981\) 5.34220e6 0.177234
\(982\) −524056. −0.0173420
\(983\) −2.73152e7 −0.901614 −0.450807 0.892621i \(-0.648864\pi\)
−0.450807 + 0.892621i \(0.648864\pi\)
\(984\) −2.21277e6 −0.0728533
\(985\) 0 0
\(986\) 1.74066e6 0.0570193
\(987\) −5.43870e7 −1.77706
\(988\) −411392. −0.0134080
\(989\) −2.06732e7 −0.672075
\(990\) 0 0
\(991\) −5.79527e7 −1.87452 −0.937259 0.348633i \(-0.886646\pi\)
−0.937259 + 0.348633i \(0.886646\pi\)
\(992\) −1.41683e7 −0.457128
\(993\) 4.90353e6 0.157811
\(994\) −8.09245e6 −0.259785
\(995\) 0 0
\(996\) −2.21494e7 −0.707480
\(997\) −6.87536e6 −0.219057 −0.109529 0.993984i \(-0.534934\pi\)
−0.109529 + 0.993984i \(0.534934\pi\)
\(998\) 4.88420e6 0.155227
\(999\) −1.03656e7 −0.328611
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.6.a.u.1.6 yes 11
5.4 even 2 975.6.a.r.1.6 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
975.6.a.r.1.6 11 5.4 even 2
975.6.a.u.1.6 yes 11 1.1 even 1 trivial