Properties

Label 975.6.a.u.1.7
Level $975$
Weight $6$
Character 975.1
Self dual yes
Analytic conductor $156.374$
Analytic rank $1$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,6,Mod(1,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 975.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(156.374224318\)
Analytic rank: \(1\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 2 x^{10} - 286 x^{9} + 442 x^{8} + 28715 x^{7} - 29138 x^{6} - 1208172 x^{5} + 509768 x^{4} + \cdots + 55036800 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5}\cdot 3\cdot 5^{3}\cdot 11 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(2.29989\) of defining polynomial
Character \(\chi\) \(=\) 975.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.29989 q^{2} -9.00000 q^{3} -26.7105 q^{4} -20.6990 q^{6} -228.917 q^{7} -135.028 q^{8} +81.0000 q^{9} +59.1539 q^{11} +240.395 q^{12} +169.000 q^{13} -526.484 q^{14} +544.187 q^{16} -2342.37 q^{17} +186.291 q^{18} +2145.80 q^{19} +2060.25 q^{21} +136.047 q^{22} -1152.00 q^{23} +1215.25 q^{24} +388.681 q^{26} -729.000 q^{27} +6114.49 q^{28} +5872.31 q^{29} +4568.68 q^{31} +5572.46 q^{32} -532.385 q^{33} -5387.20 q^{34} -2163.55 q^{36} +9110.68 q^{37} +4935.11 q^{38} -1521.00 q^{39} -8258.68 q^{41} +4738.36 q^{42} +498.716 q^{43} -1580.03 q^{44} -2649.47 q^{46} -18526.7 q^{47} -4897.69 q^{48} +35596.0 q^{49} +21081.4 q^{51} -4514.08 q^{52} -10763.3 q^{53} -1676.62 q^{54} +30910.2 q^{56} -19312.2 q^{57} +13505.7 q^{58} +3060.98 q^{59} +40411.1 q^{61} +10507.5 q^{62} -18542.3 q^{63} -4597.96 q^{64} -1224.43 q^{66} +69675.2 q^{67} +62566.0 q^{68} +10368.0 q^{69} -72896.6 q^{71} -10937.2 q^{72} +5906.20 q^{73} +20953.6 q^{74} -57315.5 q^{76} -13541.3 q^{77} -3498.13 q^{78} +93605.5 q^{79} +6561.00 q^{81} -18994.1 q^{82} +28221.8 q^{83} -55030.4 q^{84} +1146.99 q^{86} -52850.8 q^{87} -7987.41 q^{88} +34970.9 q^{89} -38687.0 q^{91} +30770.5 q^{92} -41118.1 q^{93} -42609.3 q^{94} -50152.1 q^{96} +67239.7 q^{97} +81867.0 q^{98} +4791.46 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q + 2 q^{2} - 99 q^{3} + 224 q^{4} - 18 q^{6} - 55 q^{7} + 270 q^{8} + 891 q^{9} - 125 q^{11} - 2016 q^{12} + 1859 q^{13} - 1311 q^{14} + 5756 q^{16} - 4507 q^{17} + 162 q^{18} + 142 q^{19} + 495 q^{21}+ \cdots - 10125 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.29989 0.406567 0.203283 0.979120i \(-0.434839\pi\)
0.203283 + 0.979120i \(0.434839\pi\)
\(3\) −9.00000 −0.577350
\(4\) −26.7105 −0.834703
\(5\) 0 0
\(6\) −20.6990 −0.234732
\(7\) −228.917 −1.76577 −0.882883 0.469593i \(-0.844401\pi\)
−0.882883 + 0.469593i \(0.844401\pi\)
\(8\) −135.028 −0.745930
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) 59.1539 0.147401 0.0737007 0.997280i \(-0.476519\pi\)
0.0737007 + 0.997280i \(0.476519\pi\)
\(12\) 240.395 0.481916
\(13\) 169.000 0.277350
\(14\) −526.484 −0.717902
\(15\) 0 0
\(16\) 544.187 0.531433
\(17\) −2342.37 −1.96577 −0.982887 0.184208i \(-0.941028\pi\)
−0.982887 + 0.184208i \(0.941028\pi\)
\(18\) 186.291 0.135522
\(19\) 2145.80 1.36366 0.681830 0.731511i \(-0.261184\pi\)
0.681830 + 0.731511i \(0.261184\pi\)
\(20\) 0 0
\(21\) 2060.25 1.01947
\(22\) 136.047 0.0599285
\(23\) −1152.00 −0.454080 −0.227040 0.973885i \(-0.572905\pi\)
−0.227040 + 0.973885i \(0.572905\pi\)
\(24\) 1215.25 0.430663
\(25\) 0 0
\(26\) 388.681 0.112761
\(27\) −729.000 −0.192450
\(28\) 6114.49 1.47389
\(29\) 5872.31 1.29662 0.648312 0.761374i \(-0.275475\pi\)
0.648312 + 0.761374i \(0.275475\pi\)
\(30\) 0 0
\(31\) 4568.68 0.853859 0.426930 0.904285i \(-0.359595\pi\)
0.426930 + 0.904285i \(0.359595\pi\)
\(32\) 5572.46 0.961993
\(33\) −532.385 −0.0851022
\(34\) −5387.20 −0.799219
\(35\) 0 0
\(36\) −2163.55 −0.278234
\(37\) 9110.68 1.09407 0.547037 0.837109i \(-0.315756\pi\)
0.547037 + 0.837109i \(0.315756\pi\)
\(38\) 4935.11 0.554419
\(39\) −1521.00 −0.160128
\(40\) 0 0
\(41\) −8258.68 −0.767275 −0.383638 0.923484i \(-0.625329\pi\)
−0.383638 + 0.923484i \(0.625329\pi\)
\(42\) 4738.36 0.414481
\(43\) 498.716 0.0411322 0.0205661 0.999788i \(-0.493453\pi\)
0.0205661 + 0.999788i \(0.493453\pi\)
\(44\) −1580.03 −0.123036
\(45\) 0 0
\(46\) −2649.47 −0.184614
\(47\) −18526.7 −1.22336 −0.611678 0.791107i \(-0.709505\pi\)
−0.611678 + 0.791107i \(0.709505\pi\)
\(48\) −4897.69 −0.306823
\(49\) 35596.0 2.11793
\(50\) 0 0
\(51\) 21081.4 1.13494
\(52\) −4514.08 −0.231505
\(53\) −10763.3 −0.526327 −0.263164 0.964751i \(-0.584766\pi\)
−0.263164 + 0.964751i \(0.584766\pi\)
\(54\) −1676.62 −0.0782438
\(55\) 0 0
\(56\) 30910.2 1.31714
\(57\) −19312.2 −0.787309
\(58\) 13505.7 0.527165
\(59\) 3060.98 0.114480 0.0572401 0.998360i \(-0.481770\pi\)
0.0572401 + 0.998360i \(0.481770\pi\)
\(60\) 0 0
\(61\) 40411.1 1.39052 0.695258 0.718760i \(-0.255290\pi\)
0.695258 + 0.718760i \(0.255290\pi\)
\(62\) 10507.5 0.347151
\(63\) −18542.3 −0.588589
\(64\) −4597.96 −0.140318
\(65\) 0 0
\(66\) −1224.43 −0.0345997
\(67\) 69675.2 1.89623 0.948115 0.317926i \(-0.102986\pi\)
0.948115 + 0.317926i \(0.102986\pi\)
\(68\) 62566.0 1.64084
\(69\) 10368.0 0.262163
\(70\) 0 0
\(71\) −72896.6 −1.71618 −0.858088 0.513503i \(-0.828347\pi\)
−0.858088 + 0.513503i \(0.828347\pi\)
\(72\) −10937.2 −0.248643
\(73\) 5906.20 0.129718 0.0648591 0.997894i \(-0.479340\pi\)
0.0648591 + 0.997894i \(0.479340\pi\)
\(74\) 20953.6 0.444814
\(75\) 0 0
\(76\) −57315.5 −1.13825
\(77\) −13541.3 −0.260276
\(78\) −3498.13 −0.0651028
\(79\) 93605.5 1.68746 0.843731 0.536767i \(-0.180355\pi\)
0.843731 + 0.536767i \(0.180355\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) −18994.1 −0.311949
\(83\) 28221.8 0.449665 0.224833 0.974397i \(-0.427816\pi\)
0.224833 + 0.974397i \(0.427816\pi\)
\(84\) −55030.4 −0.850951
\(85\) 0 0
\(86\) 1146.99 0.0167230
\(87\) −52850.8 −0.748607
\(88\) −7987.41 −0.109951
\(89\) 34970.9 0.467985 0.233992 0.972238i \(-0.424821\pi\)
0.233992 + 0.972238i \(0.424821\pi\)
\(90\) 0 0
\(91\) −38687.0 −0.489735
\(92\) 30770.5 0.379022
\(93\) −41118.1 −0.492976
\(94\) −42609.3 −0.497376
\(95\) 0 0
\(96\) −50152.1 −0.555407
\(97\) 67239.7 0.725599 0.362799 0.931867i \(-0.381821\pi\)
0.362799 + 0.931867i \(0.381821\pi\)
\(98\) 81867.0 0.861080
\(99\) 4791.46 0.0491338
\(100\) 0 0
\(101\) −162082. −1.58100 −0.790498 0.612465i \(-0.790178\pi\)
−0.790498 + 0.612465i \(0.790178\pi\)
\(102\) 48484.8 0.461429
\(103\) −105332. −0.978289 −0.489145 0.872203i \(-0.662691\pi\)
−0.489145 + 0.872203i \(0.662691\pi\)
\(104\) −22819.7 −0.206884
\(105\) 0 0
\(106\) −24754.4 −0.213987
\(107\) 234277. 1.97820 0.989100 0.147244i \(-0.0470403\pi\)
0.989100 + 0.147244i \(0.0470403\pi\)
\(108\) 19472.0 0.160639
\(109\) −205781. −1.65897 −0.829487 0.558525i \(-0.811367\pi\)
−0.829487 + 0.558525i \(0.811367\pi\)
\(110\) 0 0
\(111\) −81996.1 −0.631663
\(112\) −124574. −0.938386
\(113\) −161817. −1.19214 −0.596070 0.802933i \(-0.703272\pi\)
−0.596070 + 0.802933i \(0.703272\pi\)
\(114\) −44416.0 −0.320094
\(115\) 0 0
\(116\) −156853. −1.08230
\(117\) 13689.0 0.0924500
\(118\) 7039.91 0.0465438
\(119\) 536209. 3.47110
\(120\) 0 0
\(121\) −157552. −0.978273
\(122\) 92941.1 0.565338
\(123\) 74328.1 0.442986
\(124\) −122032. −0.712719
\(125\) 0 0
\(126\) −42645.2 −0.239301
\(127\) −2226.71 −0.0122505 −0.00612527 0.999981i \(-0.501950\pi\)
−0.00612527 + 0.999981i \(0.501950\pi\)
\(128\) −188893. −1.01904
\(129\) −4488.44 −0.0237477
\(130\) 0 0
\(131\) −180748. −0.920228 −0.460114 0.887860i \(-0.652191\pi\)
−0.460114 + 0.887860i \(0.652191\pi\)
\(132\) 14220.3 0.0710351
\(133\) −491211. −2.40790
\(134\) 160245. 0.770945
\(135\) 0 0
\(136\) 316285. 1.46633
\(137\) 105032. 0.478100 0.239050 0.971007i \(-0.423164\pi\)
0.239050 + 0.971007i \(0.423164\pi\)
\(138\) 23845.2 0.106587
\(139\) −356298. −1.56414 −0.782072 0.623188i \(-0.785837\pi\)
−0.782072 + 0.623188i \(0.785837\pi\)
\(140\) 0 0
\(141\) 166740. 0.706305
\(142\) −167654. −0.697740
\(143\) 9997.00 0.0408818
\(144\) 44079.2 0.177144
\(145\) 0 0
\(146\) 13583.6 0.0527391
\(147\) −320364. −1.22279
\(148\) −243351. −0.913226
\(149\) 295683. 1.09109 0.545545 0.838082i \(-0.316323\pi\)
0.545545 + 0.838082i \(0.316323\pi\)
\(150\) 0 0
\(151\) 122209. 0.436174 0.218087 0.975929i \(-0.430018\pi\)
0.218087 + 0.975929i \(0.430018\pi\)
\(152\) −289743. −1.01719
\(153\) −189732. −0.655258
\(154\) −31143.6 −0.105820
\(155\) 0 0
\(156\) 40626.7 0.133660
\(157\) −67878.4 −0.219777 −0.109889 0.993944i \(-0.535049\pi\)
−0.109889 + 0.993944i \(0.535049\pi\)
\(158\) 215282. 0.686066
\(159\) 96869.8 0.303875
\(160\) 0 0
\(161\) 263712. 0.801799
\(162\) 15089.6 0.0451741
\(163\) 157781. 0.465142 0.232571 0.972579i \(-0.425286\pi\)
0.232571 + 0.972579i \(0.425286\pi\)
\(164\) 220594. 0.640447
\(165\) 0 0
\(166\) 64907.0 0.182819
\(167\) −548705. −1.52247 −0.761233 0.648478i \(-0.775406\pi\)
−0.761233 + 0.648478i \(0.775406\pi\)
\(168\) −278191. −0.760450
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 173810. 0.454553
\(172\) −13321.0 −0.0343332
\(173\) 471036. 1.19657 0.598285 0.801283i \(-0.295849\pi\)
0.598285 + 0.801283i \(0.295849\pi\)
\(174\) −121551. −0.304359
\(175\) 0 0
\(176\) 32190.8 0.0783339
\(177\) −27548.8 −0.0660951
\(178\) 80429.2 0.190267
\(179\) −371293. −0.866133 −0.433066 0.901362i \(-0.642568\pi\)
−0.433066 + 0.901362i \(0.642568\pi\)
\(180\) 0 0
\(181\) 510409. 1.15804 0.579018 0.815315i \(-0.303436\pi\)
0.579018 + 0.815315i \(0.303436\pi\)
\(182\) −88975.8 −0.199110
\(183\) −363700. −0.802815
\(184\) 155552. 0.338712
\(185\) 0 0
\(186\) −94567.1 −0.200428
\(187\) −138560. −0.289758
\(188\) 494857. 1.02114
\(189\) 166881. 0.339822
\(190\) 0 0
\(191\) 60794.2 0.120581 0.0602905 0.998181i \(-0.480797\pi\)
0.0602905 + 0.998181i \(0.480797\pi\)
\(192\) 41381.6 0.0810129
\(193\) 473665. 0.915331 0.457666 0.889124i \(-0.348686\pi\)
0.457666 + 0.889124i \(0.348686\pi\)
\(194\) 154644. 0.295004
\(195\) 0 0
\(196\) −950788. −1.76784
\(197\) 471821. 0.866186 0.433093 0.901349i \(-0.357422\pi\)
0.433093 + 0.901349i \(0.357422\pi\)
\(198\) 11019.8 0.0199762
\(199\) 874843. 1.56602 0.783010 0.622009i \(-0.213683\pi\)
0.783010 + 0.622009i \(0.213683\pi\)
\(200\) 0 0
\(201\) −627077. −1.09479
\(202\) −372770. −0.642780
\(203\) −1.34427e6 −2.28954
\(204\) −563094. −0.947339
\(205\) 0 0
\(206\) −242252. −0.397740
\(207\) −93311.9 −0.151360
\(208\) 91967.7 0.147393
\(209\) 126933. 0.201005
\(210\) 0 0
\(211\) −37674.0 −0.0582554 −0.0291277 0.999576i \(-0.509273\pi\)
−0.0291277 + 0.999576i \(0.509273\pi\)
\(212\) 287493. 0.439327
\(213\) 656070. 0.990834
\(214\) 538811. 0.804271
\(215\) 0 0
\(216\) 98435.2 0.143554
\(217\) −1.04585e6 −1.50772
\(218\) −473274. −0.674484
\(219\) −53155.8 −0.0748928
\(220\) 0 0
\(221\) −395861. −0.545208
\(222\) −188582. −0.256813
\(223\) −1.13356e6 −1.52645 −0.763225 0.646133i \(-0.776385\pi\)
−0.763225 + 0.646133i \(0.776385\pi\)
\(224\) −1.27563e6 −1.69865
\(225\) 0 0
\(226\) −372160. −0.484685
\(227\) 329692. 0.424663 0.212331 0.977198i \(-0.431894\pi\)
0.212331 + 0.977198i \(0.431894\pi\)
\(228\) 515839. 0.657170
\(229\) −66202.8 −0.0834233 −0.0417117 0.999130i \(-0.513281\pi\)
−0.0417117 + 0.999130i \(0.513281\pi\)
\(230\) 0 0
\(231\) 121872. 0.150271
\(232\) −792925. −0.967191
\(233\) −847118. −1.02224 −0.511121 0.859509i \(-0.670770\pi\)
−0.511121 + 0.859509i \(0.670770\pi\)
\(234\) 31483.2 0.0375871
\(235\) 0 0
\(236\) −81760.3 −0.0955569
\(237\) −842450. −0.974256
\(238\) 1.23322e6 1.41123
\(239\) 646882. 0.732538 0.366269 0.930509i \(-0.380635\pi\)
0.366269 + 0.930509i \(0.380635\pi\)
\(240\) 0 0
\(241\) −1.51311e6 −1.67814 −0.839068 0.544027i \(-0.816899\pi\)
−0.839068 + 0.544027i \(0.816899\pi\)
\(242\) −362352. −0.397733
\(243\) −59049.0 −0.0641500
\(244\) −1.07940e6 −1.16067
\(245\) 0 0
\(246\) 170947. 0.180104
\(247\) 362641. 0.378211
\(248\) −616898. −0.636919
\(249\) −253996. −0.259614
\(250\) 0 0
\(251\) −404872. −0.405633 −0.202816 0.979217i \(-0.565009\pi\)
−0.202816 + 0.979217i \(0.565009\pi\)
\(252\) 495274. 0.491297
\(253\) −68145.1 −0.0669320
\(254\) −5121.19 −0.00498066
\(255\) 0 0
\(256\) −287300. −0.273990
\(257\) −1.76267e6 −1.66471 −0.832353 0.554245i \(-0.813007\pi\)
−0.832353 + 0.554245i \(0.813007\pi\)
\(258\) −10322.9 −0.00965503
\(259\) −2.08559e6 −1.93188
\(260\) 0 0
\(261\) 475658. 0.432208
\(262\) −415701. −0.374134
\(263\) 567933. 0.506300 0.253150 0.967427i \(-0.418533\pi\)
0.253150 + 0.967427i \(0.418533\pi\)
\(264\) 71886.7 0.0634802
\(265\) 0 0
\(266\) −1.12973e6 −0.978974
\(267\) −314738. −0.270191
\(268\) −1.86106e6 −1.58279
\(269\) −242686. −0.204486 −0.102243 0.994759i \(-0.532602\pi\)
−0.102243 + 0.994759i \(0.532602\pi\)
\(270\) 0 0
\(271\) 389530. 0.322194 0.161097 0.986939i \(-0.448497\pi\)
0.161097 + 0.986939i \(0.448497\pi\)
\(272\) −1.27469e6 −1.04468
\(273\) 348183. 0.282749
\(274\) 241561. 0.194380
\(275\) 0 0
\(276\) −276934. −0.218828
\(277\) −1.13298e6 −0.887206 −0.443603 0.896223i \(-0.646300\pi\)
−0.443603 + 0.896223i \(0.646300\pi\)
\(278\) −819447. −0.635929
\(279\) 370063. 0.284620
\(280\) 0 0
\(281\) 886440. 0.669705 0.334852 0.942271i \(-0.391314\pi\)
0.334852 + 0.942271i \(0.391314\pi\)
\(282\) 383484. 0.287160
\(283\) 1.37650e6 1.02167 0.510836 0.859678i \(-0.329336\pi\)
0.510836 + 0.859678i \(0.329336\pi\)
\(284\) 1.94711e6 1.43250
\(285\) 0 0
\(286\) 22992.0 0.0166212
\(287\) 1.89055e6 1.35483
\(288\) 451369. 0.320664
\(289\) 4.06685e6 2.86427
\(290\) 0 0
\(291\) −605157. −0.418925
\(292\) −157757. −0.108276
\(293\) −239467. −0.162958 −0.0814790 0.996675i \(-0.525964\pi\)
−0.0814790 + 0.996675i \(0.525964\pi\)
\(294\) −736803. −0.497145
\(295\) 0 0
\(296\) −1.23019e6 −0.816102
\(297\) −43123.2 −0.0283674
\(298\) 680038. 0.443601
\(299\) −194688. −0.125939
\(300\) 0 0
\(301\) −114165. −0.0726299
\(302\) 281067. 0.177334
\(303\) 1.45874e6 0.912788
\(304\) 1.16772e6 0.724694
\(305\) 0 0
\(306\) −436363. −0.266406
\(307\) −1.67234e6 −1.01269 −0.506347 0.862330i \(-0.669004\pi\)
−0.506347 + 0.862330i \(0.669004\pi\)
\(308\) 361696. 0.217253
\(309\) 947988. 0.564816
\(310\) 0 0
\(311\) −1.00067e6 −0.586664 −0.293332 0.956011i \(-0.594764\pi\)
−0.293332 + 0.956011i \(0.594764\pi\)
\(312\) 205377. 0.119444
\(313\) 612773. 0.353540 0.176770 0.984252i \(-0.443435\pi\)
0.176770 + 0.984252i \(0.443435\pi\)
\(314\) −156113. −0.0893541
\(315\) 0 0
\(316\) −2.50025e6 −1.40853
\(317\) −1.52019e6 −0.849670 −0.424835 0.905271i \(-0.639668\pi\)
−0.424835 + 0.905271i \(0.639668\pi\)
\(318\) 222790. 0.123546
\(319\) 347370. 0.191124
\(320\) 0 0
\(321\) −2.10849e6 −1.14211
\(322\) 606509. 0.325985
\(323\) −5.02627e6 −2.68065
\(324\) −175248. −0.0927448
\(325\) 0 0
\(326\) 362879. 0.189111
\(327\) 1.85203e6 0.957810
\(328\) 1.11515e6 0.572333
\(329\) 4.24108e6 2.16016
\(330\) 0 0
\(331\) −1.70279e6 −0.854260 −0.427130 0.904190i \(-0.640475\pi\)
−0.427130 + 0.904190i \(0.640475\pi\)
\(332\) −753819. −0.375337
\(333\) 737965. 0.364691
\(334\) −1.26196e6 −0.618985
\(335\) 0 0
\(336\) 1.12116e6 0.541778
\(337\) −2.16136e6 −1.03670 −0.518350 0.855168i \(-0.673454\pi\)
−0.518350 + 0.855168i \(0.673454\pi\)
\(338\) 65687.2 0.0312744
\(339\) 1.45635e6 0.688282
\(340\) 0 0
\(341\) 270255. 0.125860
\(342\) 399744. 0.184806
\(343\) −4.30113e6 −1.97400
\(344\) −67340.5 −0.0306817
\(345\) 0 0
\(346\) 1.08333e6 0.486486
\(347\) −1.30185e6 −0.580413 −0.290207 0.956964i \(-0.593724\pi\)
−0.290207 + 0.956964i \(0.593724\pi\)
\(348\) 1.41167e6 0.624865
\(349\) −806129. −0.354275 −0.177138 0.984186i \(-0.556684\pi\)
−0.177138 + 0.984186i \(0.556684\pi\)
\(350\) 0 0
\(351\) −123201. −0.0533761
\(352\) 329632. 0.141799
\(353\) 1.21170e6 0.517555 0.258778 0.965937i \(-0.416680\pi\)
0.258778 + 0.965937i \(0.416680\pi\)
\(354\) −63359.2 −0.0268721
\(355\) 0 0
\(356\) −934091. −0.390629
\(357\) −4.82588e6 −2.00404
\(358\) −853933. −0.352141
\(359\) 40339.1 0.0165193 0.00825963 0.999966i \(-0.497371\pi\)
0.00825963 + 0.999966i \(0.497371\pi\)
\(360\) 0 0
\(361\) 2.12837e6 0.859567
\(362\) 1.17388e6 0.470819
\(363\) 1.41797e6 0.564806
\(364\) 1.03335e6 0.408784
\(365\) 0 0
\(366\) −836470. −0.326398
\(367\) −3.28931e6 −1.27479 −0.637396 0.770537i \(-0.719988\pi\)
−0.637396 + 0.770537i \(0.719988\pi\)
\(368\) −626903. −0.241313
\(369\) −668953. −0.255758
\(370\) 0 0
\(371\) 2.46390e6 0.929371
\(372\) 1.09829e6 0.411489
\(373\) 1.73305e6 0.644970 0.322485 0.946575i \(-0.395482\pi\)
0.322485 + 0.946575i \(0.395482\pi\)
\(374\) −318674. −0.117806
\(375\) 0 0
\(376\) 2.50162e6 0.912538
\(377\) 992421. 0.359619
\(378\) 383807. 0.138160
\(379\) 425983. 0.152333 0.0761665 0.997095i \(-0.475732\pi\)
0.0761665 + 0.997095i \(0.475732\pi\)
\(380\) 0 0
\(381\) 20040.4 0.00707285
\(382\) 139820. 0.0490242
\(383\) 4.18083e6 1.45635 0.728175 0.685391i \(-0.240369\pi\)
0.728175 + 0.685391i \(0.240369\pi\)
\(384\) 1.70004e6 0.588344
\(385\) 0 0
\(386\) 1.08938e6 0.372143
\(387\) 40396.0 0.0137107
\(388\) −1.79601e6 −0.605660
\(389\) −1.92802e6 −0.646008 −0.323004 0.946398i \(-0.604693\pi\)
−0.323004 + 0.946398i \(0.604693\pi\)
\(390\) 0 0
\(391\) 2.69841e6 0.892619
\(392\) −4.80645e6 −1.57983
\(393\) 1.62673e6 0.531294
\(394\) 1.08514e6 0.352163
\(395\) 0 0
\(396\) −127982. −0.0410121
\(397\) 1.51118e6 0.481216 0.240608 0.970622i \(-0.422653\pi\)
0.240608 + 0.970622i \(0.422653\pi\)
\(398\) 2.01204e6 0.636692
\(399\) 4.42090e6 1.39020
\(400\) 0 0
\(401\) −201369. −0.0625362 −0.0312681 0.999511i \(-0.509955\pi\)
−0.0312681 + 0.999511i \(0.509955\pi\)
\(402\) −1.44221e6 −0.445105
\(403\) 772107. 0.236818
\(404\) 4.32928e6 1.31966
\(405\) 0 0
\(406\) −3.09168e6 −0.930850
\(407\) 538932. 0.161268
\(408\) −2.84657e6 −0.846586
\(409\) 3.36373e6 0.994291 0.497145 0.867667i \(-0.334382\pi\)
0.497145 + 0.867667i \(0.334382\pi\)
\(410\) 0 0
\(411\) −945286. −0.276031
\(412\) 2.81347e6 0.816581
\(413\) −700710. −0.202145
\(414\) −214607. −0.0615379
\(415\) 0 0
\(416\) 941745. 0.266809
\(417\) 3.20668e6 0.903059
\(418\) 291931. 0.0817221
\(419\) −1.76055e6 −0.489906 −0.244953 0.969535i \(-0.578772\pi\)
−0.244953 + 0.969535i \(0.578772\pi\)
\(420\) 0 0
\(421\) 2.40677e6 0.661803 0.330901 0.943665i \(-0.392647\pi\)
0.330901 + 0.943665i \(0.392647\pi\)
\(422\) −86646.1 −0.0236847
\(423\) −1.50066e6 −0.407786
\(424\) 1.45334e6 0.392603
\(425\) 0 0
\(426\) 1.50889e6 0.402840
\(427\) −9.25079e6 −2.45533
\(428\) −6.25766e6 −1.65121
\(429\) −89973.0 −0.0236031
\(430\) 0 0
\(431\) 3.02707e6 0.784927 0.392463 0.919768i \(-0.371623\pi\)
0.392463 + 0.919768i \(0.371623\pi\)
\(432\) −396713. −0.102274
\(433\) −998142. −0.255842 −0.127921 0.991784i \(-0.540830\pi\)
−0.127921 + 0.991784i \(0.540830\pi\)
\(434\) −2.40534e6 −0.612987
\(435\) 0 0
\(436\) 5.49652e6 1.38475
\(437\) −2.47196e6 −0.619210
\(438\) −122252. −0.0304489
\(439\) 2.45313e6 0.607519 0.303759 0.952749i \(-0.401758\pi\)
0.303759 + 0.952749i \(0.401758\pi\)
\(440\) 0 0
\(441\) 2.88328e6 0.705977
\(442\) −910437. −0.221663
\(443\) 2.53464e6 0.613631 0.306815 0.951769i \(-0.400737\pi\)
0.306815 + 0.951769i \(0.400737\pi\)
\(444\) 2.19016e6 0.527252
\(445\) 0 0
\(446\) −2.60706e6 −0.620604
\(447\) −2.66114e6 −0.629941
\(448\) 1.05255e6 0.247770
\(449\) −1.70620e6 −0.399405 −0.199703 0.979857i \(-0.563998\pi\)
−0.199703 + 0.979857i \(0.563998\pi\)
\(450\) 0 0
\(451\) −488533. −0.113097
\(452\) 4.32220e6 0.995083
\(453\) −1.09988e6 −0.251825
\(454\) 758256. 0.172654
\(455\) 0 0
\(456\) 2.60769e6 0.587277
\(457\) −382585. −0.0856915 −0.0428458 0.999082i \(-0.513642\pi\)
−0.0428458 + 0.999082i \(0.513642\pi\)
\(458\) −152259. −0.0339172
\(459\) 1.70759e6 0.378313
\(460\) 0 0
\(461\) −7.16362e6 −1.56993 −0.784964 0.619541i \(-0.787319\pi\)
−0.784964 + 0.619541i \(0.787319\pi\)
\(462\) 280292. 0.0610950
\(463\) 3.22317e6 0.698764 0.349382 0.936980i \(-0.386392\pi\)
0.349382 + 0.936980i \(0.386392\pi\)
\(464\) 3.19564e6 0.689069
\(465\) 0 0
\(466\) −1.94828e6 −0.415610
\(467\) −5.46265e6 −1.15907 −0.579537 0.814946i \(-0.696767\pi\)
−0.579537 + 0.814946i \(0.696767\pi\)
\(468\) −365640. −0.0771683
\(469\) −1.59498e7 −3.34830
\(470\) 0 0
\(471\) 610906. 0.126888
\(472\) −413317. −0.0853941
\(473\) 29501.0 0.00606294
\(474\) −1.93754e6 −0.396100
\(475\) 0 0
\(476\) −1.43224e7 −2.89734
\(477\) −871828. −0.175442
\(478\) 1.48776e6 0.297826
\(479\) −5.39101e6 −1.07357 −0.536786 0.843718i \(-0.680362\pi\)
−0.536786 + 0.843718i \(0.680362\pi\)
\(480\) 0 0
\(481\) 1.53970e6 0.303441
\(482\) −3.47998e6 −0.682275
\(483\) −2.37341e6 −0.462919
\(484\) 4.20829e6 0.816568
\(485\) 0 0
\(486\) −135806. −0.0260813
\(487\) 7.84939e6 1.49973 0.749866 0.661590i \(-0.230118\pi\)
0.749866 + 0.661590i \(0.230118\pi\)
\(488\) −5.45662e6 −1.03723
\(489\) −1.42003e6 −0.268550
\(490\) 0 0
\(491\) 1.12840e6 0.211231 0.105616 0.994407i \(-0.466319\pi\)
0.105616 + 0.994407i \(0.466319\pi\)
\(492\) −1.98534e6 −0.369762
\(493\) −1.37552e7 −2.54887
\(494\) 834034. 0.153768
\(495\) 0 0
\(496\) 2.48622e6 0.453769
\(497\) 1.66873e7 3.03036
\(498\) −584163. −0.105551
\(499\) 9.57003e6 1.72053 0.860265 0.509848i \(-0.170298\pi\)
0.860265 + 0.509848i \(0.170298\pi\)
\(500\) 0 0
\(501\) 4.93835e6 0.878997
\(502\) −931160. −0.164917
\(503\) 8.58409e6 1.51278 0.756388 0.654123i \(-0.226962\pi\)
0.756388 + 0.654123i \(0.226962\pi\)
\(504\) 2.50372e6 0.439046
\(505\) 0 0
\(506\) −156726. −0.0272123
\(507\) −257049. −0.0444116
\(508\) 59476.6 0.0102256
\(509\) −7.23162e6 −1.23720 −0.618602 0.785705i \(-0.712300\pi\)
−0.618602 + 0.785705i \(0.712300\pi\)
\(510\) 0 0
\(511\) −1.35203e6 −0.229052
\(512\) 5.38383e6 0.907646
\(513\) −1.56429e6 −0.262436
\(514\) −4.05394e6 −0.676815
\(515\) 0 0
\(516\) 119889. 0.0198223
\(517\) −1.09592e6 −0.180324
\(518\) −4.79663e6 −0.785437
\(519\) −4.23932e6 −0.690841
\(520\) 0 0
\(521\) −1.15289e7 −1.86078 −0.930389 0.366573i \(-0.880531\pi\)
−0.930389 + 0.366573i \(0.880531\pi\)
\(522\) 1.09396e6 0.175722
\(523\) 9.32605e6 1.49088 0.745442 0.666571i \(-0.232239\pi\)
0.745442 + 0.666571i \(0.232239\pi\)
\(524\) 4.82787e6 0.768117
\(525\) 0 0
\(526\) 1.30618e6 0.205845
\(527\) −1.07015e7 −1.67850
\(528\) −289717. −0.0452261
\(529\) −5.10924e6 −0.793812
\(530\) 0 0
\(531\) 247939. 0.0381600
\(532\) 1.31205e7 2.00989
\(533\) −1.39572e6 −0.212804
\(534\) −723863. −0.109851
\(535\) 0 0
\(536\) −9.40808e6 −1.41445
\(537\) 3.34164e6 0.500062
\(538\) −558151. −0.0831373
\(539\) 2.10564e6 0.312186
\(540\) 0 0
\(541\) −3.26784e6 −0.480029 −0.240014 0.970769i \(-0.577152\pi\)
−0.240014 + 0.970769i \(0.577152\pi\)
\(542\) 895876. 0.130994
\(543\) −4.59368e6 −0.668592
\(544\) −1.30528e7 −1.89106
\(545\) 0 0
\(546\) 800782. 0.114956
\(547\) −5.16606e6 −0.738229 −0.369114 0.929384i \(-0.620339\pi\)
−0.369114 + 0.929384i \(0.620339\pi\)
\(548\) −2.80545e6 −0.399072
\(549\) 3.27330e6 0.463505
\(550\) 0 0
\(551\) 1.26008e7 1.76815
\(552\) −1.39997e6 −0.195555
\(553\) −2.14279e7 −2.97966
\(554\) −2.60574e6 −0.360709
\(555\) 0 0
\(556\) 9.51691e6 1.30560
\(557\) 7.71027e6 1.05301 0.526504 0.850173i \(-0.323503\pi\)
0.526504 + 0.850173i \(0.323503\pi\)
\(558\) 851104. 0.115717
\(559\) 84283.0 0.0114080
\(560\) 0 0
\(561\) 1.24704e6 0.167292
\(562\) 2.03871e6 0.272280
\(563\) −8.33451e6 −1.10818 −0.554088 0.832458i \(-0.686933\pi\)
−0.554088 + 0.832458i \(0.686933\pi\)
\(564\) −4.45371e6 −0.589555
\(565\) 0 0
\(566\) 3.16581e6 0.415378
\(567\) −1.50193e6 −0.196196
\(568\) 9.84306e6 1.28015
\(569\) −1.88775e6 −0.244435 −0.122218 0.992503i \(-0.539001\pi\)
−0.122218 + 0.992503i \(0.539001\pi\)
\(570\) 0 0
\(571\) 7.84065e6 1.00638 0.503190 0.864176i \(-0.332160\pi\)
0.503190 + 0.864176i \(0.332160\pi\)
\(572\) −267025. −0.0341241
\(573\) −547148. −0.0696174
\(574\) 4.34806e6 0.550828
\(575\) 0 0
\(576\) −372434. −0.0467728
\(577\) −4.39327e6 −0.549349 −0.274674 0.961537i \(-0.588570\pi\)
−0.274674 + 0.961537i \(0.588570\pi\)
\(578\) 9.35331e6 1.16452
\(579\) −4.26299e6 −0.528467
\(580\) 0 0
\(581\) −6.46045e6 −0.794004
\(582\) −1.39180e6 −0.170321
\(583\) −636691. −0.0775814
\(584\) −797500. −0.0967606
\(585\) 0 0
\(586\) −550747. −0.0662534
\(587\) 1.21559e7 1.45610 0.728049 0.685525i \(-0.240427\pi\)
0.728049 + 0.685525i \(0.240427\pi\)
\(588\) 8.55709e6 1.02066
\(589\) 9.80349e6 1.16437
\(590\) 0 0
\(591\) −4.24639e6 −0.500093
\(592\) 4.95792e6 0.581427
\(593\) 1.27303e7 1.48663 0.743315 0.668941i \(-0.233252\pi\)
0.743315 + 0.668941i \(0.233252\pi\)
\(594\) −99178.5 −0.0115332
\(595\) 0 0
\(596\) −7.89784e6 −0.910736
\(597\) −7.87359e6 −0.904142
\(598\) −447760. −0.0512027
\(599\) 4.00848e6 0.456470 0.228235 0.973606i \(-0.426705\pi\)
0.228235 + 0.973606i \(0.426705\pi\)
\(600\) 0 0
\(601\) 2.62995e6 0.297003 0.148502 0.988912i \(-0.452555\pi\)
0.148502 + 0.988912i \(0.452555\pi\)
\(602\) −262566. −0.0295289
\(603\) 5.64369e6 0.632077
\(604\) −3.26426e6 −0.364076
\(605\) 0 0
\(606\) 3.35493e6 0.371109
\(607\) −6.42797e6 −0.708112 −0.354056 0.935224i \(-0.615198\pi\)
−0.354056 + 0.935224i \(0.615198\pi\)
\(608\) 1.19574e7 1.31183
\(609\) 1.20985e7 1.32186
\(610\) 0 0
\(611\) −3.13101e6 −0.339298
\(612\) 5.06784e6 0.546946
\(613\) −1.20038e7 −1.29023 −0.645116 0.764084i \(-0.723191\pi\)
−0.645116 + 0.764084i \(0.723191\pi\)
\(614\) −3.84619e6 −0.411728
\(615\) 0 0
\(616\) 1.82845e6 0.194148
\(617\) 8.45943e6 0.894599 0.447300 0.894384i \(-0.352386\pi\)
0.447300 + 0.894384i \(0.352386\pi\)
\(618\) 2.18027e6 0.229635
\(619\) 1.08577e7 1.13897 0.569483 0.822003i \(-0.307144\pi\)
0.569483 + 0.822003i \(0.307144\pi\)
\(620\) 0 0
\(621\) 839807. 0.0873877
\(622\) −2.30143e6 −0.238518
\(623\) −8.00544e6 −0.826352
\(624\) −827709. −0.0850974
\(625\) 0 0
\(626\) 1.40931e6 0.143738
\(627\) −1.14239e6 −0.116050
\(628\) 1.81307e6 0.183449
\(629\) −2.13406e7 −2.15070
\(630\) 0 0
\(631\) 1.62647e7 1.62620 0.813099 0.582126i \(-0.197779\pi\)
0.813099 + 0.582126i \(0.197779\pi\)
\(632\) −1.26393e7 −1.25873
\(633\) 339066. 0.0336337
\(634\) −3.49627e6 −0.345448
\(635\) 0 0
\(636\) −2.58744e6 −0.253646
\(637\) 6.01573e6 0.587408
\(638\) 798913. 0.0777048
\(639\) −5.90463e6 −0.572058
\(640\) 0 0
\(641\) −1.24335e7 −1.19523 −0.597613 0.801785i \(-0.703884\pi\)
−0.597613 + 0.801785i \(0.703884\pi\)
\(642\) −4.84930e6 −0.464346
\(643\) 5.47279e6 0.522013 0.261006 0.965337i \(-0.415946\pi\)
0.261006 + 0.965337i \(0.415946\pi\)
\(644\) −7.04388e6 −0.669264
\(645\) 0 0
\(646\) −1.15599e7 −1.08986
\(647\) 1.77694e7 1.66883 0.834414 0.551138i \(-0.185806\pi\)
0.834414 + 0.551138i \(0.185806\pi\)
\(648\) −885917. −0.0828811
\(649\) 181069. 0.0168745
\(650\) 0 0
\(651\) 9.41264e6 0.870480
\(652\) −4.21441e6 −0.388256
\(653\) 2.12465e7 1.94987 0.974933 0.222498i \(-0.0714210\pi\)
0.974933 + 0.222498i \(0.0714210\pi\)
\(654\) 4.25947e6 0.389414
\(655\) 0 0
\(656\) −4.49427e6 −0.407755
\(657\) 478402. 0.0432394
\(658\) 9.75401e6 0.878250
\(659\) 2.08310e7 1.86852 0.934258 0.356597i \(-0.116063\pi\)
0.934258 + 0.356597i \(0.116063\pi\)
\(660\) 0 0
\(661\) 1.36207e7 1.21254 0.606272 0.795258i \(-0.292664\pi\)
0.606272 + 0.795258i \(0.292664\pi\)
\(662\) −3.91622e6 −0.347314
\(663\) 3.56275e6 0.314776
\(664\) −3.81073e6 −0.335419
\(665\) 0 0
\(666\) 1.69724e6 0.148271
\(667\) −6.76490e6 −0.588771
\(668\) 1.46562e7 1.27081
\(669\) 1.02020e7 0.881296
\(670\) 0 0
\(671\) 2.39047e6 0.204964
\(672\) 1.14807e7 0.980718
\(673\) −6.82294e6 −0.580676 −0.290338 0.956924i \(-0.593768\pi\)
−0.290338 + 0.956924i \(0.593768\pi\)
\(674\) −4.97090e6 −0.421488
\(675\) 0 0
\(676\) −762879. −0.0642079
\(677\) 7.93083e6 0.665038 0.332519 0.943096i \(-0.392101\pi\)
0.332519 + 0.943096i \(0.392101\pi\)
\(678\) 3.34944e6 0.279833
\(679\) −1.53923e7 −1.28124
\(680\) 0 0
\(681\) −2.96723e6 −0.245179
\(682\) 621557. 0.0511705
\(683\) −1.34275e7 −1.10140 −0.550698 0.834705i \(-0.685638\pi\)
−0.550698 + 0.834705i \(0.685638\pi\)
\(684\) −4.64256e6 −0.379417
\(685\) 0 0
\(686\) −9.89213e6 −0.802564
\(687\) 595825. 0.0481645
\(688\) 271395. 0.0218590
\(689\) −1.81900e6 −0.145977
\(690\) 0 0
\(691\) −6.45401e6 −0.514203 −0.257101 0.966384i \(-0.582767\pi\)
−0.257101 + 0.966384i \(0.582767\pi\)
\(692\) −1.25816e7 −0.998782
\(693\) −1.09685e6 −0.0867587
\(694\) −2.99411e6 −0.235977
\(695\) 0 0
\(696\) 7.13633e6 0.558408
\(697\) 1.93449e7 1.50829
\(698\) −1.85401e6 −0.144037
\(699\) 7.62406e6 0.590192
\(700\) 0 0
\(701\) −1.35502e7 −1.04148 −0.520740 0.853715i \(-0.674344\pi\)
−0.520740 + 0.853715i \(0.674344\pi\)
\(702\) −283349. −0.0217009
\(703\) 1.95497e7 1.49194
\(704\) −271987. −0.0206831
\(705\) 0 0
\(706\) 2.78677e6 0.210421
\(707\) 3.71033e7 2.79167
\(708\) 735842. 0.0551698
\(709\) 1.41562e6 0.105762 0.0528812 0.998601i \(-0.483160\pi\)
0.0528812 + 0.998601i \(0.483160\pi\)
\(710\) 0 0
\(711\) 7.58205e6 0.562487
\(712\) −4.72204e6 −0.349084
\(713\) −5.26311e6 −0.387720
\(714\) −1.10990e7 −0.814776
\(715\) 0 0
\(716\) 9.91743e6 0.722964
\(717\) −5.82194e6 −0.422931
\(718\) 92775.6 0.00671619
\(719\) 6.11475e6 0.441120 0.220560 0.975373i \(-0.429212\pi\)
0.220560 + 0.975373i \(0.429212\pi\)
\(720\) 0 0
\(721\) 2.41123e7 1.72743
\(722\) 4.89502e6 0.349472
\(723\) 1.36180e7 0.968872
\(724\) −1.36333e7 −0.966616
\(725\) 0 0
\(726\) 3.26117e6 0.229631
\(727\) −1.44079e7 −1.01103 −0.505515 0.862818i \(-0.668697\pi\)
−0.505515 + 0.862818i \(0.668697\pi\)
\(728\) 5.22382e6 0.365308
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −1.16818e6 −0.0808567
\(732\) 9.71461e6 0.670112
\(733\) −9.95927e6 −0.684649 −0.342324 0.939582i \(-0.611214\pi\)
−0.342324 + 0.939582i \(0.611214\pi\)
\(734\) −7.56504e6 −0.518288
\(735\) 0 0
\(736\) −6.41946e6 −0.436822
\(737\) 4.12156e6 0.279507
\(738\) −1.53852e6 −0.103983
\(739\) −5.09810e6 −0.343398 −0.171699 0.985149i \(-0.554926\pi\)
−0.171699 + 0.985149i \(0.554926\pi\)
\(740\) 0 0
\(741\) −3.26377e6 −0.218360
\(742\) 5.66671e6 0.377852
\(743\) −1.43927e7 −0.956465 −0.478232 0.878233i \(-0.658722\pi\)
−0.478232 + 0.878233i \(0.658722\pi\)
\(744\) 5.55208e6 0.367725
\(745\) 0 0
\(746\) 3.98583e6 0.262224
\(747\) 2.28597e6 0.149888
\(748\) 3.70102e6 0.241862
\(749\) −5.36300e7 −3.49304
\(750\) 0 0
\(751\) −5.64574e6 −0.365276 −0.182638 0.983180i \(-0.558464\pi\)
−0.182638 + 0.983180i \(0.558464\pi\)
\(752\) −1.00820e7 −0.650132
\(753\) 3.64384e6 0.234192
\(754\) 2.28246e6 0.146209
\(755\) 0 0
\(756\) −4.45746e6 −0.283650
\(757\) 8.05893e6 0.511137 0.255569 0.966791i \(-0.417737\pi\)
0.255569 + 0.966791i \(0.417737\pi\)
\(758\) 979714. 0.0619336
\(759\) 613306. 0.0386432
\(760\) 0 0
\(761\) 1.08877e7 0.681513 0.340757 0.940152i \(-0.389317\pi\)
0.340757 + 0.940152i \(0.389317\pi\)
\(762\) 46090.8 0.00287559
\(763\) 4.71069e7 2.92936
\(764\) −1.62384e6 −0.100649
\(765\) 0 0
\(766\) 9.61546e6 0.592104
\(767\) 517305. 0.0317511
\(768\) 2.58570e6 0.158188
\(769\) −1.39723e7 −0.852024 −0.426012 0.904718i \(-0.640082\pi\)
−0.426012 + 0.904718i \(0.640082\pi\)
\(770\) 0 0
\(771\) 1.58640e7 0.961119
\(772\) −1.26518e7 −0.764030
\(773\) −1.39598e7 −0.840291 −0.420145 0.907457i \(-0.638021\pi\)
−0.420145 + 0.907457i \(0.638021\pi\)
\(774\) 92906.3 0.00557433
\(775\) 0 0
\(776\) −9.07922e6 −0.541246
\(777\) 1.87703e7 1.11537
\(778\) −4.43424e6 −0.262645
\(779\) −1.77215e7 −1.04630
\(780\) 0 0
\(781\) −4.31212e6 −0.252966
\(782\) 6.20604e6 0.362909
\(783\) −4.28092e6 −0.249536
\(784\) 1.93709e7 1.12554
\(785\) 0 0
\(786\) 3.74131e6 0.216007
\(787\) 1.67531e7 0.964182 0.482091 0.876121i \(-0.339877\pi\)
0.482091 + 0.876121i \(0.339877\pi\)
\(788\) −1.26026e7 −0.723009
\(789\) −5.11140e6 −0.292313
\(790\) 0 0
\(791\) 3.70426e7 2.10504
\(792\) −646980. −0.0366503
\(793\) 6.82948e6 0.385660
\(794\) 3.47555e6 0.195646
\(795\) 0 0
\(796\) −2.33675e7 −1.30716
\(797\) −3.77172e6 −0.210326 −0.105163 0.994455i \(-0.533536\pi\)
−0.105163 + 0.994455i \(0.533536\pi\)
\(798\) 1.01676e7 0.565211
\(799\) 4.33964e7 2.40484
\(800\) 0 0
\(801\) 2.83264e6 0.155995
\(802\) −463126. −0.0254251
\(803\) 349374. 0.0191206
\(804\) 1.67495e7 0.913824
\(805\) 0 0
\(806\) 1.77576e6 0.0962824
\(807\) 2.18417e6 0.118060
\(808\) 2.18855e7 1.17931
\(809\) −1.66028e7 −0.891889 −0.445944 0.895061i \(-0.647132\pi\)
−0.445944 + 0.895061i \(0.647132\pi\)
\(810\) 0 0
\(811\) −1.33967e7 −0.715229 −0.357614 0.933869i \(-0.616410\pi\)
−0.357614 + 0.933869i \(0.616410\pi\)
\(812\) 3.59062e7 1.91108
\(813\) −3.50577e6 −0.186019
\(814\) 1.23948e6 0.0655662
\(815\) 0 0
\(816\) 1.14722e7 0.603145
\(817\) 1.07015e6 0.0560903
\(818\) 7.73622e6 0.404246
\(819\) −3.13365e6 −0.163245
\(820\) 0 0
\(821\) −3.43509e7 −1.77861 −0.889303 0.457319i \(-0.848810\pi\)
−0.889303 + 0.457319i \(0.848810\pi\)
\(822\) −2.17405e6 −0.112225
\(823\) 2.61045e7 1.34343 0.671716 0.740809i \(-0.265558\pi\)
0.671716 + 0.740809i \(0.265558\pi\)
\(824\) 1.42227e7 0.729735
\(825\) 0 0
\(826\) −1.61156e6 −0.0821855
\(827\) −1.80085e7 −0.915619 −0.457809 0.889050i \(-0.651366\pi\)
−0.457809 + 0.889050i \(0.651366\pi\)
\(828\) 2.49241e6 0.126341
\(829\) 603123. 0.0304803 0.0152402 0.999884i \(-0.495149\pi\)
0.0152402 + 0.999884i \(0.495149\pi\)
\(830\) 0 0
\(831\) 1.01969e7 0.512229
\(832\) −777054. −0.0389173
\(833\) −8.33792e7 −4.16337
\(834\) 7.37502e6 0.367154
\(835\) 0 0
\(836\) −3.39043e6 −0.167780
\(837\) −3.33057e6 −0.164325
\(838\) −4.04906e6 −0.199179
\(839\) −1.88617e7 −0.925075 −0.462537 0.886600i \(-0.653061\pi\)
−0.462537 + 0.886600i \(0.653061\pi\)
\(840\) 0 0
\(841\) 1.39729e7 0.681236
\(842\) 5.53530e6 0.269067
\(843\) −7.97796e6 −0.386654
\(844\) 1.00629e6 0.0486259
\(845\) 0 0
\(846\) −3.45136e6 −0.165792
\(847\) 3.60663e7 1.72740
\(848\) −5.85725e6 −0.279708
\(849\) −1.23885e7 −0.589862
\(850\) 0 0
\(851\) −1.04955e7 −0.496797
\(852\) −1.75240e7 −0.827053
\(853\) −3.84677e7 −1.81019 −0.905095 0.425209i \(-0.860200\pi\)
−0.905095 + 0.425209i \(0.860200\pi\)
\(854\) −2.12758e7 −0.998255
\(855\) 0 0
\(856\) −3.16339e7 −1.47560
\(857\) 1.67613e7 0.779571 0.389785 0.920906i \(-0.372549\pi\)
0.389785 + 0.920906i \(0.372549\pi\)
\(858\) −206928. −0.00959624
\(859\) −4.29704e6 −0.198695 −0.0993474 0.995053i \(-0.531676\pi\)
−0.0993474 + 0.995053i \(0.531676\pi\)
\(860\) 0 0
\(861\) −1.70150e7 −0.782210
\(862\) 6.96193e6 0.319125
\(863\) −3.78429e7 −1.72965 −0.864824 0.502076i \(-0.832570\pi\)
−0.864824 + 0.502076i \(0.832570\pi\)
\(864\) −4.06232e6 −0.185136
\(865\) 0 0
\(866\) −2.29562e6 −0.104017
\(867\) −3.66017e7 −1.65369
\(868\) 2.79351e7 1.25850
\(869\) 5.53713e6 0.248734
\(870\) 0 0
\(871\) 1.17751e7 0.525920
\(872\) 2.77862e7 1.23748
\(873\) 5.44642e6 0.241866
\(874\) −5.68524e6 −0.251750
\(875\) 0 0
\(876\) 1.41982e6 0.0625133
\(877\) 636892. 0.0279619 0.0139809 0.999902i \(-0.495550\pi\)
0.0139809 + 0.999902i \(0.495550\pi\)
\(878\) 5.64193e6 0.246997
\(879\) 2.15520e6 0.0940839
\(880\) 0 0
\(881\) −1.61380e7 −0.700501 −0.350251 0.936656i \(-0.613904\pi\)
−0.350251 + 0.936656i \(0.613904\pi\)
\(882\) 6.63123e6 0.287027
\(883\) −4.30661e7 −1.85880 −0.929401 0.369070i \(-0.879676\pi\)
−0.929401 + 0.369070i \(0.879676\pi\)
\(884\) 1.05736e7 0.455087
\(885\) 0 0
\(886\) 5.82939e6 0.249482
\(887\) 1.14749e7 0.489710 0.244855 0.969560i \(-0.421260\pi\)
0.244855 + 0.969560i \(0.421260\pi\)
\(888\) 1.10717e7 0.471177
\(889\) 509733. 0.0216316
\(890\) 0 0
\(891\) 388108. 0.0163779
\(892\) 3.02780e7 1.27413
\(893\) −3.97546e7 −1.66824
\(894\) −6.12034e6 −0.256113
\(895\) 0 0
\(896\) 4.32409e7 1.79939
\(897\) 1.75219e6 0.0727110
\(898\) −3.92407e6 −0.162385
\(899\) 2.68287e7 1.10714
\(900\) 0 0
\(901\) 2.52117e7 1.03464
\(902\) −1.12357e6 −0.0459816
\(903\) 1.02748e6 0.0419329
\(904\) 2.18497e7 0.889252
\(905\) 0 0
\(906\) −2.52960e6 −0.102384
\(907\) −2.78914e7 −1.12578 −0.562888 0.826533i \(-0.690310\pi\)
−0.562888 + 0.826533i \(0.690310\pi\)
\(908\) −8.80624e6 −0.354467
\(909\) −1.31286e7 −0.526998
\(910\) 0 0
\(911\) 3.28566e7 1.31168 0.655838 0.754901i \(-0.272315\pi\)
0.655838 + 0.754901i \(0.272315\pi\)
\(912\) −1.05095e7 −0.418402
\(913\) 1.66943e6 0.0662813
\(914\) −879904. −0.0348393
\(915\) 0 0
\(916\) 1.76831e6 0.0696337
\(917\) 4.13763e7 1.62491
\(918\) 3.92727e6 0.153810
\(919\) −4.82181e7 −1.88331 −0.941655 0.336580i \(-0.890730\pi\)
−0.941655 + 0.336580i \(0.890730\pi\)
\(920\) 0 0
\(921\) 1.50510e7 0.584679
\(922\) −1.64755e7 −0.638281
\(923\) −1.23195e7 −0.475981
\(924\) −3.25526e6 −0.125431
\(925\) 0 0
\(926\) 7.41293e6 0.284094
\(927\) −8.53189e6 −0.326096
\(928\) 3.27232e7 1.24734
\(929\) 3.03481e7 1.15370 0.576850 0.816850i \(-0.304282\pi\)
0.576850 + 0.816850i \(0.304282\pi\)
\(930\) 0 0
\(931\) 7.63821e7 2.88813
\(932\) 2.26269e7 0.853269
\(933\) 9.00601e6 0.338710
\(934\) −1.25635e7 −0.471241
\(935\) 0 0
\(936\) −1.84839e6 −0.0689612
\(937\) 1.60933e7 0.598820 0.299410 0.954125i \(-0.403210\pi\)
0.299410 + 0.954125i \(0.403210\pi\)
\(938\) −3.66829e7 −1.36131
\(939\) −5.51496e6 −0.204116
\(940\) 0 0
\(941\) −1.68509e6 −0.0620366 −0.0310183 0.999519i \(-0.509875\pi\)
−0.0310183 + 0.999519i \(0.509875\pi\)
\(942\) 1.40502e6 0.0515886
\(943\) 9.51399e6 0.348404
\(944\) 1.66575e6 0.0608385
\(945\) 0 0
\(946\) 67849.0 0.00246499
\(947\) 8.47809e6 0.307201 0.153601 0.988133i \(-0.450913\pi\)
0.153601 + 0.988133i \(0.450913\pi\)
\(948\) 2.25023e7 0.813215
\(949\) 998147. 0.0359773
\(950\) 0 0
\(951\) 1.36817e7 0.490557
\(952\) −7.24031e7 −2.58920
\(953\) 2.42401e7 0.864573 0.432286 0.901736i \(-0.357707\pi\)
0.432286 + 0.901736i \(0.357707\pi\)
\(954\) −2.00511e6 −0.0713291
\(955\) 0 0
\(956\) −1.72785e7 −0.611452
\(957\) −3.12633e6 −0.110346
\(958\) −1.23987e7 −0.436479
\(959\) −2.40436e7 −0.844213
\(960\) 0 0
\(961\) −7.75633e6 −0.270924
\(962\) 3.54115e6 0.123369
\(963\) 1.89764e7 0.659400
\(964\) 4.04159e7 1.40075
\(965\) 0 0
\(966\) −5.45858e6 −0.188207
\(967\) 2.22310e7 0.764528 0.382264 0.924053i \(-0.375144\pi\)
0.382264 + 0.924053i \(0.375144\pi\)
\(968\) 2.12739e7 0.729723
\(969\) 4.52364e7 1.54767
\(970\) 0 0
\(971\) −2.48740e7 −0.846636 −0.423318 0.905981i \(-0.639135\pi\)
−0.423318 + 0.905981i \(0.639135\pi\)
\(972\) 1.57723e6 0.0535462
\(973\) 8.15628e7 2.76191
\(974\) 1.80527e7 0.609741
\(975\) 0 0
\(976\) 2.19912e7 0.738966
\(977\) −3.30020e7 −1.10613 −0.553063 0.833140i \(-0.686541\pi\)
−0.553063 + 0.833140i \(0.686541\pi\)
\(978\) −3.26591e6 −0.109184
\(979\) 2.06866e6 0.0689816
\(980\) 0 0
\(981\) −1.66683e7 −0.552992
\(982\) 2.59519e6 0.0858797
\(983\) 6.32809e6 0.208876 0.104438 0.994531i \(-0.466696\pi\)
0.104438 + 0.994531i \(0.466696\pi\)
\(984\) −1.00364e7 −0.330437
\(985\) 0 0
\(986\) −3.16353e7 −1.03629
\(987\) −3.81697e7 −1.24717
\(988\) −9.68632e6 −0.315694
\(989\) −574520. −0.0186773
\(990\) 0 0
\(991\) 1.37930e7 0.446145 0.223072 0.974802i \(-0.428391\pi\)
0.223072 + 0.974802i \(0.428391\pi\)
\(992\) 2.54588e7 0.821407
\(993\) 1.53251e7 0.493207
\(994\) 3.83789e7 1.23205
\(995\) 0 0
\(996\) 6.78437e6 0.216701
\(997\) −4.62221e7 −1.47269 −0.736346 0.676605i \(-0.763450\pi\)
−0.736346 + 0.676605i \(0.763450\pi\)
\(998\) 2.20100e7 0.699510
\(999\) −6.64168e6 −0.210554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.6.a.u.1.7 yes 11
5.4 even 2 975.6.a.r.1.5 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
975.6.a.r.1.5 11 5.4 even 2
975.6.a.u.1.7 yes 11 1.1 even 1 trivial