Properties

Label 980.2.c.e.979.41
Level $980$
Weight $2$
Character 980.979
Analytic conductor $7.825$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,2,Mod(979,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.979");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 979.41
Character \(\chi\) \(=\) 980.979
Dual form 980.2.c.e.979.44

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.36075 - 0.385185i) q^{2} -0.423388i q^{3} +(1.70326 - 1.04828i) q^{4} +(-1.74517 + 1.39799i) q^{5} +(-0.163083 - 0.576124i) q^{6} +(1.91393 - 2.08252i) q^{8} +2.82074 q^{9} +(-1.83626 + 2.57452i) q^{10} +4.89551i q^{11} +(-0.443829 - 0.721142i) q^{12} -2.54664 q^{13} +(0.591890 + 0.738886i) q^{15} +(1.80222 - 3.57099i) q^{16} +5.11429 q^{17} +(3.83832 - 1.08651i) q^{18} +6.26601 q^{19} +(-1.50701 + 4.21057i) q^{20} +(1.88568 + 6.66155i) q^{22} +4.63109 q^{23} +(-0.881712 - 0.810335i) q^{24} +(1.09127 - 4.87946i) q^{25} +(-3.46533 + 0.980929i) q^{26} -2.46443i q^{27} -1.88958 q^{29} +(1.09002 + 0.777450i) q^{30} -1.47756 q^{31} +(1.07687 - 5.55341i) q^{32} +2.07270 q^{33} +(6.95926 - 1.96995i) q^{34} +(4.80447 - 2.95693i) q^{36} -2.35920i q^{37} +(8.52645 - 2.41357i) q^{38} +1.07822i q^{39} +(-0.428815 + 6.31000i) q^{40} -7.05393i q^{41} -10.7790 q^{43} +(5.13187 + 8.33835i) q^{44} +(-4.92269 + 3.94336i) q^{45} +(6.30175 - 1.78383i) q^{46} +12.2145i q^{47} +(-1.51192 - 0.763038i) q^{48} +(-0.394553 - 7.06005i) q^{50} -2.16533i q^{51} +(-4.33760 + 2.66959i) q^{52} -2.23621i q^{53} +(-0.949263 - 3.35347i) q^{54} +(-6.84386 - 8.54352i) q^{55} -2.65295i q^{57} +(-2.57124 + 0.727837i) q^{58} -5.69000 q^{59} +(1.78271 + 0.638052i) q^{60} +3.87005i q^{61} +(-2.01059 + 0.569136i) q^{62} +(-0.673743 - 7.97158i) q^{64} +(4.44433 - 3.56017i) q^{65} +(2.82042 - 0.798374i) q^{66} +0.889310 q^{67} +(8.71100 - 5.36121i) q^{68} -1.96075i q^{69} +14.3310i q^{71} +(5.39870 - 5.87424i) q^{72} +7.87187 q^{73} +(-0.908729 - 3.21027i) q^{74} +(-2.06590 - 0.462031i) q^{75} +(10.6727 - 6.56853i) q^{76} +(0.415314 + 1.46718i) q^{78} +4.63973i q^{79} +(1.84701 + 8.75149i) q^{80} +7.41882 q^{81} +(-2.71707 - 9.59861i) q^{82} -4.32876i q^{83} +(-8.92534 + 7.14971i) q^{85} +(-14.6675 + 4.15191i) q^{86} +0.800024i q^{87} +(10.1950 + 9.36967i) q^{88} -2.18254i q^{89} +(-5.17961 + 7.26206i) q^{90} +(7.88798 - 4.85468i) q^{92} +0.625583i q^{93} +(4.70485 + 16.6208i) q^{94} +(-10.9353 + 8.75979i) q^{95} +(-2.35125 - 0.455934i) q^{96} -3.42330 q^{97} +13.8090i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 16 q^{4} - 64 q^{9} + 16 q^{16} - 16 q^{25} - 48 q^{29} - 8 q^{30} + 176 q^{36} - 48 q^{44} - 32 q^{46} + 32 q^{50} + 24 q^{60} - 80 q^{64} - 16 q^{65} - 112 q^{74} - 48 q^{81} - 64 q^{85} - 112 q^{86}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36075 0.385185i 0.962193 0.272367i
\(3\) 0.423388i 0.244443i −0.992503 0.122222i \(-0.960998\pi\)
0.992503 0.122222i \(-0.0390019\pi\)
\(4\) 1.70326 1.04828i 0.851632 0.524140i
\(5\) −1.74517 + 1.39799i −0.780466 + 0.625198i
\(6\) −0.163083 0.576124i −0.0665783 0.235202i
\(7\) 0 0
\(8\) 1.91393 2.08252i 0.676676 0.736280i
\(9\) 2.82074 0.940248
\(10\) −1.83626 + 2.57452i −0.580676 + 0.814135i
\(11\) 4.89551i 1.47605i 0.674772 + 0.738026i \(0.264242\pi\)
−0.674772 + 0.738026i \(0.735758\pi\)
\(12\) −0.443829 0.721142i −0.128122 0.208176i
\(13\) −2.54664 −0.706311 −0.353156 0.935565i \(-0.614891\pi\)
−0.353156 + 0.935565i \(0.614891\pi\)
\(14\) 0 0
\(15\) 0.591890 + 0.738886i 0.152825 + 0.190780i
\(16\) 1.80222 3.57099i 0.450555 0.892749i
\(17\) 5.11429 1.24040 0.620199 0.784444i \(-0.287052\pi\)
0.620199 + 0.784444i \(0.287052\pi\)
\(18\) 3.83832 1.08651i 0.904700 0.256093i
\(19\) 6.26601 1.43752 0.718760 0.695258i \(-0.244710\pi\)
0.718760 + 0.695258i \(0.244710\pi\)
\(20\) −1.50701 + 4.21057i −0.336979 + 0.941512i
\(21\) 0 0
\(22\) 1.88568 + 6.66155i 0.402028 + 1.42025i
\(23\) 4.63109 0.965650 0.482825 0.875717i \(-0.339611\pi\)
0.482825 + 0.875717i \(0.339611\pi\)
\(24\) −0.881712 0.810335i −0.179979 0.165409i
\(25\) 1.09127 4.87946i 0.218254 0.975892i
\(26\) −3.46533 + 0.980929i −0.679608 + 0.192376i
\(27\) 2.46443i 0.474280i
\(28\) 0 0
\(29\) −1.88958 −0.350886 −0.175443 0.984490i \(-0.556136\pi\)
−0.175443 + 0.984490i \(0.556136\pi\)
\(30\) 1.09002 + 0.777450i 0.199010 + 0.141942i
\(31\) −1.47756 −0.265378 −0.132689 0.991158i \(-0.542361\pi\)
−0.132689 + 0.991158i \(0.542361\pi\)
\(32\) 1.07687 5.55341i 0.190366 0.981713i
\(33\) 2.07270 0.360811
\(34\) 6.95926 1.96995i 1.19350 0.337844i
\(35\) 0 0
\(36\) 4.80447 2.95693i 0.800745 0.492821i
\(37\) 2.35920i 0.387850i −0.981016 0.193925i \(-0.937878\pi\)
0.981016 0.193925i \(-0.0621218\pi\)
\(38\) 8.52645 2.41357i 1.38317 0.391533i
\(39\) 1.07822i 0.172653i
\(40\) −0.428815 + 6.31000i −0.0678016 + 0.997699i
\(41\) 7.05393i 1.10164i −0.834624 0.550819i \(-0.814315\pi\)
0.834624 0.550819i \(-0.185685\pi\)
\(42\) 0 0
\(43\) −10.7790 −1.64378 −0.821890 0.569646i \(-0.807080\pi\)
−0.821890 + 0.569646i \(0.807080\pi\)
\(44\) 5.13187 + 8.33835i 0.773658 + 1.25705i
\(45\) −4.92269 + 3.94336i −0.733831 + 0.587841i
\(46\) 6.30175 1.78383i 0.929142 0.263011i
\(47\) 12.2145i 1.78167i 0.454329 + 0.890834i \(0.349879\pi\)
−0.454329 + 0.890834i \(0.650121\pi\)
\(48\) −1.51192 0.763038i −0.218226 0.110135i
\(49\) 0 0
\(50\) −0.394553 7.06005i −0.0557982 0.998442i
\(51\) 2.16533i 0.303207i
\(52\) −4.33760 + 2.66959i −0.601517 + 0.370206i
\(53\) 2.23621i 0.307167i −0.988136 0.153583i \(-0.950919\pi\)
0.988136 0.153583i \(-0.0490813\pi\)
\(54\) −0.949263 3.35347i −0.129178 0.456349i
\(55\) −6.84386 8.54352i −0.922825 1.15201i
\(56\) 0 0
\(57\) 2.65295i 0.351392i
\(58\) −2.57124 + 0.727837i −0.337620 + 0.0955697i
\(59\) −5.69000 −0.740774 −0.370387 0.928877i \(-0.620775\pi\)
−0.370387 + 0.928877i \(0.620775\pi\)
\(60\) 1.78271 + 0.638052i 0.230146 + 0.0823721i
\(61\) 3.87005i 0.495509i 0.968823 + 0.247754i \(0.0796926\pi\)
−0.968823 + 0.247754i \(0.920307\pi\)
\(62\) −2.01059 + 0.569136i −0.255345 + 0.0722803i
\(63\) 0 0
\(64\) −0.673743 7.97158i −0.0842179 0.996447i
\(65\) 4.44433 3.56017i 0.551252 0.441585i
\(66\) 2.82042 0.798374i 0.347170 0.0982731i
\(67\) 0.889310 0.108646 0.0543232 0.998523i \(-0.482700\pi\)
0.0543232 + 0.998523i \(0.482700\pi\)
\(68\) 8.71100 5.36121i 1.05636 0.650142i
\(69\) 1.96075i 0.236046i
\(70\) 0 0
\(71\) 14.3310i 1.70078i 0.526152 + 0.850391i \(0.323634\pi\)
−0.526152 + 0.850391i \(0.676366\pi\)
\(72\) 5.39870 5.87424i 0.636243 0.692286i
\(73\) 7.87187 0.921333 0.460667 0.887573i \(-0.347610\pi\)
0.460667 + 0.887573i \(0.347610\pi\)
\(74\) −0.908729 3.21027i −0.105638 0.373187i
\(75\) −2.06590 0.462031i −0.238550 0.0533507i
\(76\) 10.6727 6.56853i 1.22424 0.753462i
\(77\) 0 0
\(78\) 0.415314 + 1.46718i 0.0470250 + 0.166126i
\(79\) 4.63973i 0.522010i 0.965337 + 0.261005i \(0.0840540\pi\)
−0.965337 + 0.261005i \(0.915946\pi\)
\(80\) 1.84701 + 8.75149i 0.206502 + 0.978446i
\(81\) 7.41882 0.824313
\(82\) −2.71707 9.59861i −0.300050 1.05999i
\(83\) 4.32876i 0.475143i −0.971370 0.237571i \(-0.923649\pi\)
0.971370 0.237571i \(-0.0763514\pi\)
\(84\) 0 0
\(85\) −8.92534 + 7.14971i −0.968089 + 0.775495i
\(86\) −14.6675 + 4.15191i −1.58163 + 0.447712i
\(87\) 0.800024i 0.0857716i
\(88\) 10.1950 + 9.36967i 1.08679 + 0.998810i
\(89\) 2.18254i 0.231349i −0.993287 0.115674i \(-0.963097\pi\)
0.993287 0.115674i \(-0.0369029\pi\)
\(90\) −5.17961 + 7.26206i −0.545979 + 0.765488i
\(91\) 0 0
\(92\) 7.88798 4.85468i 0.822378 0.506135i
\(93\) 0.625583i 0.0648699i
\(94\) 4.70485 + 16.6208i 0.485268 + 1.71431i
\(95\) −10.9353 + 8.75979i −1.12194 + 0.898735i
\(96\) −2.35125 0.455934i −0.239973 0.0465336i
\(97\) −3.42330 −0.347584 −0.173792 0.984782i \(-0.555602\pi\)
−0.173792 + 0.984782i \(0.555602\pi\)
\(98\) 0 0
\(99\) 13.8090i 1.38785i
\(100\) −3.25631 9.45497i −0.325631 0.945497i
\(101\) 7.30698i 0.727072i −0.931580 0.363536i \(-0.881569\pi\)
0.931580 0.363536i \(-0.118431\pi\)
\(102\) −0.834054 2.94647i −0.0825836 0.291744i
\(103\) 6.75072i 0.665168i −0.943074 0.332584i \(-0.892079\pi\)
0.943074 0.332584i \(-0.107921\pi\)
\(104\) −4.87409 + 5.30342i −0.477944 + 0.520043i
\(105\) 0 0
\(106\) −0.861354 3.04291i −0.0836621 0.295554i
\(107\) −9.82994 −0.950296 −0.475148 0.879906i \(-0.657605\pi\)
−0.475148 + 0.879906i \(0.657605\pi\)
\(108\) −2.58341 4.19758i −0.248589 0.403912i
\(109\) −9.41221 −0.901526 −0.450763 0.892644i \(-0.648848\pi\)
−0.450763 + 0.892644i \(0.648848\pi\)
\(110\) −12.6036 8.98942i −1.20171 0.857108i
\(111\) −0.998857 −0.0948073
\(112\) 0 0
\(113\) 15.9261i 1.49820i −0.662455 0.749102i \(-0.730485\pi\)
0.662455 0.749102i \(-0.269515\pi\)
\(114\) −1.02188 3.61000i −0.0957077 0.338107i
\(115\) −8.08207 + 6.47420i −0.753657 + 0.603722i
\(116\) −3.21845 + 1.98080i −0.298826 + 0.183913i
\(117\) −7.18342 −0.664107
\(118\) −7.74264 + 2.19170i −0.712768 + 0.201763i
\(119\) 0 0
\(120\) 2.67158 + 0.181555i 0.243881 + 0.0165736i
\(121\) −12.9660 −1.17873
\(122\) 1.49069 + 5.26615i 0.134960 + 0.476775i
\(123\) −2.98655 −0.269288
\(124\) −2.51668 + 1.54890i −0.226005 + 0.139095i
\(125\) 4.91696 + 10.0411i 0.439786 + 0.898103i
\(126\) 0 0
\(127\) −12.2192 −1.08428 −0.542138 0.840290i \(-0.682385\pi\)
−0.542138 + 0.840290i \(0.682385\pi\)
\(128\) −3.98733 10.5878i −0.352433 0.935837i
\(129\) 4.56369i 0.401811i
\(130\) 4.67629 6.55638i 0.410138 0.575033i
\(131\) 9.85060 0.860651 0.430325 0.902674i \(-0.358399\pi\)
0.430325 + 0.902674i \(0.358399\pi\)
\(132\) 3.53036 2.17277i 0.307278 0.189115i
\(133\) 0 0
\(134\) 1.21013 0.342549i 0.104539 0.0295917i
\(135\) 3.44524 + 4.30087i 0.296519 + 0.370160i
\(136\) 9.78840 10.6506i 0.839348 0.913281i
\(137\) 4.69484i 0.401107i −0.979683 0.200554i \(-0.935726\pi\)
0.979683 0.200554i \(-0.0642741\pi\)
\(138\) −0.755252 2.66808i −0.0642913 0.227122i
\(139\) −13.8745 −1.17682 −0.588409 0.808564i \(-0.700245\pi\)
−0.588409 + 0.808564i \(0.700245\pi\)
\(140\) 0 0
\(141\) 5.17147 0.435516
\(142\) 5.52011 + 19.5009i 0.463237 + 1.63648i
\(143\) 12.4671i 1.04255i
\(144\) 5.08360 10.0729i 0.423633 0.839405i
\(145\) 3.29764 2.64160i 0.273854 0.219373i
\(146\) 10.7116 3.03213i 0.886501 0.250941i
\(147\) 0 0
\(148\) −2.47310 4.01834i −0.203288 0.330306i
\(149\) −5.46359 −0.447595 −0.223797 0.974636i \(-0.571845\pi\)
−0.223797 + 0.974636i \(0.571845\pi\)
\(150\) −2.98914 + 0.167049i −0.244062 + 0.0136395i
\(151\) 1.49611i 0.121751i 0.998145 + 0.0608757i \(0.0193893\pi\)
−0.998145 + 0.0608757i \(0.980611\pi\)
\(152\) 11.9927 13.0491i 0.972736 1.05842i
\(153\) 14.4261 1.16628
\(154\) 0 0
\(155\) 2.57861 2.06561i 0.207119 0.165914i
\(156\) 1.13027 + 1.83649i 0.0904943 + 0.147037i
\(157\) −22.9035 −1.82790 −0.913948 0.405831i \(-0.866982\pi\)
−0.913948 + 0.405831i \(0.866982\pi\)
\(158\) 1.78716 + 6.31350i 0.142179 + 0.502275i
\(159\) −0.946783 −0.0750848
\(160\) 5.88426 + 11.1971i 0.465192 + 0.885210i
\(161\) 0 0
\(162\) 10.0951 2.85762i 0.793148 0.224516i
\(163\) 1.93051 0.151209 0.0756047 0.997138i \(-0.475911\pi\)
0.0756047 + 0.997138i \(0.475911\pi\)
\(164\) −7.39449 12.0147i −0.577413 0.938191i
\(165\) −3.61723 + 2.89761i −0.281601 + 0.225578i
\(166\) −1.66737 5.89034i −0.129413 0.457179i
\(167\) 16.9677i 1.31300i 0.754327 + 0.656499i \(0.227963\pi\)
−0.754327 + 0.656499i \(0.772037\pi\)
\(168\) 0 0
\(169\) −6.51462 −0.501124
\(170\) −9.39116 + 13.1669i −0.720269 + 1.00985i
\(171\) 17.6748 1.35163
\(172\) −18.3595 + 11.2994i −1.39990 + 0.861570i
\(173\) 10.0363 0.763047 0.381524 0.924359i \(-0.375399\pi\)
0.381524 + 0.924359i \(0.375399\pi\)
\(174\) 0.308158 + 1.08863i 0.0233614 + 0.0825289i
\(175\) 0 0
\(176\) 17.4818 + 8.82279i 1.31774 + 0.665043i
\(177\) 2.40908i 0.181077i
\(178\) −0.840682 2.96988i −0.0630118 0.222602i
\(179\) 3.55282i 0.265550i 0.991146 + 0.132775i \(0.0423888\pi\)
−0.991146 + 0.132775i \(0.957611\pi\)
\(180\) −4.25090 + 11.8769i −0.316843 + 0.885255i
\(181\) 22.2716i 1.65543i −0.561148 0.827716i \(-0.689640\pi\)
0.561148 0.827716i \(-0.310360\pi\)
\(182\) 0 0
\(183\) 1.63853 0.121124
\(184\) 8.86359 9.64432i 0.653432 0.710989i
\(185\) 3.29813 + 4.11722i 0.242483 + 0.302704i
\(186\) 0.240965 + 0.851260i 0.0176684 + 0.0624174i
\(187\) 25.0371i 1.83089i
\(188\) 12.8042 + 20.8045i 0.933843 + 1.51733i
\(189\) 0 0
\(190\) −11.5060 + 16.1320i −0.834733 + 1.17034i
\(191\) 17.8460i 1.29129i −0.763636 0.645647i \(-0.776588\pi\)
0.763636 0.645647i \(-0.223412\pi\)
\(192\) −3.37507 + 0.285255i −0.243575 + 0.0205865i
\(193\) 18.2331i 1.31245i 0.754567 + 0.656223i \(0.227847\pi\)
−0.754567 + 0.656223i \(0.772153\pi\)
\(194\) −4.65825 + 1.31861i −0.334443 + 0.0946703i
\(195\) −1.50733 1.88168i −0.107942 0.134750i
\(196\) 0 0
\(197\) 11.3569i 0.809148i 0.914505 + 0.404574i \(0.132580\pi\)
−0.914505 + 0.404574i \(0.867420\pi\)
\(198\) 5.31902 + 18.7905i 0.378006 + 1.33538i
\(199\) 9.02829 0.639998 0.319999 0.947418i \(-0.396317\pi\)
0.319999 + 0.947418i \(0.396317\pi\)
\(200\) −8.07294 11.6115i −0.570843 0.821059i
\(201\) 0.376523i 0.0265579i
\(202\) −2.81454 9.94295i −0.198030 0.699584i
\(203\) 0 0
\(204\) −2.26987 3.68813i −0.158923 0.258221i
\(205\) 9.86129 + 12.3103i 0.688743 + 0.859792i
\(206\) −2.60028 9.18602i −0.181170 0.640021i
\(207\) 13.0631 0.907950
\(208\) −4.58961 + 9.09404i −0.318232 + 0.630558i
\(209\) 30.6753i 2.12186i
\(210\) 0 0
\(211\) 4.40164i 0.303021i −0.988456 0.151511i \(-0.951586\pi\)
0.988456 0.151511i \(-0.0484138\pi\)
\(212\) −2.34417 3.80885i −0.160998 0.261593i
\(213\) 6.06759 0.415744
\(214\) −13.3761 + 3.78635i −0.914369 + 0.258829i
\(215\) 18.8112 15.0689i 1.28291 1.02769i
\(216\) −5.13222 4.71675i −0.349203 0.320934i
\(217\) 0 0
\(218\) −12.8076 + 3.62544i −0.867442 + 0.245546i
\(219\) 3.33286i 0.225214i
\(220\) −20.6129 7.37761i −1.38972 0.497398i
\(221\) −13.0243 −0.876107
\(222\) −1.35919 + 0.384745i −0.0912230 + 0.0258224i
\(223\) 14.1103i 0.944899i −0.881358 0.472449i \(-0.843370\pi\)
0.881358 0.472449i \(-0.156630\pi\)
\(224\) 0 0
\(225\) 3.07819 13.7637i 0.205213 0.917580i
\(226\) −6.13451 21.6714i −0.408062 1.44156i
\(227\) 10.9976i 0.729936i −0.931020 0.364968i \(-0.881080\pi\)
0.931020 0.364968i \(-0.118920\pi\)
\(228\) −2.78104 4.51868i −0.184179 0.299257i
\(229\) 8.10937i 0.535883i 0.963435 + 0.267941i \(0.0863433\pi\)
−0.963435 + 0.267941i \(0.913657\pi\)
\(230\) −8.50388 + 11.9228i −0.560729 + 0.786169i
\(231\) 0 0
\(232\) −3.61652 + 3.93507i −0.237436 + 0.258350i
\(233\) 15.8742i 1.03995i 0.854180 + 0.519977i \(0.174059\pi\)
−0.854180 + 0.519977i \(0.825941\pi\)
\(234\) −9.77482 + 2.76695i −0.639000 + 0.180881i
\(235\) −17.0757 21.3164i −1.11390 1.39053i
\(236\) −9.69157 + 5.96471i −0.630867 + 0.388269i
\(237\) 1.96441 0.127602
\(238\) 0 0
\(239\) 24.4934i 1.58435i −0.610295 0.792174i \(-0.708949\pi\)
0.610295 0.792174i \(-0.291051\pi\)
\(240\) 3.70528 0.782002i 0.239175 0.0504780i
\(241\) 19.1862i 1.23589i −0.786222 0.617945i \(-0.787966\pi\)
0.786222 0.617945i \(-0.212034\pi\)
\(242\) −17.6435 + 4.99433i −1.13417 + 0.321048i
\(243\) 10.5343i 0.675778i
\(244\) 4.05689 + 6.59171i 0.259716 + 0.421991i
\(245\) 0 0
\(246\) −4.06394 + 1.15038i −0.259107 + 0.0733452i
\(247\) −15.9573 −1.01534
\(248\) −2.82795 + 3.07705i −0.179575 + 0.195393i
\(249\) −1.83274 −0.116145
\(250\) 10.5584 + 11.7694i 0.667773 + 0.744365i
\(251\) 21.1323 1.33386 0.666929 0.745121i \(-0.267608\pi\)
0.666929 + 0.745121i \(0.267608\pi\)
\(252\) 0 0
\(253\) 22.6716i 1.42535i
\(254\) −16.6272 + 4.70664i −1.04328 + 0.295321i
\(255\) 3.02710 + 3.77888i 0.189564 + 0.236643i
\(256\) −9.50401 12.8714i −0.594000 0.804465i
\(257\) −25.6520 −1.60013 −0.800064 0.599915i \(-0.795201\pi\)
−0.800064 + 0.599915i \(0.795201\pi\)
\(258\) 1.75787 + 6.21003i 0.109440 + 0.386620i
\(259\) 0 0
\(260\) 3.83783 10.7228i 0.238012 0.665001i
\(261\) −5.33001 −0.329919
\(262\) 13.4042 3.79431i 0.828113 0.234413i
\(263\) −10.0198 −0.617845 −0.308922 0.951087i \(-0.599968\pi\)
−0.308922 + 0.951087i \(0.599968\pi\)
\(264\) 3.96701 4.31643i 0.244152 0.265658i
\(265\) 3.12619 + 3.90257i 0.192040 + 0.239733i
\(266\) 0 0
\(267\) −0.924061 −0.0565516
\(268\) 1.51473 0.932245i 0.0925269 0.0569459i
\(269\) 13.6945i 0.834966i −0.908685 0.417483i \(-0.862912\pi\)
0.908685 0.417483i \(-0.137088\pi\)
\(270\) 6.34473 + 4.52533i 0.386128 + 0.275403i
\(271\) −15.3609 −0.933107 −0.466554 0.884493i \(-0.654505\pi\)
−0.466554 + 0.884493i \(0.654505\pi\)
\(272\) 9.21708 18.2631i 0.558868 1.10736i
\(273\) 0 0
\(274\) −1.80838 6.38849i −0.109249 0.385943i
\(275\) 23.8875 + 5.34233i 1.44047 + 0.322155i
\(276\) −2.05541 3.33967i −0.123721 0.201025i
\(277\) 17.8089i 1.07004i 0.844841 + 0.535018i \(0.179695\pi\)
−0.844841 + 0.535018i \(0.820305\pi\)
\(278\) −18.8796 + 5.34424i −1.13233 + 0.320526i
\(279\) −4.16783 −0.249521
\(280\) 0 0
\(281\) 29.6169 1.76680 0.883398 0.468624i \(-0.155250\pi\)
0.883398 + 0.468624i \(0.155250\pi\)
\(282\) 7.03706 1.99198i 0.419051 0.118620i
\(283\) 3.57827i 0.212706i −0.994328 0.106353i \(-0.966083\pi\)
0.994328 0.106353i \(-0.0339174\pi\)
\(284\) 15.0229 + 24.4095i 0.891447 + 1.44844i
\(285\) 3.70879 + 4.62987i 0.219690 + 0.274250i
\(286\) −4.80215 16.9646i −0.283957 1.00314i
\(287\) 0 0
\(288\) 3.03757 15.6647i 0.178991 0.923053i
\(289\) 9.15600 0.538588
\(290\) 3.46975 4.86476i 0.203751 0.285668i
\(291\) 1.44938i 0.0849644i
\(292\) 13.4079 8.25192i 0.784637 0.482907i
\(293\) −17.7739 −1.03836 −0.519180 0.854665i \(-0.673763\pi\)
−0.519180 + 0.854665i \(0.673763\pi\)
\(294\) 0 0
\(295\) 9.93004 7.95453i 0.578149 0.463131i
\(296\) −4.91307 4.51534i −0.285566 0.262449i
\(297\) 12.0647 0.700063
\(298\) −7.43456 + 2.10449i −0.430673 + 0.121910i
\(299\) −11.7937 −0.682049
\(300\) −4.00312 + 1.37868i −0.231120 + 0.0795984i
\(301\) 0 0
\(302\) 0.576278 + 2.03582i 0.0331611 + 0.117148i
\(303\) −3.09369 −0.177728
\(304\) 11.2927 22.3759i 0.647682 1.28334i
\(305\) −5.41027 6.75391i −0.309791 0.386728i
\(306\) 19.6303 5.55672i 1.12219 0.317657i
\(307\) 32.8923i 1.87726i 0.344923 + 0.938631i \(0.387905\pi\)
−0.344923 + 0.938631i \(0.612095\pi\)
\(308\) 0 0
\(309\) −2.85818 −0.162596
\(310\) 2.71319 3.80402i 0.154099 0.216054i
\(311\) −19.8748 −1.12700 −0.563499 0.826117i \(-0.690545\pi\)
−0.563499 + 0.826117i \(0.690545\pi\)
\(312\) 2.24540 + 2.06363i 0.127121 + 0.116830i
\(313\) −6.37144 −0.360135 −0.180068 0.983654i \(-0.557632\pi\)
−0.180068 + 0.983654i \(0.557632\pi\)
\(314\) −31.1658 + 8.82208i −1.75879 + 0.497859i
\(315\) 0 0
\(316\) 4.86373 + 7.90269i 0.273606 + 0.444561i
\(317\) 17.0023i 0.954942i −0.878648 0.477471i \(-0.841554\pi\)
0.878648 0.477471i \(-0.158446\pi\)
\(318\) −1.28833 + 0.364687i −0.0722461 + 0.0204506i
\(319\) 9.25045i 0.517926i
\(320\) 12.3200 + 12.9699i 0.688706 + 0.725040i
\(321\) 4.16188i 0.232293i
\(322\) 0 0
\(323\) 32.0462 1.78310
\(324\) 12.6362 7.77699i 0.702011 0.432055i
\(325\) −2.77908 + 12.4262i −0.154155 + 0.689283i
\(326\) 2.62694 0.743605i 0.145493 0.0411845i
\(327\) 3.98502i 0.220372i
\(328\) −14.6899 13.5007i −0.811115 0.745453i
\(329\) 0 0
\(330\) −3.80601 + 5.33621i −0.209514 + 0.293749i
\(331\) 14.6613i 0.805857i 0.915231 + 0.402929i \(0.132008\pi\)
−0.915231 + 0.402929i \(0.867992\pi\)
\(332\) −4.53775 7.37302i −0.249041 0.404647i
\(333\) 6.65469i 0.364675i
\(334\) 6.53570 + 23.0887i 0.357618 + 1.26336i
\(335\) −1.55200 + 1.24324i −0.0847949 + 0.0679256i
\(336\) 0 0
\(337\) 15.2435i 0.830368i −0.909738 0.415184i \(-0.863717\pi\)
0.909738 0.415184i \(-0.136283\pi\)
\(338\) −8.86475 + 2.50934i −0.482179 + 0.136490i
\(339\) −6.74293 −0.366226
\(340\) −7.70731 + 21.5341i −0.417988 + 1.16785i
\(341\) 7.23343i 0.391712i
\(342\) 24.0509 6.80807i 1.30052 0.368138i
\(343\) 0 0
\(344\) −20.6302 + 22.4474i −1.11231 + 1.21028i
\(345\) 2.74110 + 3.42185i 0.147576 + 0.184226i
\(346\) 13.6569 3.86584i 0.734199 0.207829i
\(347\) 33.4194 1.79405 0.897024 0.441983i \(-0.145725\pi\)
0.897024 + 0.441983i \(0.145725\pi\)
\(348\) 0.838649 + 1.36265i 0.0449563 + 0.0730459i
\(349\) 16.1586i 0.864951i −0.901646 0.432476i \(-0.857640\pi\)
0.901646 0.432476i \(-0.142360\pi\)
\(350\) 0 0
\(351\) 6.27603i 0.334990i
\(352\) 27.1868 + 5.27183i 1.44906 + 0.280990i
\(353\) −22.6854 −1.20742 −0.603711 0.797203i \(-0.706312\pi\)
−0.603711 + 0.797203i \(0.706312\pi\)
\(354\) 0.927941 + 3.27814i 0.0493195 + 0.174231i
\(355\) −20.0346 25.0102i −1.06333 1.32740i
\(356\) −2.28791 3.71744i −0.121259 0.197024i
\(357\) 0 0
\(358\) 1.36850 + 4.83449i 0.0723272 + 0.255511i
\(359\) 16.7678i 0.884971i −0.896776 0.442486i \(-0.854097\pi\)
0.896776 0.442486i \(-0.145903\pi\)
\(360\) −1.20958 + 17.7989i −0.0637503 + 0.938084i
\(361\) 20.2628 1.06647
\(362\) −8.57867 30.3059i −0.450885 1.59285i
\(363\) 5.48966i 0.288133i
\(364\) 0 0
\(365\) −13.7378 + 11.0048i −0.719069 + 0.576016i
\(366\) 2.22963 0.631138i 0.116544 0.0329901i
\(367\) 15.6432i 0.816567i 0.912855 + 0.408284i \(0.133873\pi\)
−0.912855 + 0.408284i \(0.866127\pi\)
\(368\) 8.34625 16.5376i 0.435078 0.862082i
\(369\) 19.8973i 1.03581i
\(370\) 6.07381 + 4.33210i 0.315762 + 0.225215i
\(371\) 0 0
\(372\) 0.655785 + 1.06553i 0.0340009 + 0.0552453i
\(373\) 17.1045i 0.885637i −0.896611 0.442819i \(-0.853979\pi\)
0.896611 0.442819i \(-0.146021\pi\)
\(374\) 9.64392 + 34.0691i 0.498675 + 1.76167i
\(375\) 4.25128 2.08178i 0.219535 0.107503i
\(376\) 25.4369 + 23.3777i 1.31181 + 1.20561i
\(377\) 4.81207 0.247834
\(378\) 0 0
\(379\) 10.3762i 0.532990i −0.963836 0.266495i \(-0.914134\pi\)
0.963836 0.266495i \(-0.0858655\pi\)
\(380\) −9.44296 + 26.3835i −0.484414 + 1.35344i
\(381\) 5.17345i 0.265044i
\(382\) −6.87403 24.2839i −0.351706 1.24247i
\(383\) 9.23779i 0.472029i −0.971750 0.236015i \(-0.924159\pi\)
0.971750 0.236015i \(-0.0758413\pi\)
\(384\) −4.48274 + 1.68819i −0.228759 + 0.0861500i
\(385\) 0 0
\(386\) 7.02311 + 24.8106i 0.357467 + 1.26283i
\(387\) −30.4047 −1.54556
\(388\) −5.83079 + 3.58858i −0.296013 + 0.182182i
\(389\) 17.0843 0.866208 0.433104 0.901344i \(-0.357418\pi\)
0.433104 + 0.901344i \(0.357418\pi\)
\(390\) −2.77589 1.97989i −0.140563 0.100255i
\(391\) 23.6848 1.19779
\(392\) 0 0
\(393\) 4.17063i 0.210380i
\(394\) 4.37452 + 15.4539i 0.220385 + 0.778557i
\(395\) −6.48628 8.09714i −0.326360 0.407411i
\(396\) 14.4757 + 23.5203i 0.727430 + 1.18194i
\(397\) 33.5365 1.68315 0.841573 0.540143i \(-0.181630\pi\)
0.841573 + 0.540143i \(0.181630\pi\)
\(398\) 12.2852 3.47756i 0.615802 0.174315i
\(399\) 0 0
\(400\) −15.4578 12.6908i −0.772891 0.634539i
\(401\) −12.8286 −0.640627 −0.320314 0.947312i \(-0.603788\pi\)
−0.320314 + 0.947312i \(0.603788\pi\)
\(402\) −0.145031 0.512353i −0.00723350 0.0255538i
\(403\) 3.76282 0.187440
\(404\) −7.65976 12.4457i −0.381087 0.619198i
\(405\) −12.9471 + 10.3714i −0.643348 + 0.515359i
\(406\) 0 0
\(407\) 11.5495 0.572487
\(408\) −4.50934 4.14429i −0.223245 0.205173i
\(409\) 21.5972i 1.06791i 0.845511 + 0.533957i \(0.179296\pi\)
−0.845511 + 0.533957i \(0.820704\pi\)
\(410\) 18.1605 + 12.9528i 0.896883 + 0.639695i
\(411\) −1.98774 −0.0980480
\(412\) −7.07664 11.4983i −0.348641 0.566479i
\(413\) 0 0
\(414\) 17.7756 5.03172i 0.873623 0.247296i
\(415\) 6.05154 + 7.55444i 0.297058 + 0.370833i
\(416\) −2.74240 + 14.1425i −0.134457 + 0.693395i
\(417\) 5.87429i 0.287665i
\(418\) 11.8157 + 41.7413i 0.577924 + 2.04164i
\(419\) 18.7281 0.914929 0.457464 0.889228i \(-0.348758\pi\)
0.457464 + 0.889228i \(0.348758\pi\)
\(420\) 0 0
\(421\) −18.9665 −0.924371 −0.462186 0.886783i \(-0.652935\pi\)
−0.462186 + 0.886783i \(0.652935\pi\)
\(422\) −1.69545 5.98951i −0.0825330 0.291565i
\(423\) 34.4540i 1.67521i
\(424\) −4.65694 4.27994i −0.226161 0.207852i
\(425\) 5.58108 24.9550i 0.270722 1.21049i
\(426\) 8.25645 2.33715i 0.400026 0.113235i
\(427\) 0 0
\(428\) −16.7430 + 10.3045i −0.809303 + 0.498088i
\(429\) −5.27843 −0.254845
\(430\) 19.7930 27.7507i 0.954503 1.33826i
\(431\) 27.0242i 1.30171i −0.759203 0.650854i \(-0.774411\pi\)
0.759203 0.650854i \(-0.225589\pi\)
\(432\) −8.80048 4.44145i −0.423413 0.213689i
\(433\) 15.0015 0.720928 0.360464 0.932773i \(-0.382618\pi\)
0.360464 + 0.932773i \(0.382618\pi\)
\(434\) 0 0
\(435\) −1.11842 1.39618i −0.0536243 0.0669418i
\(436\) −16.0315 + 9.86662i −0.767769 + 0.472526i
\(437\) 29.0185 1.38814
\(438\) −1.28377 4.53517i −0.0613408 0.216699i
\(439\) −18.4380 −0.879997 −0.439998 0.897999i \(-0.645021\pi\)
−0.439998 + 0.897999i \(0.645021\pi\)
\(440\) −30.8907 2.09927i −1.47266 0.100079i
\(441\) 0 0
\(442\) −17.7227 + 5.01676i −0.842985 + 0.238623i
\(443\) 20.8595 0.991067 0.495533 0.868589i \(-0.334973\pi\)
0.495533 + 0.868589i \(0.334973\pi\)
\(444\) −1.70132 + 1.04708i −0.0807410 + 0.0496923i
\(445\) 3.05116 + 3.80891i 0.144639 + 0.180560i
\(446\) −5.43510 19.2006i −0.257359 0.909175i
\(447\) 2.31322i 0.109411i
\(448\) 0 0
\(449\) 14.6483 0.691298 0.345649 0.938364i \(-0.387659\pi\)
0.345649 + 0.938364i \(0.387659\pi\)
\(450\) −1.11293 19.9146i −0.0524641 0.938783i
\(451\) 34.5326 1.62608
\(452\) −16.6950 27.1264i −0.785268 1.27592i
\(453\) 0.633433 0.0297613
\(454\) −4.23611 14.9649i −0.198811 0.702339i
\(455\) 0 0
\(456\) −5.52481 5.07756i −0.258723 0.237779i
\(457\) 1.19001i 0.0556663i −0.999613 0.0278331i \(-0.991139\pi\)
0.999613 0.0278331i \(-0.00886070\pi\)
\(458\) 3.12361 + 11.0348i 0.145957 + 0.515623i
\(459\) 12.6038i 0.588297i
\(460\) −6.97912 + 19.4995i −0.325403 + 0.909171i
\(461\) 14.5645i 0.678336i −0.940726 0.339168i \(-0.889854\pi\)
0.940726 0.339168i \(-0.110146\pi\)
\(462\) 0 0
\(463\) 4.69391 0.218145 0.109072 0.994034i \(-0.465212\pi\)
0.109072 + 0.994034i \(0.465212\pi\)
\(464\) −3.40543 + 6.74767i −0.158093 + 0.313253i
\(465\) −0.874556 1.09175i −0.0405565 0.0506287i
\(466\) 6.11451 + 21.6008i 0.283249 + 1.00064i
\(467\) 25.2818i 1.16990i 0.811068 + 0.584952i \(0.198887\pi\)
−0.811068 + 0.584952i \(0.801113\pi\)
\(468\) −12.2353 + 7.53023i −0.565575 + 0.348085i
\(469\) 0 0
\(470\) −31.4465 22.4290i −1.45052 1.03457i
\(471\) 9.69706i 0.446817i
\(472\) −10.8903 + 11.8495i −0.501265 + 0.545418i
\(473\) 52.7686i 2.42631i
\(474\) 2.67306 0.756661i 0.122778 0.0347546i
\(475\) 6.83791 30.5747i 0.313745 1.40286i
\(476\) 0 0
\(477\) 6.30776i 0.288813i
\(478\) −9.43451 33.3294i −0.431525 1.52445i
\(479\) −4.10286 −0.187464 −0.0937322 0.995597i \(-0.529880\pi\)
−0.0937322 + 0.995597i \(0.529880\pi\)
\(480\) 4.74073 2.49133i 0.216384 0.113713i
\(481\) 6.00804i 0.273943i
\(482\) −7.39023 26.1075i −0.336616 1.18916i
\(483\) 0 0
\(484\) −22.0846 + 13.5920i −1.00385 + 0.617820i
\(485\) 5.97426 4.78573i 0.271277 0.217309i
\(486\) −4.05767 14.3346i −0.184060 0.650229i
\(487\) 33.8115 1.53215 0.766073 0.642754i \(-0.222208\pi\)
0.766073 + 0.642754i \(0.222208\pi\)
\(488\) 8.05943 + 7.40700i 0.364833 + 0.335299i
\(489\) 0.817356i 0.0369621i
\(490\) 0 0
\(491\) 25.9116i 1.16937i −0.811259 0.584686i \(-0.801218\pi\)
0.811259 0.584686i \(-0.198782\pi\)
\(492\) −5.08688 + 3.13074i −0.229334 + 0.141145i
\(493\) −9.66385 −0.435238
\(494\) −21.7138 + 6.14651i −0.976950 + 0.276544i
\(495\) −19.3048 24.0991i −0.867684 1.08317i
\(496\) −2.66289 + 5.27637i −0.119567 + 0.236916i
\(497\) 0 0
\(498\) −2.49390 + 0.705946i −0.111754 + 0.0316342i
\(499\) 24.3024i 1.08792i 0.839110 + 0.543962i \(0.183077\pi\)
−0.839110 + 0.543962i \(0.816923\pi\)
\(500\) 18.9008 + 11.9483i 0.845267 + 0.534344i
\(501\) 7.18391 0.320953
\(502\) 28.7557 8.13985i 1.28343 0.363299i
\(503\) 11.5222i 0.513750i 0.966445 + 0.256875i \(0.0826928\pi\)
−0.966445 + 0.256875i \(0.917307\pi\)
\(504\) 0 0
\(505\) 10.2151 + 12.7520i 0.454564 + 0.567455i
\(506\) 8.73276 + 30.8503i 0.388218 + 1.37146i
\(507\) 2.75821i 0.122496i
\(508\) −20.8125 + 12.8091i −0.923404 + 0.568312i
\(509\) 27.1315i 1.20258i 0.799031 + 0.601290i \(0.205347\pi\)
−0.799031 + 0.601290i \(0.794653\pi\)
\(510\) 5.57469 + 3.97611i 0.246851 + 0.176065i
\(511\) 0 0
\(512\) −17.8904 13.8540i −0.790653 0.612264i
\(513\) 15.4422i 0.681788i
\(514\) −34.9059 + 9.88077i −1.53963 + 0.435822i
\(515\) 9.43741 + 11.7812i 0.415862 + 0.519141i
\(516\) 4.78403 + 7.77318i 0.210605 + 0.342195i
\(517\) −59.7962 −2.62983
\(518\) 0 0
\(519\) 4.24926i 0.186522i
\(520\) 1.09204 16.0693i 0.0478891 0.704686i
\(521\) 17.2809i 0.757090i 0.925583 + 0.378545i \(0.123576\pi\)
−0.925583 + 0.378545i \(0.876424\pi\)
\(522\) −7.25279 + 2.05304i −0.317446 + 0.0898592i
\(523\) 19.0461i 0.832828i −0.909175 0.416414i \(-0.863287\pi\)
0.909175 0.416414i \(-0.136713\pi\)
\(524\) 16.7782 10.3262i 0.732958 0.451101i
\(525\) 0 0
\(526\) −13.6344 + 3.85946i −0.594486 + 0.168281i
\(527\) −7.55669 −0.329175
\(528\) 3.73546 7.40160i 0.162565 0.322114i
\(529\) −1.55298 −0.0675209
\(530\) 5.75716 + 4.10625i 0.250075 + 0.178364i
\(531\) −16.0500 −0.696511
\(532\) 0 0
\(533\) 17.9638i 0.778100i
\(534\) −1.25741 + 0.355935i −0.0544136 + 0.0154028i
\(535\) 17.1550 13.7421i 0.741674 0.594123i
\(536\) 1.70208 1.85200i 0.0735185 0.0799943i
\(537\) 1.50422 0.0649120
\(538\) −5.27490 18.6347i −0.227417 0.803399i
\(539\) 0 0
\(540\) 10.3767 + 3.71394i 0.446541 + 0.159822i
\(541\) 18.3881 0.790564 0.395282 0.918560i \(-0.370647\pi\)
0.395282 + 0.918560i \(0.370647\pi\)
\(542\) −20.9023 + 5.91679i −0.897830 + 0.254148i
\(543\) −9.42951 −0.404659
\(544\) 5.50743 28.4018i 0.236129 1.21772i
\(545\) 16.4259 13.1581i 0.703610 0.563632i
\(546\) 0 0
\(547\) −18.9519 −0.810323 −0.405161 0.914245i \(-0.632785\pi\)
−0.405161 + 0.914245i \(0.632785\pi\)
\(548\) −4.92151 7.99656i −0.210236 0.341596i
\(549\) 10.9164i 0.465901i
\(550\) 34.5626 1.93154i 1.47375 0.0823611i
\(551\) −11.8401 −0.504405
\(552\) −4.08329 3.75274i −0.173796 0.159727i
\(553\) 0 0
\(554\) 6.85974 + 24.2335i 0.291443 + 1.02958i
\(555\) 1.74318 1.39639i 0.0739939 0.0592734i
\(556\) −23.6319 + 14.5443i −1.00222 + 0.616817i
\(557\) 25.5109i 1.08093i 0.841365 + 0.540467i \(0.181752\pi\)
−0.841365 + 0.540467i \(0.818248\pi\)
\(558\) −5.67136 + 1.60539i −0.240088 + 0.0679614i
\(559\) 27.4502 1.16102
\(560\) 0 0
\(561\) 10.6004 0.447549
\(562\) 40.3011 11.4080i 1.70000 0.481217i
\(563\) 31.4612i 1.32593i 0.748650 + 0.662965i \(0.230702\pi\)
−0.748650 + 0.662965i \(0.769298\pi\)
\(564\) 8.80838 5.42115i 0.370900 0.228272i
\(565\) 22.2645 + 27.7939i 0.936675 + 1.16930i
\(566\) −1.37830 4.86912i −0.0579342 0.204665i
\(567\) 0 0
\(568\) 29.8446 + 27.4286i 1.25225 + 1.15088i
\(569\) 16.4346 0.688972 0.344486 0.938791i \(-0.388053\pi\)
0.344486 + 0.938791i \(0.388053\pi\)
\(570\) 6.83008 + 4.87150i 0.286081 + 0.204045i
\(571\) 15.0067i 0.628011i 0.949421 + 0.314005i \(0.101671\pi\)
−0.949421 + 0.314005i \(0.898329\pi\)
\(572\) −13.0690 21.2348i −0.546443 0.887871i
\(573\) −7.55580 −0.315648
\(574\) 0 0
\(575\) 5.05378 22.5972i 0.210757 0.942370i
\(576\) −1.90046 22.4858i −0.0791857 0.936907i
\(577\) 2.49932 0.104048 0.0520240 0.998646i \(-0.483433\pi\)
0.0520240 + 0.998646i \(0.483433\pi\)
\(578\) 12.4590 3.52676i 0.518226 0.146694i
\(579\) 7.71967 0.320818
\(580\) 2.84762 7.95620i 0.118241 0.330363i
\(581\) 0 0
\(582\) 0.558282 + 1.97225i 0.0231415 + 0.0817522i
\(583\) 10.9474 0.453394
\(584\) 15.0662 16.3933i 0.623444 0.678360i
\(585\) 12.5363 10.0423i 0.518313 0.415199i
\(586\) −24.1857 + 6.84624i −0.999104 + 0.282815i
\(587\) 22.1562i 0.914482i 0.889343 + 0.457241i \(0.151162\pi\)
−0.889343 + 0.457241i \(0.848838\pi\)
\(588\) 0 0
\(589\) −9.25842 −0.381487
\(590\) 10.4483 14.6490i 0.430150 0.603090i
\(591\) 4.80839 0.197791
\(592\) −8.42469 4.25180i −0.346253 0.174748i
\(593\) −28.6502 −1.17652 −0.588262 0.808670i \(-0.700188\pi\)
−0.588262 + 0.808670i \(0.700188\pi\)
\(594\) 16.4169 4.64713i 0.673596 0.190674i
\(595\) 0 0
\(596\) −9.30594 + 5.72737i −0.381186 + 0.234602i
\(597\) 3.82247i 0.156443i
\(598\) −16.0483 + 4.54277i −0.656263 + 0.185768i
\(599\) 16.4006i 0.670110i 0.942199 + 0.335055i \(0.108755\pi\)
−0.942199 + 0.335055i \(0.891245\pi\)
\(600\) −4.91618 + 3.41798i −0.200702 + 0.139539i
\(601\) 22.1672i 0.904220i 0.891962 + 0.452110i \(0.149329\pi\)
−0.891962 + 0.452110i \(0.850671\pi\)
\(602\) 0 0
\(603\) 2.50851 0.102155
\(604\) 1.56834 + 2.54826i 0.0638147 + 0.103687i
\(605\) 22.6280 18.1263i 0.919959 0.736940i
\(606\) −4.20973 + 1.19164i −0.171008 + 0.0484072i
\(607\) 28.7504i 1.16694i 0.812133 + 0.583472i \(0.198306\pi\)
−0.812133 + 0.583472i \(0.801694\pi\)
\(608\) 6.74768 34.7977i 0.273654 1.41123i
\(609\) 0 0
\(610\) −9.96351 7.10640i −0.403411 0.287730i
\(611\) 31.1059i 1.25841i
\(612\) 24.5715 15.1226i 0.993243 0.611295i
\(613\) 12.1472i 0.490620i 0.969445 + 0.245310i \(0.0788898\pi\)
−0.969445 + 0.245310i \(0.921110\pi\)
\(614\) 12.6696 + 44.7581i 0.511305 + 1.80629i
\(615\) 5.21205 4.17515i 0.210170 0.168358i
\(616\) 0 0
\(617\) 15.9265i 0.641175i −0.947219 0.320588i \(-0.896120\pi\)
0.947219 0.320588i \(-0.103880\pi\)
\(618\) −3.88925 + 1.10093i −0.156449 + 0.0442858i
\(619\) 3.88335 0.156085 0.0780424 0.996950i \(-0.475133\pi\)
0.0780424 + 0.996950i \(0.475133\pi\)
\(620\) 2.22671 6.22139i 0.0894268 0.249857i
\(621\) 11.4130i 0.457989i
\(622\) −27.0446 + 7.65549i −1.08439 + 0.306957i
\(623\) 0 0
\(624\) 3.85031 + 1.94319i 0.154136 + 0.0777897i
\(625\) −22.6183 10.6496i −0.904730 0.425985i
\(626\) −8.66992 + 2.45419i −0.346520 + 0.0980890i
\(627\) 12.9876 0.518673
\(628\) −39.0107 + 24.0092i −1.55670 + 0.958073i
\(629\) 12.0656i 0.481089i
\(630\) 0 0
\(631\) 12.2743i 0.488633i −0.969696 0.244316i \(-0.921436\pi\)
0.969696 0.244316i \(-0.0785636\pi\)
\(632\) 9.66231 + 8.88012i 0.384346 + 0.353232i
\(633\) −1.86360 −0.0740715
\(634\) −6.54902 23.1358i −0.260095 0.918838i
\(635\) 21.3246 17.0822i 0.846240 0.677887i
\(636\) −1.61262 + 0.992493i −0.0639446 + 0.0393549i
\(637\) 0 0
\(638\) −3.56314 12.5875i −0.141066 0.498345i
\(639\) 40.4242i 1.59916i
\(640\) 21.7602 + 12.9033i 0.860146 + 0.510048i
\(641\) 14.8270 0.585631 0.292816 0.956169i \(-0.405408\pi\)
0.292816 + 0.956169i \(0.405408\pi\)
\(642\) 1.60309 + 5.66326i 0.0632691 + 0.223511i
\(643\) 11.8058i 0.465577i −0.972527 0.232789i \(-0.925215\pi\)
0.972527 0.232789i \(-0.0747850\pi\)
\(644\) 0 0
\(645\) −6.37998 7.96444i −0.251211 0.313600i
\(646\) 43.6068 12.3437i 1.71569 0.485657i
\(647\) 34.6071i 1.36054i −0.732960 0.680272i \(-0.761862\pi\)
0.732960 0.680272i \(-0.238138\pi\)
\(648\) 14.1991 15.4498i 0.557793 0.606926i
\(649\) 27.8554i 1.09342i
\(650\) 1.00478 + 17.9794i 0.0394109 + 0.705211i
\(651\) 0 0
\(652\) 3.28817 2.02372i 0.128775 0.0792549i
\(653\) 28.1875i 1.10306i 0.834155 + 0.551531i \(0.185956\pi\)
−0.834155 + 0.551531i \(0.814044\pi\)
\(654\) 1.53497 + 5.42260i 0.0600221 + 0.212040i
\(655\) −17.1910 + 13.7710i −0.671709 + 0.538077i
\(656\) −25.1895 12.7127i −0.983487 0.496349i
\(657\) 22.2045 0.866281
\(658\) 0 0
\(659\) 9.79123i 0.381412i −0.981647 0.190706i \(-0.938922\pi\)
0.981647 0.190706i \(-0.0610777\pi\)
\(660\) −3.12359 + 8.72726i −0.121586 + 0.339708i
\(661\) 0.817006i 0.0317779i −0.999874 0.0158889i \(-0.994942\pi\)
0.999874 0.0158889i \(-0.00505782\pi\)
\(662\) 5.64731 + 19.9503i 0.219489 + 0.775391i
\(663\) 5.51432i 0.214158i
\(664\) −9.01470 8.28494i −0.349838 0.321518i
\(665\) 0 0
\(666\) −2.56329 9.05536i −0.0993255 0.350888i
\(667\) −8.75081 −0.338833
\(668\) 17.7869 + 28.9004i 0.688194 + 1.11819i
\(669\) −5.97415 −0.230974
\(670\) −1.63300 + 2.28955i −0.0630884 + 0.0884529i
\(671\) −18.9459 −0.731397
\(672\) 0 0
\(673\) 9.43129i 0.363550i 0.983340 + 0.181775i \(0.0581842\pi\)
−0.983340 + 0.181775i \(0.941816\pi\)
\(674\) −5.87158 20.7426i −0.226165 0.798974i
\(675\) −12.0251 2.68936i −0.462846 0.103514i
\(676\) −11.0961 + 6.82914i −0.426774 + 0.262659i
\(677\) −2.47400 −0.0950837 −0.0475418 0.998869i \(-0.515139\pi\)
−0.0475418 + 0.998869i \(0.515139\pi\)
\(678\) −9.17542 + 2.59728i −0.352380 + 0.0997479i
\(679\) 0 0
\(680\) −2.19309 + 32.2712i −0.0841010 + 1.23754i
\(681\) −4.65625 −0.178428
\(682\) −2.78621 9.84287i −0.106690 0.376903i
\(683\) −18.7560 −0.717679 −0.358840 0.933399i \(-0.616827\pi\)
−0.358840 + 0.933399i \(0.616827\pi\)
\(684\) 30.1048 18.5281i 1.15109 0.708440i
\(685\) 6.56332 + 8.19332i 0.250772 + 0.313051i
\(686\) 0 0
\(687\) 3.43341 0.130993
\(688\) −19.4261 + 38.4917i −0.740613 + 1.46748i
\(689\) 5.69482i 0.216955i
\(690\) 5.04799 + 3.60044i 0.192174 + 0.137066i
\(691\) −4.22127 −0.160585 −0.0802923 0.996771i \(-0.525585\pi\)
−0.0802923 + 0.996771i \(0.525585\pi\)
\(692\) 17.0945 10.5209i 0.649836 0.399943i
\(693\) 0 0
\(694\) 45.4753 12.8727i 1.72622 0.488640i
\(695\) 24.2134 19.3963i 0.918466 0.735744i
\(696\) 1.66606 + 1.53119i 0.0631520 + 0.0580396i
\(697\) 36.0759i 1.36647i
\(698\) −6.22406 21.9878i −0.235584 0.832250i
\(699\) 6.72095 0.254210
\(700\) 0 0
\(701\) −12.2843 −0.463971 −0.231985 0.972719i \(-0.574522\pi\)
−0.231985 + 0.972719i \(0.574522\pi\)
\(702\) 2.41743 + 8.54008i 0.0912401 + 0.322325i
\(703\) 14.7828i 0.557542i
\(704\) 39.0250 3.29832i 1.47081 0.124310i
\(705\) −9.02512 + 7.22964i −0.339906 + 0.272284i
\(706\) −30.8691 + 8.73809i −1.16177 + 0.328862i
\(707\) 0 0
\(708\) 2.52539 + 4.10329i 0.0949098 + 0.154211i
\(709\) 2.93616 0.110270 0.0551348 0.998479i \(-0.482441\pi\)
0.0551348 + 0.998479i \(0.482441\pi\)
\(710\) −36.8956 26.3155i −1.38467 0.987602i
\(711\) 13.0875i 0.490819i
\(712\) −4.54517 4.17723i −0.170337 0.156548i
\(713\) −6.84273 −0.256262
\(714\) 0 0
\(715\) 17.4288 + 21.7573i 0.651802 + 0.813677i
\(716\) 3.72435 + 6.05140i 0.139186 + 0.226151i
\(717\) −10.3702 −0.387283
\(718\) −6.45872 22.8168i −0.241037 0.851514i
\(719\) 47.5276 1.77248 0.886240 0.463226i \(-0.153308\pi\)
0.886240 + 0.463226i \(0.153308\pi\)
\(720\) 5.20994 + 24.6857i 0.194163 + 0.919982i
\(721\) 0 0
\(722\) 27.5726 7.80495i 1.02615 0.290470i
\(723\) −8.12319 −0.302105
\(724\) −23.3468 37.9343i −0.867677 1.40982i
\(725\) −2.06204 + 9.22011i −0.0765823 + 0.342426i
\(726\) 2.11454 + 7.47004i 0.0784779 + 0.277239i
\(727\) 8.28795i 0.307383i 0.988119 + 0.153692i \(0.0491162\pi\)
−0.988119 + 0.153692i \(0.950884\pi\)
\(728\) 0 0
\(729\) 17.7963 0.659124
\(730\) −14.4548 + 20.2663i −0.534996 + 0.750089i
\(731\) −55.1269 −2.03894
\(732\) 2.79085 1.71764i 0.103153 0.0634858i
\(733\) 41.9860 1.55079 0.775395 0.631477i \(-0.217551\pi\)
0.775395 + 0.631477i \(0.217551\pi\)
\(734\) 6.02552 + 21.2864i 0.222406 + 0.785696i
\(735\) 0 0
\(736\) 4.98709 25.7184i 0.183826 0.947991i
\(737\) 4.35363i 0.160368i
\(738\) −7.66416 27.0752i −0.282121 0.996653i
\(739\) 25.9230i 0.953593i −0.879014 0.476796i \(-0.841798\pi\)
0.879014 0.476796i \(-0.158202\pi\)
\(740\) 9.93358 + 3.55535i 0.365166 + 0.130697i
\(741\) 6.75612i 0.248192i
\(742\) 0 0
\(743\) 11.2976 0.414470 0.207235 0.978291i \(-0.433554\pi\)
0.207235 + 0.978291i \(0.433554\pi\)
\(744\) 1.30279 + 1.19732i 0.0477624 + 0.0438959i
\(745\) 9.53492 7.63802i 0.349332 0.279835i
\(746\) −6.58840 23.2749i −0.241219 0.852155i
\(747\) 12.2103i 0.446752i
\(748\) 26.2459 + 42.6448i 0.959644 + 1.55925i
\(749\) 0 0
\(750\) 4.98304 4.47031i 0.181955 0.163233i
\(751\) 5.61823i 0.205012i 0.994732 + 0.102506i \(0.0326861\pi\)
−0.994732 + 0.102506i \(0.967314\pi\)
\(752\) 43.6179 + 22.0132i 1.59058 + 0.802739i
\(753\) 8.94716i 0.326053i
\(754\) 6.54802 1.85354i 0.238465 0.0675020i
\(755\) −2.09153 2.61097i −0.0761187 0.0950228i
\(756\) 0 0
\(757\) 27.0456i 0.982990i 0.870880 + 0.491495i \(0.163549\pi\)
−0.870880 + 0.491495i \(0.836451\pi\)
\(758\) −3.99676 14.1194i −0.145169 0.512839i
\(759\) 9.59887 0.348417
\(760\) −2.68696 + 39.5385i −0.0974662 + 1.43421i
\(761\) 25.8142i 0.935765i 0.883791 + 0.467883i \(0.154983\pi\)
−0.883791 + 0.467883i \(0.845017\pi\)
\(762\) 1.99274 + 7.03975i 0.0721892 + 0.255023i
\(763\) 0 0
\(764\) −18.7076 30.3965i −0.676818 1.09971i
\(765\) −25.1761 + 20.1675i −0.910243 + 0.729157i
\(766\) −3.55826 12.5703i −0.128565 0.454183i
\(767\) 14.4904 0.523217
\(768\) −5.44961 + 4.02388i −0.196646 + 0.145199i
\(769\) 5.58909i 0.201548i −0.994909 0.100774i \(-0.967868\pi\)
0.994909 0.100774i \(-0.0321319\pi\)
\(770\) 0 0
\(771\) 10.8608i 0.391140i
\(772\) 19.1134 + 31.0557i 0.687905 + 1.11772i
\(773\) −8.77216 −0.315513 −0.157756 0.987478i \(-0.550426\pi\)
−0.157756 + 0.987478i \(0.550426\pi\)
\(774\) −41.3732 + 11.7115i −1.48713 + 0.420960i
\(775\) −1.61242 + 7.20971i −0.0579199 + 0.258980i
\(776\) −6.55196 + 7.12908i −0.235202 + 0.255919i
\(777\) 0 0
\(778\) 23.2474 6.58062i 0.833459 0.235927i
\(779\) 44.2000i 1.58363i
\(780\) −4.53991 1.62489i −0.162555 0.0581804i
\(781\) −70.1578 −2.51044
\(782\) 32.2290 9.12303i 1.15251 0.326239i
\(783\) 4.65674i 0.166418i
\(784\) 0 0
\(785\) 39.9706 32.0187i 1.42661 1.14280i
\(786\) −1.60646 5.67517i −0.0573007 0.202426i
\(787\) 9.89262i 0.352634i 0.984333 + 0.176317i \(0.0564183\pi\)
−0.984333 + 0.176317i \(0.943582\pi\)
\(788\) 11.9052 + 19.3439i 0.424107 + 0.689096i
\(789\) 4.24225i 0.151028i
\(790\) −11.9451 8.51974i −0.424987 0.303119i
\(791\) 0 0
\(792\) 28.7574 + 26.4294i 1.02185 + 0.939129i
\(793\) 9.85562i 0.349983i
\(794\) 45.6346 12.9178i 1.61951 0.458434i
\(795\) 1.65230 1.32359i 0.0586011 0.0469429i
\(796\) 15.3776 9.46417i 0.545043 0.335449i
\(797\) 31.5699 1.11826 0.559132 0.829079i \(-0.311135\pi\)
0.559132 + 0.829079i \(0.311135\pi\)
\(798\) 0 0
\(799\) 62.4685i 2.20998i
\(800\) −25.9225 11.3148i −0.916498 0.400039i
\(801\) 6.15638i 0.217525i
\(802\) −17.4564 + 4.94137i −0.616407 + 0.174486i
\(803\) 38.5368i 1.35994i
\(804\) −0.394702 0.641319i −0.0139200 0.0226176i
\(805\) 0 0
\(806\) 5.12025 1.44938i 0.180353 0.0510524i
\(807\) −5.79807 −0.204102
\(808\) −15.2169 13.9851i −0.535329 0.491992i
\(809\) 30.7765 1.08204 0.541021 0.841009i \(-0.318038\pi\)
0.541021 + 0.841009i \(0.318038\pi\)
\(810\) −13.6229 + 19.0999i −0.478658 + 0.671102i
\(811\) −19.0962 −0.670557 −0.335278 0.942119i \(-0.608830\pi\)
−0.335278 + 0.942119i \(0.608830\pi\)
\(812\) 0 0
\(813\) 6.50362i 0.228092i
\(814\) 15.7159 4.44869i 0.550843 0.155927i
\(815\) −3.36908 + 2.69883i −0.118014 + 0.0945358i
\(816\) −7.73238 3.90240i −0.270688 0.136611i
\(817\) −67.5412 −2.36297
\(818\) 8.31894 + 29.3884i 0.290865 + 1.02754i
\(819\) 0 0
\(820\) 29.7011 + 10.6304i 1.03721 + 0.371229i
\(821\) 48.1711 1.68118 0.840591 0.541671i \(-0.182208\pi\)
0.840591 + 0.541671i \(0.182208\pi\)
\(822\) −2.70481 + 0.765648i −0.0943411 + 0.0267051i
\(823\) −9.53508 −0.332372 −0.166186 0.986094i \(-0.553145\pi\)
−0.166186 + 0.986094i \(0.553145\pi\)
\(824\) −14.0585 12.9204i −0.489751 0.450104i
\(825\) 2.26188 10.1137i 0.0787485 0.352113i
\(826\) 0 0
\(827\) −0.650873 −0.0226331 −0.0113165 0.999936i \(-0.503602\pi\)
−0.0113165 + 0.999936i \(0.503602\pi\)
\(828\) 22.2499 13.6938i 0.773239 0.475893i
\(829\) 46.7979i 1.62536i −0.582711 0.812679i \(-0.698008\pi\)
0.582711 0.812679i \(-0.301992\pi\)
\(830\) 11.1445 + 7.94871i 0.386830 + 0.275904i
\(831\) 7.54009 0.261563
\(832\) 1.71578 + 20.3008i 0.0594841 + 0.703802i
\(833\) 0 0
\(834\) 2.26269 + 7.99342i 0.0783505 + 0.276789i
\(835\) −23.7206 29.6116i −0.820884 1.02475i
\(836\) 32.1563 + 52.2482i 1.11215 + 1.80704i
\(837\) 3.64136i 0.125864i
\(838\) 25.4842 7.21380i 0.880339 0.249197i
\(839\) −50.2124 −1.73353 −0.866763 0.498720i \(-0.833803\pi\)
−0.866763 + 0.498720i \(0.833803\pi\)
\(840\) 0 0
\(841\) −25.4295 −0.876879
\(842\) −25.8086 + 7.30562i −0.889424 + 0.251768i
\(843\) 12.5394i 0.431881i
\(844\) −4.61415 7.49715i −0.158825 0.258063i
\(845\) 11.3691 9.10734i 0.391111 0.313302i
\(846\) 13.2712 + 46.8831i 0.456272 + 1.61187i
\(847\) 0 0
\(848\) −7.98548 4.03014i −0.274223 0.138395i
\(849\) −1.51500 −0.0519946
\(850\) −2.01786 36.1072i −0.0692120 1.23847i
\(851\) 10.9257i 0.374527i
\(852\) 10.3347 6.36053i 0.354061 0.217908i
\(853\) 12.0132 0.411323 0.205661 0.978623i \(-0.434065\pi\)
0.205661 + 0.978623i \(0.434065\pi\)
\(854\) 0 0
\(855\) −30.8456 + 24.7091i −1.05490 + 0.845034i
\(856\) −18.8138 + 20.4710i −0.643043 + 0.699684i
\(857\) −27.0264 −0.923205 −0.461603 0.887087i \(-0.652725\pi\)
−0.461603 + 0.887087i \(0.652725\pi\)
\(858\) −7.18260 + 2.03317i −0.245210 + 0.0694114i
\(859\) −20.5765 −0.702060 −0.351030 0.936364i \(-0.614168\pi\)
−0.351030 + 0.936364i \(0.614168\pi\)
\(860\) 16.2441 45.3857i 0.553919 1.54764i
\(861\) 0 0
\(862\) −10.4093 36.7731i −0.354543 1.25250i
\(863\) 9.46391 0.322155 0.161078 0.986942i \(-0.448503\pi\)
0.161078 + 0.986942i \(0.448503\pi\)
\(864\) −13.6860 2.65387i −0.465607 0.0902867i
\(865\) −17.5151 + 14.0306i −0.595532 + 0.477056i
\(866\) 20.4133 5.77837i 0.693672 0.196357i
\(867\) 3.87654i 0.131654i
\(868\) 0 0
\(869\) −22.7139 −0.770515
\(870\) −2.05968 1.46905i −0.0698297 0.0498055i
\(871\) −2.26475 −0.0767382
\(872\) −18.0143 + 19.6011i −0.610041 + 0.663776i
\(873\) −9.65625 −0.326815
\(874\) 39.4868 11.1775i 1.33566 0.378084i
\(875\) 0 0
\(876\) −3.49377 5.67674i −0.118043 0.191799i
\(877\) 20.2436i 0.683578i 0.939777 + 0.341789i \(0.111033\pi\)
−0.939777 + 0.341789i \(0.888967\pi\)
\(878\) −25.0894 + 7.10204i −0.846727 + 0.239682i
\(879\) 7.52525i 0.253820i
\(880\) −42.8430 + 9.04207i −1.44424 + 0.304808i
\(881\) 58.2514i 1.96254i 0.192638 + 0.981270i \(0.438296\pi\)
−0.192638 + 0.981270i \(0.561704\pi\)
\(882\) 0 0
\(883\) −39.7551 −1.33786 −0.668932 0.743323i \(-0.733248\pi\)
−0.668932 + 0.743323i \(0.733248\pi\)
\(884\) −22.1838 + 13.6531i −0.746121 + 0.459203i
\(885\) −3.36785 4.20426i −0.113209 0.141325i
\(886\) 28.3846 8.03479i 0.953598 0.269934i
\(887\) 45.2774i 1.52027i 0.649767 + 0.760134i \(0.274867\pi\)
−0.649767 + 0.760134i \(0.725133\pi\)
\(888\) −1.91174 + 2.08014i −0.0641539 + 0.0698048i
\(889\) 0 0
\(890\) 5.61899 + 4.00770i 0.188349 + 0.134339i
\(891\) 36.3189i 1.21673i
\(892\) −14.7916 24.0336i −0.495259 0.804706i
\(893\) 76.5361i 2.56118i
\(894\) 0.891018 + 3.14770i 0.0298001 + 0.105275i
\(895\) −4.96680 6.20030i −0.166022 0.207253i
\(896\) 0 0
\(897\) 4.99333i 0.166722i
\(898\) 19.9327 5.64233i 0.665162 0.188287i
\(899\) 2.79197 0.0931174
\(900\) −9.18523 26.6700i −0.306174 0.889001i
\(901\) 11.4366i 0.381009i
\(902\) 46.9901 13.3015i 1.56460 0.442890i
\(903\) 0 0
\(904\) −33.1664 30.4815i −1.10310 1.01380i
\(905\) 31.1353 + 38.8678i 1.03497 + 1.29201i
\(906\) 0.861942 0.243989i 0.0286361 0.00810600i
\(907\) −50.5578 −1.67875 −0.839373 0.543556i \(-0.817078\pi\)
−0.839373 + 0.543556i \(0.817078\pi\)
\(908\) −11.5286 18.7318i −0.382588 0.621637i
\(909\) 20.6111i 0.683627i
\(910\) 0 0
\(911\) 0.524910i 0.0173910i −0.999962 0.00869552i \(-0.997232\pi\)
0.999962 0.00869552i \(-0.00276790\pi\)
\(912\) −9.47368 4.78120i −0.313705 0.158321i
\(913\) 21.1915 0.701336
\(914\) −0.458374 1.61930i −0.0151617 0.0535617i
\(915\) −2.85952 + 2.29064i −0.0945329 + 0.0757263i
\(916\) 8.50089 + 13.8124i 0.280877 + 0.456375i
\(917\) 0 0
\(918\) −4.85481 17.1506i −0.160233 0.566055i
\(919\) 21.5126i 0.709634i −0.934936 0.354817i \(-0.884543\pi\)
0.934936 0.354817i \(-0.115457\pi\)
\(920\) −1.98588 + 29.2222i −0.0654726 + 0.963427i
\(921\) 13.9262 0.458884
\(922\) −5.61003 19.8186i −0.184757 0.652691i
\(923\) 36.4960i 1.20128i
\(924\) 0 0
\(925\) −11.5116 2.57453i −0.378500 0.0846499i
\(926\) 6.38723 1.80803i 0.209897 0.0594155i
\(927\) 19.0421i 0.625423i
\(928\) −2.03483 + 10.4936i −0.0667966 + 0.344469i
\(929\) 15.6019i 0.511882i 0.966692 + 0.255941i \(0.0823853\pi\)
−0.966692 + 0.255941i \(0.917615\pi\)
\(930\) −1.61058 1.14873i −0.0528129 0.0376684i
\(931\) 0 0
\(932\) 16.6406 + 27.0380i 0.545081 + 0.885658i
\(933\) 8.41476i 0.275487i
\(934\) 9.73820 + 34.4022i 0.318644 + 1.12567i
\(935\) −35.0015 43.6941i −1.14467 1.42895i
\(936\) −13.7486 + 14.9596i −0.449386 + 0.488969i
\(937\) 7.15521 0.233751 0.116875 0.993147i \(-0.462712\pi\)
0.116875 + 0.993147i \(0.462712\pi\)
\(938\) 0 0
\(939\) 2.69759i 0.0880326i
\(940\) −51.4300 18.4074i −1.67746 0.600384i
\(941\) 7.12846i 0.232381i 0.993227 + 0.116191i \(0.0370683\pi\)
−0.993227 + 0.116191i \(0.962932\pi\)
\(942\) 3.73516 + 13.1952i 0.121698 + 0.429924i
\(943\) 32.6674i 1.06380i
\(944\) −10.2546 + 20.3189i −0.333760 + 0.661325i
\(945\) 0 0
\(946\) −20.3257 71.8048i −0.660846 2.33457i
\(947\) 23.1014 0.750696 0.375348 0.926884i \(-0.377523\pi\)
0.375348 + 0.926884i \(0.377523\pi\)
\(948\) 3.34590 2.05925i 0.108670 0.0668812i
\(949\) −20.0468 −0.650748
\(950\) −2.47227 44.2383i −0.0802110 1.43528i
\(951\) −7.19855 −0.233429
\(952\) 0 0
\(953\) 36.2840i 1.17535i −0.809096 0.587677i \(-0.800043\pi\)
0.809096 0.587677i \(-0.199957\pi\)
\(954\) −2.42966 8.58327i −0.0786631 0.277894i
\(955\) 24.9485 + 31.1445i 0.807315 + 1.00781i
\(956\) −25.6760 41.7188i −0.830420 1.34928i
\(957\) −3.91653 −0.126603
\(958\) −5.58295 + 1.58036i −0.180377 + 0.0510592i
\(959\) 0 0
\(960\) 5.49131 5.21612i 0.177231 0.168350i
\(961\) −28.8168 −0.929574
\(962\) 2.31421 + 8.17542i 0.0746130 + 0.263586i
\(963\) −27.7277 −0.893513
\(964\) −20.1125 32.6791i −0.647779 1.05252i
\(965\) −25.4896 31.8199i −0.820539 1.02432i
\(966\) 0 0
\(967\) −41.0345 −1.31958 −0.659790 0.751450i \(-0.729355\pi\)
−0.659790 + 0.751450i \(0.729355\pi\)
\(968\) −24.8161 + 27.0020i −0.797619 + 0.867876i
\(969\) 13.5680i 0.435866i
\(970\) 6.28606 8.81336i 0.201833 0.282980i
\(971\) 44.2483 1.41999 0.709997 0.704204i \(-0.248696\pi\)
0.709997 + 0.704204i \(0.248696\pi\)
\(972\) −11.0429 17.9428i −0.354202 0.575514i
\(973\) 0 0
\(974\) 46.0089 13.0237i 1.47422 0.417306i
\(975\) 5.26112 + 1.17663i 0.168491 + 0.0376822i
\(976\) 13.8199 + 6.97467i 0.442365 + 0.223254i
\(977\) 11.5368i 0.369095i 0.982824 + 0.184547i \(0.0590819\pi\)
−0.982824 + 0.184547i \(0.940918\pi\)
\(978\) −0.314833 1.11221i −0.0100673 0.0355647i
\(979\) 10.6846 0.341483
\(980\) 0 0
\(981\) −26.5494 −0.847658
\(982\) −9.98076 35.2591i −0.318499 1.12516i
\(983\) 15.7501i 0.502349i −0.967942 0.251174i \(-0.919183\pi\)
0.967942 0.251174i \(-0.0808167\pi\)
\(984\) −5.71605 + 6.21954i −0.182221 + 0.198272i
\(985\) −15.8768 19.8198i −0.505878 0.631512i
\(986\) −13.1501 + 3.72237i −0.418783 + 0.118545i
\(987\) 0 0
\(988\) −27.1795 + 16.7277i −0.864694 + 0.532178i
\(989\) −49.9185 −1.58732
\(990\) −35.5515 25.3568i −1.12990 0.805893i
\(991\) 2.71611i 0.0862801i 0.999069 + 0.0431401i \(0.0137362\pi\)
−0.999069 + 0.0431401i \(0.986264\pi\)
\(992\) −1.59114 + 8.20551i −0.0505189 + 0.260525i
\(993\) 6.20742 0.196986
\(994\) 0 0
\(995\) −15.7559 + 12.6214i −0.499497 + 0.400126i
\(996\) −3.12165 + 1.92123i −0.0989132 + 0.0608764i
\(997\) −8.96159 −0.283817 −0.141908 0.989880i \(-0.545324\pi\)
−0.141908 + 0.989880i \(0.545324\pi\)
\(998\) 9.36093 + 33.0694i 0.296315 + 1.04679i
\(999\) −5.81409 −0.183950
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.c.e.979.41 yes 48
4.3 odd 2 inner 980.2.c.e.979.6 yes 48
5.4 even 2 inner 980.2.c.e.979.8 yes 48
7.2 even 3 980.2.s.g.619.12 96
7.3 odd 6 980.2.s.g.19.20 96
7.4 even 3 980.2.s.g.19.19 96
7.5 odd 6 980.2.s.g.619.11 96
7.6 odd 2 inner 980.2.c.e.979.42 yes 48
20.19 odd 2 inner 980.2.c.e.979.43 yes 48
28.3 even 6 980.2.s.g.19.37 96
28.11 odd 6 980.2.s.g.19.38 96
28.19 even 6 980.2.s.g.619.30 96
28.23 odd 6 980.2.s.g.619.29 96
28.27 even 2 inner 980.2.c.e.979.5 48
35.4 even 6 980.2.s.g.19.30 96
35.9 even 6 980.2.s.g.619.37 96
35.19 odd 6 980.2.s.g.619.38 96
35.24 odd 6 980.2.s.g.19.29 96
35.34 odd 2 inner 980.2.c.e.979.7 yes 48
140.19 even 6 980.2.s.g.619.19 96
140.39 odd 6 980.2.s.g.19.11 96
140.59 even 6 980.2.s.g.19.12 96
140.79 odd 6 980.2.s.g.619.20 96
140.139 even 2 inner 980.2.c.e.979.44 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
980.2.c.e.979.5 48 28.27 even 2 inner
980.2.c.e.979.6 yes 48 4.3 odd 2 inner
980.2.c.e.979.7 yes 48 35.34 odd 2 inner
980.2.c.e.979.8 yes 48 5.4 even 2 inner
980.2.c.e.979.41 yes 48 1.1 even 1 trivial
980.2.c.e.979.42 yes 48 7.6 odd 2 inner
980.2.c.e.979.43 yes 48 20.19 odd 2 inner
980.2.c.e.979.44 yes 48 140.139 even 2 inner
980.2.s.g.19.11 96 140.39 odd 6
980.2.s.g.19.12 96 140.59 even 6
980.2.s.g.19.19 96 7.4 even 3
980.2.s.g.19.20 96 7.3 odd 6
980.2.s.g.19.29 96 35.24 odd 6
980.2.s.g.19.30 96 35.4 even 6
980.2.s.g.19.37 96 28.3 even 6
980.2.s.g.19.38 96 28.11 odd 6
980.2.s.g.619.11 96 7.5 odd 6
980.2.s.g.619.12 96 7.2 even 3
980.2.s.g.619.19 96 140.19 even 6
980.2.s.g.619.20 96 140.79 odd 6
980.2.s.g.619.29 96 28.23 odd 6
980.2.s.g.619.30 96 28.19 even 6
980.2.s.g.619.37 96 35.9 even 6
980.2.s.g.619.38 96 35.19 odd 6