Properties

Label 980.2.s.g.19.12
Level $980$
Weight $2$
Character 980.19
Analytic conductor $7.825$
Analytic rank $0$
Dimension $96$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,2,Mod(19,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(48\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 19.12
Character \(\chi\) \(=\) 980.19
Dual form 980.2.s.g.619.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.01395 + 0.985849i) q^{2} +(0.366665 - 0.211694i) q^{3} +(0.0562045 - 1.99921i) q^{4} +(2.08328 - 0.812373i) q^{5} +(-0.163083 + 0.576124i) q^{6} +(1.91393 + 2.08252i) q^{8} +(-1.41037 + 2.44283i) q^{9} +(-1.31147 + 2.87751i) q^{10} +(-4.23964 + 2.44776i) q^{11} +(-0.402613 - 0.744938i) q^{12} -2.54664 q^{13} +(0.591890 - 0.738886i) q^{15} +(-3.99368 - 0.224729i) q^{16} +(-2.55715 - 4.42911i) q^{17} +(-0.978214 - 3.86733i) q^{18} +(-3.13300 + 5.42652i) q^{19} +(-1.50701 - 4.21057i) q^{20} +(1.88568 - 6.66155i) q^{22} +(-2.31555 + 4.01064i) q^{23} +(1.14263 + 0.358418i) q^{24} +(3.68010 - 3.38480i) q^{25} +(2.58218 - 2.51060i) q^{26} +2.46443i q^{27} -1.88958 q^{29} +(0.128280 + 1.33271i) q^{30} +(0.738782 + 1.27961i) q^{31} +(4.27096 - 3.70930i) q^{32} +(-1.03635 + 1.79501i) q^{33} +(6.95926 + 1.96995i) q^{34} +(4.80447 + 2.95693i) q^{36} +(-2.04313 - 1.17960i) q^{37} +(-2.17301 - 8.59091i) q^{38} +(-0.933764 + 0.539109i) q^{39} +(5.67903 + 2.78364i) q^{40} +7.05393i q^{41} -10.7790 q^{43} +(4.65529 + 8.61350i) q^{44} +(-0.953704 + 6.23485i) q^{45} +(-1.60603 - 6.34939i) q^{46} +(10.5781 + 6.10725i) q^{47} +(-1.51192 + 0.763038i) q^{48} +(-0.394553 + 7.06005i) q^{50} +(-1.87523 - 1.08267i) q^{51} +(-0.143133 + 5.09127i) q^{52} +(1.93661 - 1.11810i) q^{53} +(-2.42956 - 2.49882i) q^{54} +(-6.84386 + 8.54352i) q^{55} +2.65295i q^{57} +(1.91594 - 1.86284i) q^{58} +(2.84500 + 4.92768i) q^{59} +(-1.44392 - 1.22484i) q^{60} +(3.35156 + 1.93502i) q^{61} +(-2.01059 - 0.569136i) q^{62} +(-0.673743 + 7.97158i) q^{64} +(-5.30536 + 2.06882i) q^{65} +(-0.718799 - 2.84174i) q^{66} +(-0.444655 - 0.770165i) q^{67} +(-8.99844 + 4.86334i) q^{68} +1.96075i q^{69} -14.3310i q^{71} +(-7.78659 + 1.73829i) q^{72} +(-3.93594 - 6.81724i) q^{73} +(3.23454 - 0.818154i) q^{74} +(0.632822 - 2.02014i) q^{75} +(10.6727 + 6.56853i) q^{76} +(0.415314 - 1.46718i) q^{78} +(4.01812 + 2.31987i) q^{79} +(-8.50252 + 2.77619i) q^{80} +(-3.70941 - 6.42488i) q^{81} +(-6.95411 - 7.15236i) q^{82} +4.32876i q^{83} +(-8.92534 - 7.14971i) q^{85} +(10.9294 - 10.6264i) q^{86} +(-0.692841 + 0.400012i) q^{87} +(-13.2119 - 4.14428i) q^{88} +(-1.89013 - 1.09127i) q^{89} +(-5.17961 - 7.26206i) q^{90} +(7.88798 + 4.85468i) q^{92} +(0.541770 + 0.312791i) q^{93} +(-16.7465 + 4.23590i) q^{94} +(-2.11856 + 13.8501i) q^{95} +(0.780773 - 2.26421i) q^{96} -3.42330 q^{97} -13.8090i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 16 q^{4} + 64 q^{9} - 16 q^{16} + 16 q^{25} - 96 q^{29} + 8 q^{30} + 352 q^{36} + 48 q^{44} + 32 q^{46} + 64 q^{50} - 24 q^{60} - 160 q^{64} + 16 q^{65} + 112 q^{74} + 48 q^{81} - 128 q^{85} + 112 q^{86}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.01395 + 0.985849i −0.716974 + 0.697100i
\(3\) 0.366665 0.211694i 0.211694 0.122222i −0.390404 0.920643i \(-0.627665\pi\)
0.602098 + 0.798422i \(0.294331\pi\)
\(4\) 0.0562045 1.99921i 0.0281022 0.999605i
\(5\) 2.08328 0.812373i 0.931671 0.363304i
\(6\) −0.163083 + 0.576124i −0.0665783 + 0.235202i
\(7\) 0 0
\(8\) 1.91393 + 2.08252i 0.676676 + 0.736280i
\(9\) −1.41037 + 2.44283i −0.470124 + 0.814278i
\(10\) −1.31147 + 2.87751i −0.414724 + 0.909947i
\(11\) −4.23964 + 2.44776i −1.27830 + 0.738026i −0.976535 0.215357i \(-0.930909\pi\)
−0.301763 + 0.953383i \(0.597575\pi\)
\(12\) −0.402613 0.744938i −0.116224 0.215045i
\(13\) −2.54664 −0.706311 −0.353156 0.935565i \(-0.614891\pi\)
−0.353156 + 0.935565i \(0.614891\pi\)
\(14\) 0 0
\(15\) 0.591890 0.738886i 0.152825 0.190780i
\(16\) −3.99368 0.224729i −0.998421 0.0561823i
\(17\) −2.55715 4.42911i −0.620199 1.07422i −0.989448 0.144886i \(-0.953718\pi\)
0.369249 0.929330i \(-0.379615\pi\)
\(18\) −0.978214 3.86733i −0.230567 0.911539i
\(19\) −3.13300 + 5.42652i −0.718760 + 1.24493i 0.242731 + 0.970094i \(0.421957\pi\)
−0.961491 + 0.274836i \(0.911377\pi\)
\(20\) −1.50701 4.21057i −0.336979 0.941512i
\(21\) 0 0
\(22\) 1.88568 6.66155i 0.402028 1.42025i
\(23\) −2.31555 + 4.01064i −0.482825 + 0.836277i −0.999806 0.0197200i \(-0.993723\pi\)
0.516981 + 0.855997i \(0.327056\pi\)
\(24\) 1.14263 + 0.358418i 0.233238 + 0.0731617i
\(25\) 3.68010 3.38480i 0.736020 0.676960i
\(26\) 2.58218 2.51060i 0.506407 0.492370i
\(27\) 2.46443i 0.474280i
\(28\) 0 0
\(29\) −1.88958 −0.350886 −0.175443 0.984490i \(-0.556136\pi\)
−0.175443 + 0.984490i \(0.556136\pi\)
\(30\) 0.128280 + 1.33271i 0.0234207 + 0.243319i
\(31\) 0.738782 + 1.27961i 0.132689 + 0.229824i 0.924712 0.380667i \(-0.124305\pi\)
−0.792023 + 0.610491i \(0.790972\pi\)
\(32\) 4.27096 3.70930i 0.755006 0.655718i
\(33\) −1.03635 + 1.79501i −0.180405 + 0.312471i
\(34\) 6.95926 + 1.96995i 1.19350 + 0.337844i
\(35\) 0 0
\(36\) 4.80447 + 2.95693i 0.800745 + 0.492821i
\(37\) −2.04313 1.17960i −0.335888 0.193925i 0.322564 0.946548i \(-0.395455\pi\)
−0.658452 + 0.752623i \(0.728789\pi\)
\(38\) −2.17301 8.59091i −0.352509 1.39363i
\(39\) −0.933764 + 0.539109i −0.149522 + 0.0863265i
\(40\) 5.67903 + 2.78364i 0.897933 + 0.440131i
\(41\) 7.05393i 1.10164i 0.834624 + 0.550819i \(0.185685\pi\)
−0.834624 + 0.550819i \(0.814315\pi\)
\(42\) 0 0
\(43\) −10.7790 −1.64378 −0.821890 0.569646i \(-0.807080\pi\)
−0.821890 + 0.569646i \(0.807080\pi\)
\(44\) 4.65529 + 8.61350i 0.701812 + 1.29853i
\(45\) −0.953704 + 6.23485i −0.142170 + 0.929437i
\(46\) −1.60603 6.34939i −0.236796 0.936166i
\(47\) 10.5781 + 6.10725i 1.54297 + 0.890834i 0.998649 + 0.0519561i \(0.0165456\pi\)
0.544320 + 0.838878i \(0.316788\pi\)
\(48\) −1.51192 + 0.763038i −0.218226 + 0.110135i
\(49\) 0 0
\(50\) −0.394553 + 7.06005i −0.0557982 + 0.998442i
\(51\) −1.87523 1.08267i −0.262585 0.151603i
\(52\) −0.143133 + 5.09127i −0.0198489 + 0.706032i
\(53\) 1.93661 1.11810i 0.266014 0.153583i −0.361061 0.932542i \(-0.617585\pi\)
0.627075 + 0.778959i \(0.284252\pi\)
\(54\) −2.42956 2.49882i −0.330621 0.340046i
\(55\) −6.84386 + 8.54352i −0.922825 + 1.15201i
\(56\) 0 0
\(57\) 2.65295i 0.351392i
\(58\) 1.91594 1.86284i 0.251576 0.244602i
\(59\) 2.84500 + 4.92768i 0.370387 + 0.641529i 0.989625 0.143674i \(-0.0458917\pi\)
−0.619238 + 0.785203i \(0.712558\pi\)
\(60\) −1.44392 1.22484i −0.186410 0.158126i
\(61\) 3.35156 + 1.93502i 0.429123 + 0.247754i 0.698973 0.715148i \(-0.253641\pi\)
−0.269850 + 0.962902i \(0.586974\pi\)
\(62\) −2.01059 0.569136i −0.255345 0.0722803i
\(63\) 0 0
\(64\) −0.673743 + 7.97158i −0.0842179 + 0.996447i
\(65\) −5.30536 + 2.06882i −0.658049 + 0.256606i
\(66\) −0.718799 2.84174i −0.0884780 0.349794i
\(67\) −0.444655 0.770165i −0.0543232 0.0940906i 0.837585 0.546307i \(-0.183967\pi\)
−0.891908 + 0.452216i \(0.850633\pi\)
\(68\) −8.99844 + 4.86334i −1.09122 + 0.589766i
\(69\) 1.96075i 0.236046i
\(70\) 0 0
\(71\) 14.3310i 1.70078i −0.526152 0.850391i \(-0.676366\pi\)
0.526152 0.850391i \(-0.323634\pi\)
\(72\) −7.78659 + 1.73829i −0.917659 + 0.204860i
\(73\) −3.93594 6.81724i −0.460667 0.797898i 0.538328 0.842736i \(-0.319056\pi\)
−0.998994 + 0.0448377i \(0.985723\pi\)
\(74\) 3.23454 0.818154i 0.376008 0.0951085i
\(75\) 0.632822 2.02014i 0.0730720 0.233266i
\(76\) 10.6727 + 6.56853i 1.22424 + 0.753462i
\(77\) 0 0
\(78\) 0.415314 1.46718i 0.0470250 0.166126i
\(79\) 4.01812 + 2.31987i 0.452074 + 0.261005i 0.708706 0.705504i \(-0.249279\pi\)
−0.256632 + 0.966509i \(0.582613\pi\)
\(80\) −8.50252 + 2.77619i −0.950610 + 0.310387i
\(81\) −3.70941 6.42488i −0.412156 0.713876i
\(82\) −6.95411 7.15236i −0.767953 0.789846i
\(83\) 4.32876i 0.475143i 0.971370 + 0.237571i \(0.0763514\pi\)
−0.971370 + 0.237571i \(0.923649\pi\)
\(84\) 0 0
\(85\) −8.92534 7.14971i −0.968089 0.775495i
\(86\) 10.9294 10.6264i 1.17855 1.14588i
\(87\) −0.692841 + 0.400012i −0.0742804 + 0.0428858i
\(88\) −13.2119 4.14428i −1.40839 0.441782i
\(89\) −1.89013 1.09127i −0.200354 0.115674i 0.396467 0.918049i \(-0.370236\pi\)
−0.596820 + 0.802375i \(0.703570\pi\)
\(90\) −5.17961 7.26206i −0.545979 0.765488i
\(91\) 0 0
\(92\) 7.88798 + 4.85468i 0.822378 + 0.506135i
\(93\) 0.541770 + 0.312791i 0.0561790 + 0.0324349i
\(94\) −16.7465 + 4.23590i −1.72727 + 0.436900i
\(95\) −2.11856 + 13.8501i −0.217360 + 1.42099i
\(96\) 0.780773 2.26421i 0.0796873 0.231090i
\(97\) −3.42330 −0.347584 −0.173792 0.984782i \(-0.555602\pi\)
−0.173792 + 0.984782i \(0.555602\pi\)
\(98\) 0 0
\(99\) 13.8090i 1.38785i
\(100\) −6.56008 7.54754i −0.656008 0.754754i
\(101\) 6.32803 3.65349i 0.629663 0.363536i −0.150959 0.988540i \(-0.548236\pi\)
0.780621 + 0.625004i \(0.214903\pi\)
\(102\) 2.96874 0.750922i 0.293949 0.0743524i
\(103\) −5.84630 3.37536i −0.576053 0.332584i 0.183510 0.983018i \(-0.441254\pi\)
−0.759563 + 0.650434i \(0.774587\pi\)
\(104\) −4.87409 5.30342i −0.477944 0.520043i
\(105\) 0 0
\(106\) −0.861354 + 3.04291i −0.0836621 + 0.295554i
\(107\) 4.91497 8.51298i 0.475148 0.822980i −0.524447 0.851443i \(-0.675728\pi\)
0.999595 + 0.0284627i \(0.00906119\pi\)
\(108\) 4.92692 + 0.138512i 0.474093 + 0.0133283i
\(109\) 4.70610 + 8.15121i 0.450763 + 0.780744i 0.998434 0.0559497i \(-0.0178186\pi\)
−0.547671 + 0.836694i \(0.684485\pi\)
\(110\) −1.48327 15.4097i −0.141424 1.46926i
\(111\) −0.998857 −0.0948073
\(112\) 0 0
\(113\) 15.9261i 1.49820i 0.662455 + 0.749102i \(0.269515\pi\)
−0.662455 + 0.749102i \(0.730485\pi\)
\(114\) −2.61541 2.68997i −0.244956 0.251939i
\(115\) −1.56579 + 10.2364i −0.146011 + 0.954547i
\(116\) −0.106203 + 3.77766i −0.00986067 + 0.350747i
\(117\) 3.59171 6.22102i 0.332054 0.575134i
\(118\) −7.74264 2.19170i −0.712768 0.201763i
\(119\) 0 0
\(120\) 2.67158 0.181555i 0.243881 0.0165736i
\(121\) 6.48302 11.2289i 0.589365 1.02081i
\(122\) −5.30597 + 1.34211i −0.480380 + 0.121509i
\(123\) 1.49327 + 2.58643i 0.134644 + 0.233210i
\(124\) 2.59973 1.40506i 0.233462 0.126178i
\(125\) 4.91696 10.0411i 0.439786 0.898103i
\(126\) 0 0
\(127\) −12.2192 −1.08428 −0.542138 0.840290i \(-0.682385\pi\)
−0.542138 + 0.840290i \(0.682385\pi\)
\(128\) −7.17563 8.74702i −0.634242 0.773135i
\(129\) −3.95227 + 2.28185i −0.347978 + 0.200905i
\(130\) 3.33985 7.32798i 0.292924 0.642706i
\(131\) −4.92530 + 8.53087i −0.430325 + 0.745345i −0.996901 0.0786642i \(-0.974935\pi\)
0.566576 + 0.824010i \(0.308268\pi\)
\(132\) 3.53036 + 2.17277i 0.307278 + 0.189115i
\(133\) 0 0
\(134\) 1.21013 + 0.342549i 0.104539 + 0.0295917i
\(135\) 2.00204 + 5.13410i 0.172308 + 0.441873i
\(136\) 4.32949 13.8023i 0.371250 1.18354i
\(137\) 4.06585 2.34742i 0.347369 0.200554i −0.316157 0.948707i \(-0.602393\pi\)
0.663526 + 0.748153i \(0.269059\pi\)
\(138\) −1.93300 1.98811i −0.164548 0.169239i
\(139\) −13.8745 −1.17682 −0.588409 0.808564i \(-0.700245\pi\)
−0.588409 + 0.808564i \(0.700245\pi\)
\(140\) 0 0
\(141\) 5.17147 0.435516
\(142\) 14.1282 + 14.5310i 1.18562 + 1.21942i
\(143\) 10.7968 6.23356i 0.902877 0.521276i
\(144\) 6.18155 9.43895i 0.515129 0.786579i
\(145\) −3.93652 + 1.53504i −0.326910 + 0.127478i
\(146\) 10.7116 + 3.03213i 0.886501 + 0.250941i
\(147\) 0 0
\(148\) −2.47310 + 4.01834i −0.203288 + 0.330306i
\(149\) 2.73179 4.73161i 0.223797 0.387628i −0.732161 0.681132i \(-0.761488\pi\)
0.955958 + 0.293504i \(0.0948213\pi\)
\(150\) 1.34990 + 2.67220i 0.110219 + 0.218184i
\(151\) −1.29567 + 0.748053i −0.105440 + 0.0608757i −0.551793 0.833981i \(-0.686056\pi\)
0.446353 + 0.894857i \(0.352723\pi\)
\(152\) −17.2972 + 3.86145i −1.40299 + 0.313205i
\(153\) 14.4261 1.16628
\(154\) 0 0
\(155\) 2.57861 + 2.06561i 0.207119 + 0.165914i
\(156\) 1.02531 + 1.89709i 0.0820905 + 0.151889i
\(157\) 11.4517 + 19.8350i 0.913948 + 1.58300i 0.808434 + 0.588587i \(0.200316\pi\)
0.105515 + 0.994418i \(0.466351\pi\)
\(158\) −6.36123 + 1.60903i −0.506072 + 0.128007i
\(159\) 0.473392 0.819938i 0.0375424 0.0650253i
\(160\) 5.88426 11.1971i 0.465192 0.885210i
\(161\) 0 0
\(162\) 10.0951 + 2.85762i 0.793148 + 0.224516i
\(163\) −0.965256 + 1.67187i −0.0756047 + 0.130951i −0.901349 0.433093i \(-0.857422\pi\)
0.825744 + 0.564045i \(0.190755\pi\)
\(164\) 14.1023 + 0.396462i 1.10120 + 0.0309585i
\(165\) −0.700788 + 4.58141i −0.0545563 + 0.356663i
\(166\) −4.26750 4.38916i −0.331222 0.340665i
\(167\) 16.9677i 1.31300i −0.754327 0.656499i \(-0.772037\pi\)
0.754327 0.656499i \(-0.227963\pi\)
\(168\) 0 0
\(169\) −6.51462 −0.501124
\(170\) 16.0984 1.54956i 1.23469 0.118846i
\(171\) −8.83740 15.3068i −0.675813 1.17054i
\(172\) −0.605827 + 21.5495i −0.0461939 + 1.64313i
\(173\) −5.01816 + 8.69171i −0.381524 + 0.660818i −0.991280 0.131770i \(-0.957934\pi\)
0.609757 + 0.792589i \(0.291267\pi\)
\(174\) 0.308158 1.08863i 0.0233614 0.0825289i
\(175\) 0 0
\(176\) 17.4818 8.82279i 1.31774 0.665043i
\(177\) 2.08632 + 1.20454i 0.156818 + 0.0905386i
\(178\) 2.99233 0.756890i 0.224285 0.0567313i
\(179\) −3.07683 + 1.77641i −0.229973 + 0.132775i −0.610560 0.791970i \(-0.709056\pi\)
0.380586 + 0.924745i \(0.375722\pi\)
\(180\) 12.4112 + 2.25708i 0.925075 + 0.168233i
\(181\) 22.2716i 1.65543i 0.561148 + 0.827716i \(0.310360\pi\)
−0.561148 + 0.827716i \(0.689640\pi\)
\(182\) 0 0
\(183\) 1.63853 0.121124
\(184\) −12.7840 + 2.85393i −0.942451 + 0.210395i
\(185\) −5.21468 0.797654i −0.383391 0.0586447i
\(186\) −0.857695 + 0.216948i −0.0628893 + 0.0159074i
\(187\) 21.6828 + 12.5185i 1.58560 + 0.915447i
\(188\) 12.8042 20.8045i 0.933843 1.51733i
\(189\) 0 0
\(190\) −11.5060 16.1320i −0.834733 1.17034i
\(191\) −15.4551 8.92302i −1.11829 0.645647i −0.177328 0.984152i \(-0.556746\pi\)
−0.940965 + 0.338505i \(0.890079\pi\)
\(192\) 1.44050 + 3.06552i 0.103959 + 0.221235i
\(193\) −15.7903 + 9.11654i −1.13661 + 0.656223i −0.945589 0.325363i \(-0.894513\pi\)
−0.191022 + 0.981586i \(0.561180\pi\)
\(194\) 3.47107 3.37486i 0.249208 0.242301i
\(195\) −1.50733 + 1.88168i −0.107942 + 0.134750i
\(196\) 0 0
\(197\) 11.3569i 0.809148i −0.914505 0.404574i \(-0.867420\pi\)
0.914505 0.404574i \(-0.132580\pi\)
\(198\) 13.6136 + 14.0017i 0.967474 + 0.995055i
\(199\) −4.51414 7.81873i −0.319999 0.554255i 0.660488 0.750836i \(-0.270349\pi\)
−0.980487 + 0.196581i \(0.937016\pi\)
\(200\) 14.0924 + 1.18560i 0.996480 + 0.0838346i
\(201\) −0.326079 0.188262i −0.0229998 0.0132789i
\(202\) −2.81454 + 9.94295i −0.198030 + 0.699584i
\(203\) 0 0
\(204\) −2.26987 + 3.68813i −0.158923 + 0.258221i
\(205\) 5.73042 + 14.6953i 0.400230 + 1.02636i
\(206\) 9.25547 2.34110i 0.644859 0.163112i
\(207\) −6.53156 11.3130i −0.453975 0.786307i
\(208\) 10.1705 + 0.572304i 0.705196 + 0.0396822i
\(209\) 30.6753i 2.12186i
\(210\) 0 0
\(211\) 4.40164i 0.303021i 0.988456 + 0.151511i \(0.0484138\pi\)
−0.988456 + 0.151511i \(0.951586\pi\)
\(212\) −2.12648 3.93454i −0.146047 0.270225i
\(213\) −3.03379 5.25469i −0.207872 0.360045i
\(214\) 3.40896 + 13.4772i 0.233031 + 0.921281i
\(215\) −22.4556 + 8.75655i −1.53146 + 0.597192i
\(216\) −5.13222 + 4.71675i −0.349203 + 0.320934i
\(217\) 0 0
\(218\) −12.8076 3.62544i −0.867442 0.245546i
\(219\) −2.88634 1.66643i −0.195041 0.112607i
\(220\) 16.6956 + 14.1625i 1.12562 + 0.954835i
\(221\) 6.51214 + 11.2794i 0.438054 + 0.758731i
\(222\) 1.01279 0.984722i 0.0679743 0.0660902i
\(223\) 14.1103i 0.944899i 0.881358 + 0.472449i \(0.156630\pi\)
−0.881358 + 0.472449i \(0.843370\pi\)
\(224\) 0 0
\(225\) 3.07819 + 13.7637i 0.205213 + 0.917580i
\(226\) −15.7008 16.1484i −1.04440 1.07417i
\(227\) 9.52419 5.49880i 0.632143 0.364968i −0.149439 0.988771i \(-0.547747\pi\)
0.781582 + 0.623803i \(0.214413\pi\)
\(228\) 5.30381 + 0.149108i 0.351253 + 0.00987490i
\(229\) 7.02292 + 4.05469i 0.464088 + 0.267941i 0.713762 0.700389i \(-0.246990\pi\)
−0.249674 + 0.968330i \(0.580323\pi\)
\(230\) −8.50388 11.9228i −0.560729 0.786169i
\(231\) 0 0
\(232\) −3.61652 3.93507i −0.237436 0.258350i
\(233\) 13.7475 + 7.93710i 0.900626 + 0.519977i 0.877403 0.479754i \(-0.159274\pi\)
0.0232229 + 0.999730i \(0.492607\pi\)
\(234\) 2.49116 + 9.84871i 0.162852 + 0.643831i
\(235\) 26.9984 + 4.12977i 1.76118 + 0.269396i
\(236\) 10.0114 5.41079i 0.651685 0.352213i
\(237\) 1.96441 0.127602
\(238\) 0 0
\(239\) 24.4934i 1.58435i 0.610295 + 0.792174i \(0.291051\pi\)
−0.610295 + 0.792174i \(0.708949\pi\)
\(240\) −2.52987 + 2.81786i −0.163303 + 0.181892i
\(241\) 16.6157 9.59308i 1.07031 0.617945i 0.142045 0.989860i \(-0.454632\pi\)
0.928267 + 0.371916i \(0.121299\pi\)
\(242\) 4.49653 + 17.7769i 0.289048 + 1.14274i
\(243\) −9.12300 5.26717i −0.585241 0.337889i
\(244\) 4.05689 6.59171i 0.259716 0.421991i
\(245\) 0 0
\(246\) −4.06394 1.15038i −0.259107 0.0733452i
\(247\) 7.97864 13.8194i 0.507668 0.879308i
\(248\) −1.25083 + 3.98760i −0.0794275 + 0.253213i
\(249\) 0.916372 + 1.58720i 0.0580727 + 0.100585i
\(250\) 4.91343 + 15.0286i 0.310753 + 0.950491i
\(251\) 21.1323 1.33386 0.666929 0.745121i \(-0.267608\pi\)
0.666929 + 0.745121i \(0.267608\pi\)
\(252\) 0 0
\(253\) 22.6716i 1.42535i
\(254\) 12.3897 12.0462i 0.777397 0.755848i
\(255\) −4.78616 0.732107i −0.299721 0.0458463i
\(256\) 15.8990 + 1.79499i 0.993687 + 0.112187i
\(257\) 12.8260 22.2153i 0.800064 1.38575i −0.119509 0.992833i \(-0.538132\pi\)
0.919573 0.392918i \(-0.128534\pi\)
\(258\) 1.75787 6.21003i 0.109440 0.386620i
\(259\) 0 0
\(260\) 3.83783 + 10.7228i 0.238012 + 0.665001i
\(261\) 2.66501 4.61592i 0.164960 0.285719i
\(262\) −3.41612 13.5055i −0.211049 0.834373i
\(263\) 5.00988 + 8.67737i 0.308922 + 0.535069i 0.978127 0.208009i \(-0.0666983\pi\)
−0.669204 + 0.743078i \(0.733365\pi\)
\(264\) −5.72164 + 1.27731i −0.352143 + 0.0786130i
\(265\) 3.12619 3.90257i 0.192040 0.239733i
\(266\) 0 0
\(267\) −0.924061 −0.0565516
\(268\) −1.56471 + 0.845672i −0.0955801 + 0.0516576i
\(269\) 11.8597 6.84723i 0.723102 0.417483i −0.0927916 0.995686i \(-0.529579\pi\)
0.815893 + 0.578203i \(0.196246\pi\)
\(270\) −7.09142 3.23203i −0.431570 0.196695i
\(271\) 7.68044 13.3029i 0.466554 0.808095i −0.532716 0.846294i \(-0.678829\pi\)
0.999270 + 0.0381991i \(0.0121621\pi\)
\(272\) 9.21708 + 18.2631i 0.558868 + 1.10736i
\(273\) 0 0
\(274\) −1.80838 + 6.38849i −0.109249 + 0.385943i
\(275\) −7.31713 + 23.3583i −0.441240 + 1.40856i
\(276\) 3.91995 + 0.110203i 0.235953 + 0.00663343i
\(277\) −15.4230 + 8.90447i −0.926678 + 0.535018i −0.885759 0.464145i \(-0.846362\pi\)
−0.0409188 + 0.999162i \(0.513028\pi\)
\(278\) 14.0681 13.6781i 0.843747 0.820360i
\(279\) −4.16783 −0.249521
\(280\) 0 0
\(281\) 29.6169 1.76680 0.883398 0.468624i \(-0.155250\pi\)
0.883398 + 0.468624i \(0.155250\pi\)
\(282\) −5.24363 + 5.09829i −0.312254 + 0.303599i
\(283\) 3.09887 1.78914i 0.184209 0.106353i −0.405060 0.914290i \(-0.632749\pi\)
0.589269 + 0.807937i \(0.299416\pi\)
\(284\) −28.6508 0.805468i −1.70011 0.0477957i
\(285\) 2.15519 + 5.52684i 0.127662 + 0.327382i
\(286\) −4.80215 + 16.9646i −0.283957 + 1.00314i
\(287\) 0 0
\(288\) 3.03757 + 15.6647i 0.178991 + 0.923053i
\(289\) −4.57800 + 7.92933i −0.269294 + 0.466431i
\(290\) 2.47813 5.43727i 0.145521 0.319287i
\(291\) −1.25520 + 0.724692i −0.0735814 + 0.0424822i
\(292\) −13.8503 + 7.48560i −0.810528 + 0.438062i
\(293\) −17.7739 −1.03836 −0.519180 0.854665i \(-0.673763\pi\)
−0.519180 + 0.854665i \(0.673763\pi\)
\(294\) 0 0
\(295\) 9.93004 + 7.95453i 0.578149 + 0.463131i
\(296\) −1.45387 6.51252i −0.0845043 0.378532i
\(297\) −6.03233 10.4483i −0.350031 0.606272i
\(298\) 1.89474 + 7.49077i 0.109759 + 0.433928i
\(299\) 5.89687 10.2137i 0.341025 0.590672i
\(300\) −4.00312 1.37868i −0.231120 0.0795984i
\(301\) 0 0
\(302\) 0.576278 2.03582i 0.0331611 0.117148i
\(303\) 1.54684 2.67921i 0.0888639 0.153917i
\(304\) 13.7317 20.9677i 0.787568 1.20258i
\(305\) 8.55419 + 1.30848i 0.489812 + 0.0749232i
\(306\) −14.6274 + 14.2220i −0.836193 + 0.813015i
\(307\) 32.8923i 1.87726i −0.344923 0.938631i \(-0.612095\pi\)
0.344923 0.938631i \(-0.387905\pi\)
\(308\) 0 0
\(309\) −2.85818 −0.162596
\(310\) −4.65097 + 0.447680i −0.264157 + 0.0254265i
\(311\) 9.93741 + 17.2121i 0.563499 + 0.976009i 0.997188 + 0.0749459i \(0.0238784\pi\)
−0.433689 + 0.901063i \(0.642788\pi\)
\(312\) −2.90986 0.912761i −0.164738 0.0516749i
\(313\) 3.18572 5.51783i 0.180068 0.311886i −0.761836 0.647770i \(-0.775702\pi\)
0.941903 + 0.335884i \(0.109035\pi\)
\(314\) −31.1658 8.82208i −1.75879 0.497859i
\(315\) 0 0
\(316\) 4.86373 7.90269i 0.273606 0.444561i
\(317\) −14.7244 8.50113i −0.827004 0.477471i 0.0258220 0.999667i \(-0.491780\pi\)
−0.852826 + 0.522196i \(0.825113\pi\)
\(318\) 0.328338 + 1.29807i 0.0184123 + 0.0727923i
\(319\) 8.01112 4.62522i 0.448537 0.258963i
\(320\) 5.07230 + 17.1544i 0.283550 + 0.958957i
\(321\) 4.16188i 0.232293i
\(322\) 0 0
\(323\) 32.0462 1.78310
\(324\) −13.0532 + 7.05478i −0.725177 + 0.391932i
\(325\) −9.37190 + 8.61987i −0.519859 + 0.478144i
\(326\) −0.669488 2.64680i −0.0370795 0.146593i
\(327\) 3.45112 + 1.99251i 0.190848 + 0.110186i
\(328\) −14.6899 + 13.5007i −0.811115 + 0.745453i
\(329\) 0 0
\(330\) −3.80601 5.33621i −0.209514 0.293749i
\(331\) 12.6971 + 7.33065i 0.697893 + 0.402929i 0.806562 0.591149i \(-0.201326\pi\)
−0.108669 + 0.994078i \(0.534659\pi\)
\(332\) 8.65409 + 0.243295i 0.474955 + 0.0133526i
\(333\) 5.76313 3.32735i 0.315818 0.182338i
\(334\) 16.7276 + 17.2044i 0.915291 + 0.941385i
\(335\) −1.55200 1.24324i −0.0847949 0.0679256i
\(336\) 0 0
\(337\) 15.2435i 0.830368i 0.909738 + 0.415184i \(0.136283\pi\)
−0.909738 + 0.415184i \(0.863717\pi\)
\(338\) 6.60552 6.42243i 0.359293 0.349334i
\(339\) 3.37147 + 5.83955i 0.183113 + 0.317161i
\(340\) −14.7954 + 17.4418i −0.802394 + 0.945913i
\(341\) −6.26433 3.61671i −0.339233 0.195856i
\(342\) 24.0509 + 6.80807i 1.30052 + 0.368138i
\(343\) 0 0
\(344\) −20.6302 22.4474i −1.11231 1.21028i
\(345\) 1.59286 + 4.08479i 0.0857567 + 0.219918i
\(346\) −3.48053 13.7601i −0.187114 0.739750i
\(347\) −16.7097 28.9420i −0.897024 1.55369i −0.831280 0.555854i \(-0.812391\pi\)
−0.0657437 0.997837i \(-0.520942\pi\)
\(348\) 0.760768 + 1.40762i 0.0407814 + 0.0754562i
\(349\) 16.1586i 0.864951i 0.901646 + 0.432476i \(0.142360\pi\)
−0.901646 + 0.432476i \(0.857640\pi\)
\(350\) 0 0
\(351\) 6.27603i 0.334990i
\(352\) −9.02785 + 26.1804i −0.481186 + 1.39542i
\(353\) 11.3427 + 19.6461i 0.603711 + 1.04566i 0.992254 + 0.124228i \(0.0396453\pi\)
−0.388543 + 0.921431i \(0.627021\pi\)
\(354\) −3.30293 + 0.835451i −0.175549 + 0.0444037i
\(355\) −11.6421 29.8555i −0.617901 1.58457i
\(356\) −2.28791 + 3.71744i −0.121259 + 0.197024i
\(357\) 0 0
\(358\) 1.36850 4.83449i 0.0723272 0.255511i
\(359\) −14.5214 8.38391i −0.766408 0.442486i 0.0651839 0.997873i \(-0.479237\pi\)
−0.831592 + 0.555388i \(0.812570\pi\)
\(360\) −14.8095 + 9.94697i −0.780529 + 0.524251i
\(361\) −10.1314 17.5481i −0.533233 0.923586i
\(362\) −21.9564 22.5823i −1.15400 1.18690i
\(363\) 5.48966i 0.288133i
\(364\) 0 0
\(365\) −13.7378 11.0048i −0.719069 0.576016i
\(366\) −1.66139 + 1.61534i −0.0868425 + 0.0844354i
\(367\) −13.5474 + 7.82159i −0.707168 + 0.408284i −0.810012 0.586414i \(-0.800539\pi\)
0.102844 + 0.994698i \(0.467206\pi\)
\(368\) 10.1489 15.4969i 0.529046 0.807830i
\(369\) −17.2316 9.94866i −0.897041 0.517907i
\(370\) 6.07381 4.33210i 0.315762 0.225215i
\(371\) 0 0
\(372\) 0.655785 1.06553i 0.0340009 0.0552453i
\(373\) −14.8129 8.55225i −0.766985 0.442819i 0.0648133 0.997897i \(-0.479355\pi\)
−0.831798 + 0.555079i \(0.812688\pi\)
\(374\) −34.3267 + 8.68269i −1.77499 + 0.448971i
\(375\) −0.322764 4.72261i −0.0166675 0.243874i
\(376\) 7.52724 + 33.7178i 0.388188 + 1.73886i
\(377\) 4.81207 0.247834
\(378\) 0 0
\(379\) 10.3762i 0.532990i 0.963836 + 0.266495i \(0.0858655\pi\)
−0.963836 + 0.266495i \(0.914134\pi\)
\(380\) 27.5702 + 5.01389i 1.41432 + 0.257207i
\(381\) −4.48034 + 2.58672i −0.229535 + 0.132522i
\(382\) 24.4675 6.18888i 1.25187 0.316651i
\(383\) −8.00016 4.61890i −0.408789 0.236015i 0.281480 0.959567i \(-0.409175\pi\)
−0.690269 + 0.723552i \(0.742508\pi\)
\(384\) −4.48274 1.68819i −0.228759 0.0861500i
\(385\) 0 0
\(386\) 7.02311 24.8106i 0.357467 1.26283i
\(387\) 15.2024 26.3313i 0.772780 1.33849i
\(388\) −0.192405 + 6.84390i −0.00976787 + 0.347446i
\(389\) −8.54214 14.7954i −0.433104 0.750158i 0.564035 0.825751i \(-0.309248\pi\)
−0.997139 + 0.0755930i \(0.975915\pi\)
\(390\) −0.326684 3.39394i −0.0165423 0.171859i
\(391\) 23.6848 1.19779
\(392\) 0 0
\(393\) 4.17063i 0.210380i
\(394\) 11.1962 + 11.5154i 0.564057 + 0.580138i
\(395\) 10.2555 + 1.56871i 0.516009 + 0.0789304i
\(396\) −27.6071 0.776126i −1.38731 0.0390018i
\(397\) −16.7682 + 29.0434i −0.841573 + 1.45765i 0.0469909 + 0.998895i \(0.485037\pi\)
−0.888564 + 0.458752i \(0.848297\pi\)
\(398\) 12.2852 + 3.47756i 0.615802 + 0.174315i
\(399\) 0 0
\(400\) −15.4578 + 12.6908i −0.772891 + 0.634539i
\(401\) 6.41428 11.1099i 0.320314 0.554800i −0.660239 0.751056i \(-0.729545\pi\)
0.980553 + 0.196256i \(0.0628784\pi\)
\(402\) 0.516226 0.130576i 0.0257470 0.00651252i
\(403\) −1.88141 3.25870i −0.0937198 0.162327i
\(404\) −6.94843 12.8564i −0.345697 0.639630i
\(405\) −12.9471 10.3714i −0.643348 0.515359i
\(406\) 0 0
\(407\) 11.5495 0.572487
\(408\) −1.33439 5.97734i −0.0660624 0.295923i
\(409\) −18.7038 + 10.7986i −0.924841 + 0.533957i −0.885176 0.465256i \(-0.845962\pi\)
−0.0396649 + 0.999213i \(0.512629\pi\)
\(410\) −20.2977 9.25103i −1.00243 0.456876i
\(411\) 0.993870 1.72143i 0.0490240 0.0849121i
\(412\) −7.07664 + 11.4983i −0.348641 + 0.566479i
\(413\) 0 0
\(414\) 17.7756 + 5.03172i 0.873623 + 0.247296i
\(415\) 3.51656 + 9.01801i 0.172621 + 0.442677i
\(416\) −10.8766 + 9.44626i −0.533269 + 0.463141i
\(417\) −5.08728 + 2.93714i −0.249125 + 0.143833i
\(418\) 30.2412 + 31.1033i 1.47915 + 1.52131i
\(419\) 18.7281 0.914929 0.457464 0.889228i \(-0.348758\pi\)
0.457464 + 0.889228i \(0.348758\pi\)
\(420\) 0 0
\(421\) −18.9665 −0.924371 −0.462186 0.886783i \(-0.652935\pi\)
−0.462186 + 0.886783i \(0.652935\pi\)
\(422\) −4.33935 4.46306i −0.211236 0.217258i
\(423\) −29.8380 + 17.2270i −1.45077 + 0.837604i
\(424\) 6.03501 + 1.89305i 0.293086 + 0.0919348i
\(425\) −24.4022 7.64414i −1.18368 0.370795i
\(426\) 8.25645 + 2.33715i 0.400026 + 0.113235i
\(427\) 0 0
\(428\) −16.7430 10.3045i −0.809303 0.498088i
\(429\) 2.63921 4.57125i 0.127422 0.220702i
\(430\) 14.1363 31.0166i 0.681714 1.49575i
\(431\) 23.4036 13.5121i 1.12731 0.650854i 0.184055 0.982916i \(-0.441077\pi\)
0.943258 + 0.332061i \(0.107744\pi\)
\(432\) 0.553830 9.84216i 0.0266461 0.473531i
\(433\) 15.0015 0.720928 0.360464 0.932773i \(-0.382618\pi\)
0.360464 + 0.932773i \(0.382618\pi\)
\(434\) 0 0
\(435\) −1.11842 + 1.39618i −0.0536243 + 0.0669418i
\(436\) 16.5605 8.95036i 0.793103 0.428644i
\(437\) −14.5092 25.1307i −0.694071 1.20217i
\(438\) 4.56946 1.15581i 0.218337 0.0552268i
\(439\) 9.21899 15.9678i 0.439998 0.762099i −0.557690 0.830049i \(-0.688312\pi\)
0.997689 + 0.0679495i \(0.0216457\pi\)
\(440\) −30.8907 + 2.09927i −1.47266 + 0.100079i
\(441\) 0 0
\(442\) −17.7227 5.01676i −0.842985 0.238623i
\(443\) −10.4298 + 18.0649i −0.495533 + 0.858289i −0.999987 0.00514984i \(-0.998361\pi\)
0.504453 + 0.863439i \(0.331694\pi\)
\(444\) −0.0561402 + 1.99692i −0.00266430 + 0.0947699i
\(445\) −4.82419 0.737925i −0.228689 0.0349810i
\(446\) −13.9107 14.3072i −0.658689 0.677467i
\(447\) 2.31322i 0.109411i
\(448\) 0 0
\(449\) 14.6483 0.691298 0.345649 0.938364i \(-0.387659\pi\)
0.345649 + 0.938364i \(0.387659\pi\)
\(450\) −16.6901 10.9211i −0.786778 0.514827i
\(451\) −17.2663 29.9061i −0.813038 1.40822i
\(452\) 31.8397 + 0.895119i 1.49761 + 0.0421029i
\(453\) −0.316717 + 0.548569i −0.0148806 + 0.0257740i
\(454\) −4.23611 + 14.9649i −0.198811 + 0.702339i
\(455\) 0 0
\(456\) −5.52481 + 5.07756i −0.258723 + 0.237779i
\(457\) −1.03058 0.595004i −0.0482084 0.0278331i 0.475702 0.879606i \(-0.342194\pi\)
−0.523910 + 0.851773i \(0.675527\pi\)
\(458\) −11.1182 + 2.81228i −0.519521 + 0.131409i
\(459\) 10.9152 6.30192i 0.509480 0.294148i
\(460\) 20.3767 + 3.70567i 0.950067 + 0.172778i
\(461\) 14.5645i 0.678336i 0.940726 + 0.339168i \(0.110146\pi\)
−0.940726 + 0.339168i \(0.889854\pi\)
\(462\) 0 0
\(463\) 4.69391 0.218145 0.109072 0.994034i \(-0.465212\pi\)
0.109072 + 0.994034i \(0.465212\pi\)
\(464\) 7.54637 + 0.424643i 0.350331 + 0.0197136i
\(465\) 1.38276 + 0.211512i 0.0641241 + 0.00980863i
\(466\) −21.7641 + 5.50506i −1.00820 + 0.255017i
\(467\) 21.8947 + 12.6409i 1.01317 + 0.584952i 0.912117 0.409929i \(-0.134447\pi\)
0.101050 + 0.994881i \(0.467780\pi\)
\(468\) −12.2353 7.53023i −0.565575 0.348085i
\(469\) 0 0
\(470\) −31.4465 + 22.4290i −1.45052 + 1.03457i
\(471\) 8.39790 + 4.84853i 0.386955 + 0.223408i
\(472\) −4.81685 + 15.3560i −0.221713 + 0.706817i
\(473\) 45.6990 26.3843i 2.10124 1.21315i
\(474\) −1.99182 + 1.93661i −0.0914872 + 0.0889513i
\(475\) 6.83791 + 30.5747i 0.313745 + 1.40286i
\(476\) 0 0
\(477\) 6.30776i 0.288813i
\(478\) −24.1468 24.8352i −1.10445 1.13594i
\(479\) 2.05143 + 3.55318i 0.0937322 + 0.162349i 0.909079 0.416624i \(-0.136787\pi\)
−0.815347 + 0.578973i \(0.803454\pi\)
\(480\) −0.212812 5.35125i −0.00971351 0.244250i
\(481\) 5.20311 + 3.00402i 0.237241 + 0.136971i
\(482\) −7.39023 + 26.1075i −0.336616 + 1.18916i
\(483\) 0 0
\(484\) −22.0846 13.5920i −1.00385 0.617820i
\(485\) −7.13169 + 2.78100i −0.323833 + 0.126279i
\(486\) 14.4429 3.65324i 0.655145 0.165714i
\(487\) −16.9058 29.2816i −0.766073 1.32688i −0.939678 0.342062i \(-0.888875\pi\)
0.173605 0.984815i \(-0.444458\pi\)
\(488\) 2.38493 + 10.6832i 0.107961 + 0.483604i
\(489\) 0.817356i 0.0369621i
\(490\) 0 0
\(491\) 25.9116i 1.16937i 0.811259 + 0.584686i \(0.198782\pi\)
−0.811259 + 0.584686i \(0.801218\pi\)
\(492\) 5.25474 2.84000i 0.236902 0.128037i
\(493\) 4.83193 + 8.36914i 0.217619 + 0.376927i
\(494\) 5.53387 + 21.8780i 0.248981 + 0.984336i
\(495\) −11.2180 28.7680i −0.504213 1.29302i
\(496\) −2.66289 5.27637i −0.119567 0.236916i
\(497\) 0 0
\(498\) −2.49390 0.705946i −0.111754 0.0316342i
\(499\) 21.0465 + 12.1512i 0.942170 + 0.543962i 0.890640 0.454709i \(-0.150257\pi\)
0.0515304 + 0.998671i \(0.483590\pi\)
\(500\) −19.7979 10.3944i −0.885389 0.464851i
\(501\) −3.59195 6.22145i −0.160477 0.277954i
\(502\) −21.4272 + 20.8332i −0.956341 + 0.929833i
\(503\) 11.5222i 0.513750i −0.966445 0.256875i \(-0.917307\pi\)
0.966445 0.256875i \(-0.0826928\pi\)
\(504\) 0 0
\(505\) 10.2151 12.7520i 0.454564 0.567455i
\(506\) 22.3507 + 22.9879i 0.993612 + 1.02194i
\(507\) −2.38868 + 1.37911i −0.106085 + 0.0612482i
\(508\) −0.686771 + 24.4287i −0.0304705 + 1.08385i
\(509\) 23.4965 + 13.5657i 1.04147 + 0.601290i 0.920248 0.391336i \(-0.127987\pi\)
0.121218 + 0.992626i \(0.461320\pi\)
\(510\) 5.57469 3.97611i 0.246851 0.176065i
\(511\) 0 0
\(512\) −17.8904 + 13.8540i −0.790653 + 0.612264i
\(513\) −13.3733 7.72108i −0.590445 0.340894i
\(514\) 8.89594 + 35.1698i 0.392383 + 1.55127i
\(515\) −14.9215 2.28245i −0.657521 0.100577i
\(516\) 4.33976 + 8.02968i 0.191047 + 0.353487i
\(517\) −59.7962 −2.62983
\(518\) 0 0
\(519\) 4.24926i 0.186522i
\(520\) −14.4625 7.08892i −0.634220 0.310870i
\(521\) −14.9657 + 8.64045i −0.655659 + 0.378545i −0.790621 0.612306i \(-0.790242\pi\)
0.134962 + 0.990851i \(0.456909\pi\)
\(522\) 1.84841 + 7.30763i 0.0809028 + 0.319846i
\(523\) −16.4944 9.52305i −0.721250 0.416414i 0.0939627 0.995576i \(-0.470047\pi\)
−0.815213 + 0.579162i \(0.803380\pi\)
\(524\) 16.7782 + 10.3262i 0.732958 + 0.451101i
\(525\) 0 0
\(526\) −13.6344 3.85946i −0.594486 0.168281i
\(527\) 3.77835 6.54429i 0.164587 0.285074i
\(528\) 4.54225 6.93581i 0.197676 0.301842i
\(529\) 0.776490 + 1.34492i 0.0337605 + 0.0584748i
\(530\) 0.677538 + 7.03897i 0.0294304 + 0.305753i
\(531\) −16.0500 −0.696511
\(532\) 0 0
\(533\) 17.9638i 0.778100i
\(534\) 0.936955 0.910984i 0.0405460 0.0394221i
\(535\) 3.32354 21.7277i 0.143689 0.939370i
\(536\) 0.752842 2.40004i 0.0325178 0.103666i
\(537\) −0.752111 + 1.30269i −0.0324560 + 0.0562154i
\(538\) −5.27490 + 18.6347i −0.227417 + 0.803399i
\(539\) 0 0
\(540\) 10.3767 3.71394i 0.446541 0.159822i
\(541\) −9.19403 + 15.9245i −0.395282 + 0.684649i −0.993137 0.116955i \(-0.962687\pi\)
0.597855 + 0.801604i \(0.296020\pi\)
\(542\) 5.32705 + 21.0603i 0.228816 + 0.904617i
\(543\) 4.71475 + 8.16619i 0.202329 + 0.350445i
\(544\) −27.3504 9.43131i −1.17264 0.404364i
\(545\) 16.4259 + 13.1581i 0.703610 + 0.563632i
\(546\) 0 0
\(547\) −18.9519 −0.810323 −0.405161 0.914245i \(-0.632785\pi\)
−0.405161 + 0.914245i \(0.632785\pi\)
\(548\) −4.46447 8.26043i −0.190713 0.352868i
\(549\) −9.45388 + 5.45820i −0.403482 + 0.232950i
\(550\) −15.6085 30.8978i −0.665550 1.31749i
\(551\) 5.92005 10.2538i 0.252203 0.436828i
\(552\) −4.08329 + 3.75274i −0.173796 + 0.159727i
\(553\) 0 0
\(554\) 6.85974 24.2335i 0.291443 1.02958i
\(555\) −2.08090 + 0.811444i −0.0883292 + 0.0344439i
\(556\) −0.779807 + 27.7380i −0.0330712 + 1.17635i
\(557\) −22.0931 + 12.7555i −0.936116 + 0.540467i −0.888741 0.458411i \(-0.848419\pi\)
−0.0473751 + 0.998877i \(0.515086\pi\)
\(558\) 4.22598 4.10885i 0.178900 0.173941i
\(559\) 27.4502 1.16102
\(560\) 0 0
\(561\) 10.6004 0.447549
\(562\) −30.0302 + 29.1978i −1.26675 + 1.23163i
\(563\) −27.2462 + 15.7306i −1.14829 + 0.662965i −0.948470 0.316868i \(-0.897369\pi\)
−0.199819 + 0.979833i \(0.564035\pi\)
\(564\) 0.290660 10.3389i 0.0122390 0.435344i
\(565\) 12.9380 + 33.1786i 0.544304 + 1.39583i
\(566\) −1.37830 + 4.86912i −0.0579342 + 0.204665i
\(567\) 0 0
\(568\) 29.8446 27.4286i 1.25225 1.15088i
\(569\) −8.21728 + 14.2327i −0.344486 + 0.596668i −0.985260 0.171062i \(-0.945280\pi\)
0.640774 + 0.767729i \(0.278614\pi\)
\(570\) −7.63389 3.47927i −0.319748 0.145731i
\(571\) −12.9962 + 7.50335i −0.543873 + 0.314005i −0.746647 0.665220i \(-0.768338\pi\)
0.202774 + 0.979226i \(0.435004\pi\)
\(572\) −11.8554 21.9355i −0.495697 0.917169i
\(573\) −7.55580 −0.315648
\(574\) 0 0
\(575\) 5.05378 + 22.5972i 0.210757 + 0.942370i
\(576\) −18.5230 12.8887i −0.771793 0.537030i
\(577\) −1.24966 2.16447i −0.0520240 0.0901082i 0.838841 0.544377i \(-0.183234\pi\)
−0.890865 + 0.454269i \(0.849901\pi\)
\(578\) −3.17524 12.5532i −0.132073 0.522144i
\(579\) −3.85983 + 6.68543i −0.160409 + 0.277837i
\(580\) 2.84762 + 7.95620i 0.118241 + 0.330363i
\(581\) 0 0
\(582\) 0.558282 1.97225i 0.0231415 0.0817522i
\(583\) −5.47369 + 9.48071i −0.226697 + 0.392651i
\(584\) 6.66391 21.2444i 0.275754 0.879098i
\(585\) 2.42874 15.8779i 0.100416 0.656472i
\(586\) 18.0219 17.5224i 0.744477 0.723842i
\(587\) 22.1562i 0.914482i −0.889343 0.457241i \(-0.848838\pi\)
0.889343 0.457241i \(-0.151162\pi\)
\(588\) 0 0
\(589\) −9.25842 −0.381487
\(590\) −17.9106 + 1.72399i −0.737366 + 0.0709754i
\(591\) −2.40419 4.16419i −0.0988953 0.171292i
\(592\) 7.89451 + 5.17010i 0.324462 + 0.212490i
\(593\) 14.3251 24.8118i 0.588262 1.01890i −0.406198 0.913785i \(-0.633146\pi\)
0.994460 0.105115i \(-0.0335211\pi\)
\(594\) 16.4169 + 4.64713i 0.673596 + 0.190674i
\(595\) 0 0
\(596\) −9.30594 5.72737i −0.381186 0.234602i
\(597\) −3.31036 1.91123i −0.135484 0.0782216i
\(598\) 4.08999 + 16.1696i 0.167252 + 0.661224i
\(599\) −14.2033 + 8.20030i −0.580333 + 0.335055i −0.761266 0.648440i \(-0.775422\pi\)
0.180933 + 0.983495i \(0.442088\pi\)
\(600\) 5.41815 2.54855i 0.221195 0.104044i
\(601\) 22.1672i 0.904220i −0.891962 0.452110i \(-0.850671\pi\)
0.891962 0.452110i \(-0.149329\pi\)
\(602\) 0 0
\(603\) 2.50851 0.102155
\(604\) 1.42269 + 2.63235i 0.0578885 + 0.107109i
\(605\) 4.38387 28.6596i 0.178230 1.16518i
\(606\) 1.07287 + 4.24155i 0.0435824 + 0.172301i
\(607\) 24.8986 + 14.3752i 1.01060 + 0.583472i 0.911368 0.411592i \(-0.135027\pi\)
0.0992347 + 0.995064i \(0.468361\pi\)
\(608\) 6.74768 + 34.7977i 0.273654 + 1.41123i
\(609\) 0 0
\(610\) −9.96351 + 7.10640i −0.403411 + 0.287730i
\(611\) −26.9385 15.5530i −1.08982 0.629206i
\(612\) 0.810812 28.8408i 0.0327751 1.16582i
\(613\) −10.5198 + 6.07359i −0.424890 + 0.245310i −0.697167 0.716909i \(-0.745556\pi\)
0.272278 + 0.962219i \(0.412223\pi\)
\(614\) 32.4268 + 33.3513i 1.30864 + 1.34595i
\(615\) 5.21205 + 4.17515i 0.210170 + 0.168358i
\(616\) 0 0
\(617\) 15.9265i 0.641175i 0.947219 + 0.320588i \(0.103880\pi\)
−0.947219 + 0.320588i \(0.896120\pi\)
\(618\) 2.89806 2.81773i 0.116577 0.113346i
\(619\) −1.94167 3.36308i −0.0780424 0.135173i 0.824363 0.566062i \(-0.191534\pi\)
−0.902405 + 0.430888i \(0.858200\pi\)
\(620\) 4.27452 5.03908i 0.171669 0.202374i
\(621\) −9.88396 5.70651i −0.396630 0.228994i
\(622\) −27.0446 7.65549i −1.08439 0.306957i
\(623\) 0 0
\(624\) 3.85031 1.94319i 0.154136 0.0777897i
\(625\) 2.08628 24.9128i 0.0834513 0.996512i
\(626\) 2.20957 + 8.73546i 0.0883123 + 0.349139i
\(627\) −6.49378 11.2476i −0.259337 0.449184i
\(628\) 40.2980 21.7796i 1.60806 0.869101i
\(629\) 12.0656i 0.481089i
\(630\) 0 0
\(631\) 12.2743i 0.488633i 0.969696 + 0.244316i \(0.0785636\pi\)
−0.969696 + 0.244316i \(0.921436\pi\)
\(632\) 2.85925 + 12.8079i 0.113735 + 0.509470i
\(633\) 0.931800 + 1.61393i 0.0370357 + 0.0641478i
\(634\) 23.3107 5.89626i 0.925785 0.234171i
\(635\) −25.4559 + 9.92651i −1.01019 + 0.393922i
\(636\) −1.61262 0.992493i −0.0639446 0.0393549i
\(637\) 0 0
\(638\) −3.56314 + 12.5875i −0.141066 + 0.498345i
\(639\) 35.0084 + 20.2121i 1.38491 + 0.799578i
\(640\) −22.0547 12.3932i −0.871787 0.489884i
\(641\) −7.41350 12.8406i −0.292816 0.507172i 0.681659 0.731670i \(-0.261259\pi\)
−0.974474 + 0.224499i \(0.927926\pi\)
\(642\) 4.10298 + 4.21995i 0.161932 + 0.166548i
\(643\) 11.8058i 0.465577i 0.972527 + 0.232789i \(0.0747850\pi\)
−0.972527 + 0.232789i \(0.925215\pi\)
\(644\) 0 0
\(645\) −6.37998 + 7.96444i −0.251211 + 0.313600i
\(646\) −32.4934 + 31.5927i −1.27843 + 1.24300i
\(647\) 29.9706 17.3035i 1.17827 0.680272i 0.222653 0.974898i \(-0.428528\pi\)
0.955613 + 0.294626i \(0.0951950\pi\)
\(648\) 6.28037 20.0217i 0.246716 0.786526i
\(649\) −24.1235 13.9277i −0.946931 0.546711i
\(650\) 1.00478 17.9794i 0.0394109 0.705211i
\(651\) 0 0
\(652\) 3.28817 + 2.02372i 0.128775 + 0.0792549i
\(653\) 24.4111 + 14.0937i 0.955279 + 0.551531i 0.894717 0.446634i \(-0.147377\pi\)
0.0605622 + 0.998164i \(0.480711\pi\)
\(654\) −5.46359 + 1.38198i −0.213643 + 0.0540396i
\(655\) −3.33053 + 21.7734i −0.130134 + 0.850755i
\(656\) 1.58522 28.1712i 0.0618926 1.09990i
\(657\) 22.2045 0.866281
\(658\) 0 0
\(659\) 9.79123i 0.381412i 0.981647 + 0.190706i \(0.0610777\pi\)
−0.981647 + 0.190706i \(0.938922\pi\)
\(660\) 9.11982 + 1.65852i 0.354989 + 0.0645578i
\(661\) 0.707548 0.408503i 0.0275204 0.0158889i −0.486177 0.873861i \(-0.661609\pi\)
0.513697 + 0.857972i \(0.328276\pi\)
\(662\) −20.1011 + 5.08444i −0.781253 + 0.197612i
\(663\) 4.77554 + 2.75716i 0.185467 + 0.107079i
\(664\) −9.01470 + 8.28494i −0.349838 + 0.321518i
\(665\) 0 0
\(666\) −2.56329 + 9.05536i −0.0993255 + 0.350888i
\(667\) 4.37540 7.57842i 0.169416 0.293438i
\(668\) −33.9219 0.953659i −1.31248 0.0368982i
\(669\) 2.98708 + 5.17377i 0.115487 + 0.200029i
\(670\) 2.79931 0.269448i 0.108147 0.0104097i
\(671\) −18.9459 −0.731397
\(672\) 0 0
\(673\) 9.43129i 0.363550i −0.983340 0.181775i \(-0.941816\pi\)
0.983340 0.181775i \(-0.0581842\pi\)
\(674\) −15.0278 15.4562i −0.578850 0.595352i
\(675\) 8.34161 + 9.06936i 0.321069 + 0.349080i
\(676\) −0.366151 + 13.0241i −0.0140827 + 0.500927i
\(677\) 1.23700 2.14255i 0.0475418 0.0823449i −0.841275 0.540607i \(-0.818195\pi\)
0.888817 + 0.458262i \(0.151528\pi\)
\(678\) −9.17542 2.59728i −0.352380 0.0997479i
\(679\) 0 0
\(680\) −2.19309 32.2712i −0.0841010 1.23754i
\(681\) 2.32812 4.03243i 0.0892139 0.154523i
\(682\) 9.91728 2.50850i 0.379752 0.0960556i
\(683\) 9.37801 + 16.2432i 0.358840 + 0.621528i 0.987767 0.155935i \(-0.0498392\pi\)
−0.628928 + 0.777464i \(0.716506\pi\)
\(684\) −31.0982 + 16.8075i −1.18907 + 0.642651i
\(685\) 6.56332 8.19332i 0.250772 0.313051i
\(686\) 0 0
\(687\) 3.43341 0.130993
\(688\) 43.0478 + 2.42235i 1.64118 + 0.0923513i
\(689\) −4.93186 + 2.84741i −0.187889 + 0.108478i
\(690\) −5.64207 2.57147i −0.214790 0.0978941i
\(691\) 2.11063 3.65572i 0.0802923 0.139070i −0.823083 0.567921i \(-0.807748\pi\)
0.903375 + 0.428851i \(0.141081\pi\)
\(692\) 17.0945 + 10.5209i 0.649836 + 0.399943i
\(693\) 0 0
\(694\) 45.4753 + 12.8727i 1.72622 + 0.488640i
\(695\) −28.9044 + 11.2712i −1.09641 + 0.427543i
\(696\) −2.15908 0.677258i −0.0818398 0.0256714i
\(697\) 31.2426 18.0379i 1.18340 0.683236i
\(698\) −15.9300 16.3841i −0.602958 0.620147i
\(699\) 6.72095 0.254210
\(700\) 0 0
\(701\) −12.2843 −0.463971 −0.231985 0.972719i \(-0.574522\pi\)
−0.231985 + 0.972719i \(0.574522\pi\)
\(702\) 6.18721 + 6.36360i 0.233521 + 0.240179i
\(703\) 12.8022 7.39138i 0.482846 0.278771i
\(704\) −16.6561 35.4458i −0.627749 1.33591i
\(705\) 10.7736 4.20116i 0.405758 0.158225i
\(706\) −30.8691 8.73809i −1.16177 0.328862i
\(707\) 0 0
\(708\) 2.52539 4.10329i 0.0949098 0.154211i
\(709\) −1.46808 + 2.54279i −0.0551348 + 0.0954963i −0.892276 0.451491i \(-0.850892\pi\)
0.837141 + 0.546988i \(0.184226\pi\)
\(710\) 41.2376 + 18.7947i 1.54762 + 0.705354i
\(711\) −11.3341 + 6.54374i −0.425062 + 0.245410i
\(712\) −1.34500 6.02485i −0.0504060 0.225791i
\(713\) −6.84273 −0.256262
\(714\) 0 0
\(715\) 17.4288 21.7573i 0.651802 0.813677i
\(716\) 3.37849 + 6.25108i 0.126260 + 0.233614i
\(717\) 5.18511 + 8.98088i 0.193642 + 0.335397i
\(718\) 22.9892 5.81496i 0.857951 0.217013i
\(719\) −23.7638 + 41.1601i −0.886240 + 1.53501i −0.0419549 + 0.999120i \(0.513359\pi\)
−0.844285 + 0.535894i \(0.819975\pi\)
\(720\) 5.20994 24.6857i 0.194163 0.919982i
\(721\) 0 0
\(722\) 27.5726 + 7.80495i 1.02615 + 0.290470i
\(723\) 4.06160 7.03489i 0.151052 0.261630i
\(724\) 44.5255 + 1.25176i 1.65478 + 0.0465213i
\(725\) −6.95383 + 6.39584i −0.258259 + 0.237535i
\(726\) 5.41198 + 5.56627i 0.200857 + 0.206584i
\(727\) 8.28795i 0.307383i −0.988119 0.153692i \(-0.950884\pi\)
0.988119 0.153692i \(-0.0491162\pi\)
\(728\) 0 0
\(729\) 17.7963 0.659124
\(730\) 24.7785 2.38506i 0.917094 0.0882751i
\(731\) 27.5634 + 47.7413i 1.01947 + 1.76578i
\(732\) 0.0920928 3.27577i 0.00340385 0.121076i
\(733\) −20.9930 + 36.3610i −0.775395 + 1.34302i 0.159178 + 0.987250i \(0.449116\pi\)
−0.934572 + 0.355773i \(0.884218\pi\)
\(734\) 6.02552 21.2864i 0.222406 0.785696i
\(735\) 0 0
\(736\) 4.98709 + 25.7184i 0.183826 + 0.947991i
\(737\) 3.77035 + 2.17681i 0.138883 + 0.0801840i
\(738\) 27.2799 6.90026i 1.00419 0.254002i
\(739\) 22.4500 12.9615i 0.825836 0.476796i −0.0265891 0.999646i \(-0.508465\pi\)
0.852425 + 0.522850i \(0.175131\pi\)
\(740\) −1.88777 + 10.3804i −0.0693957 + 0.381591i
\(741\) 6.75612i 0.248192i
\(742\) 0 0
\(743\) 11.2976 0.414470 0.207235 0.978291i \(-0.433554\pi\)
0.207235 + 0.978291i \(0.433554\pi\)
\(744\) 0.385518 + 1.72691i 0.0141338 + 0.0633115i
\(745\) 1.84726 12.0765i 0.0676784 0.442448i
\(746\) 23.4509 5.93172i 0.858597 0.217176i
\(747\) −10.5744 6.10515i −0.386898 0.223376i
\(748\) 26.2459 42.6448i 0.959644 1.55925i
\(749\) 0 0
\(750\) 4.98304 + 4.47031i 0.181955 + 0.163233i
\(751\) 4.86553 + 2.80911i 0.177546 + 0.102506i 0.586139 0.810210i \(-0.300647\pi\)
−0.408593 + 0.912717i \(0.633981\pi\)
\(752\) −40.8730 26.7676i −1.49048 0.976114i
\(753\) 7.74847 4.47358i 0.282370 0.163026i
\(754\) −4.87922 + 4.74398i −0.177691 + 0.172765i
\(755\) −2.09153 + 2.61097i −0.0761187 + 0.0950228i
\(756\) 0 0
\(757\) 27.0456i 0.982990i −0.870880 0.491495i \(-0.836451\pi\)
0.870880 0.491495i \(-0.163549\pi\)
\(758\) −10.2294 10.5210i −0.371547 0.382139i
\(759\) −4.79944 8.31287i −0.174208 0.301738i
\(760\) −32.8979 + 22.0962i −1.19333 + 0.801514i
\(761\) 22.3558 + 12.9071i 0.810396 + 0.467883i 0.847094 0.531444i \(-0.178350\pi\)
−0.0366971 + 0.999326i \(0.511684\pi\)
\(762\) 1.99274 7.03975i 0.0721892 0.255023i
\(763\) 0 0
\(764\) −18.7076 + 30.3965i −0.676818 + 1.09971i
\(765\) 30.0536 11.7194i 1.08659 0.423715i
\(766\) 12.6653 3.20360i 0.457617 0.115751i
\(767\) −7.24519 12.5490i −0.261609 0.453119i
\(768\) 6.20959 2.70756i 0.224069 0.0977007i
\(769\) 5.58909i 0.201548i 0.994909 + 0.100774i \(0.0321319\pi\)
−0.994909 + 0.100774i \(0.967868\pi\)
\(770\) 0 0
\(771\) 10.8608i 0.391140i
\(772\) 17.3384 + 32.0805i 0.624022 + 1.15460i
\(773\) 4.38608 + 7.59692i 0.157756 + 0.273242i 0.934059 0.357118i \(-0.116241\pi\)
−0.776303 + 0.630360i \(0.782907\pi\)
\(774\) 10.5442 + 41.6859i 0.379002 + 1.49837i
\(775\) 7.05000 + 2.20846i 0.253244 + 0.0793301i
\(776\) −6.55196 7.12908i −0.235202 0.255919i
\(777\) 0 0
\(778\) 23.2474 + 6.58062i 0.833459 + 0.235927i
\(779\) −38.2783 22.1000i −1.37146 0.791814i
\(780\) 3.67715 + 3.11923i 0.131663 + 0.111686i
\(781\) 35.0789 + 60.7584i 1.25522 + 2.17411i
\(782\) −24.0153 + 23.3496i −0.858784 + 0.834980i
\(783\) 4.65674i 0.166418i
\(784\) 0 0
\(785\) 39.9706 + 32.0187i 1.42661 + 1.14280i
\(786\) −4.11161 4.22882i −0.146656 0.150837i
\(787\) −8.56726 + 4.94631i −0.305390 + 0.176317i −0.644862 0.764299i \(-0.723085\pi\)
0.339472 + 0.940616i \(0.389752\pi\)
\(788\) −22.7049 0.638310i −0.808828 0.0227389i
\(789\) 3.67389 + 2.12112i 0.130794 + 0.0755140i
\(790\) −11.9451 + 8.51974i −0.424987 + 0.303119i
\(791\) 0 0
\(792\) 28.7574 26.4294i 1.02185 0.939129i
\(793\) −8.53522 4.92781i −0.303094 0.174992i
\(794\) −11.6302 45.9796i −0.412741 1.63176i
\(795\) 0.320111 2.09273i 0.0113532 0.0742215i
\(796\) −15.8850 + 8.58527i −0.563029 + 0.304297i
\(797\) 31.5699 1.11826 0.559132 0.829079i \(-0.311135\pi\)
0.559132 + 0.829079i \(0.311135\pi\)
\(798\) 0 0
\(799\) 62.4685i 2.20998i
\(800\) 3.16232 28.1069i 0.111805 0.993730i
\(801\) 5.33158 3.07819i 0.188382 0.108762i
\(802\) 4.44885 + 17.5884i 0.157095 + 0.621067i
\(803\) 33.3739 + 19.2684i 1.17774 + 0.679968i
\(804\) −0.394702 + 0.641319i −0.0139200 + 0.0226176i
\(805\) 0 0
\(806\) 5.12025 + 1.44938i 0.180353 + 0.0510524i
\(807\) 2.89903 5.02128i 0.102051 0.176757i
\(808\) 19.7199 + 6.18570i 0.693742 + 0.217612i
\(809\) −15.3882 26.6532i −0.541021 0.937076i −0.998846 0.0480338i \(-0.984704\pi\)
0.457824 0.889043i \(-0.348629\pi\)
\(810\) 23.3524 2.24779i 0.820521 0.0789794i
\(811\) −19.0962 −0.670557 −0.335278 0.942119i \(-0.608830\pi\)
−0.335278 + 0.942119i \(0.608830\pi\)
\(812\) 0 0
\(813\) 6.50362i 0.228092i
\(814\) −11.7106 + 11.3860i −0.410458 + 0.399081i
\(815\) −0.652714 + 4.26712i −0.0228636 + 0.149471i
\(816\) 7.24577 + 4.74524i 0.253653 + 0.166117i
\(817\) 33.7706 58.4924i 1.18148 2.04639i
\(818\) 8.31894 29.3884i 0.290865 1.02754i
\(819\) 0 0
\(820\) 29.7011 10.6304i 1.03721 0.371229i
\(821\) −24.0855 + 41.7174i −0.840591 + 1.45595i 0.0488054 + 0.998808i \(0.484459\pi\)
−0.889396 + 0.457137i \(0.848875\pi\)
\(822\) 0.689335 + 2.72526i 0.0240433 + 0.0950543i
\(823\) 4.76754 + 8.25762i 0.166186 + 0.287843i 0.937076 0.349126i \(-0.113521\pi\)
−0.770890 + 0.636969i \(0.780188\pi\)
\(824\) −4.16016 18.6352i −0.144926 0.649188i
\(825\) 2.26188 + 10.1137i 0.0787485 + 0.352113i
\(826\) 0 0
\(827\) −0.650873 −0.0226331 −0.0113165 0.999936i \(-0.503602\pi\)
−0.0113165 + 0.999936i \(0.503602\pi\)
\(828\) −22.9842 + 12.4221i −0.798755 + 0.431699i
\(829\) 40.5282 23.3989i 1.40760 0.812679i 0.412445 0.910983i \(-0.364675\pi\)
0.995156 + 0.0983034i \(0.0313416\pi\)
\(830\) −12.4560 5.67704i −0.432355 0.197053i
\(831\) −3.77005 + 6.52991i −0.130781 + 0.226520i
\(832\) 1.71578 20.3008i 0.0594841 0.703802i
\(833\) 0 0
\(834\) 2.26269 7.99342i 0.0783505 0.276789i
\(835\) −13.7841 35.3484i −0.477018 1.22328i
\(836\) −61.3264 1.72409i −2.12102 0.0596289i
\(837\) −3.15351 + 1.82068i −0.109001 + 0.0629318i
\(838\) −18.9895 + 18.4631i −0.655980 + 0.637797i
\(839\) −50.2124 −1.73353 −0.866763 0.498720i \(-0.833803\pi\)
−0.866763 + 0.498720i \(0.833803\pi\)
\(840\) 0 0
\(841\) −25.4295 −0.876879
\(842\) 19.2312 18.6981i 0.662750 0.644379i
\(843\) 10.8595 6.26972i 0.374020 0.215941i
\(844\) 8.79980 + 0.247392i 0.302901 + 0.00851557i
\(845\) −13.5718 + 5.29230i −0.466883 + 0.182061i
\(846\) 13.2712 46.8831i 0.456272 1.61187i
\(847\) 0 0
\(848\) −7.98548 + 4.03014i −0.274223 + 0.138395i
\(849\) 0.757499 1.31203i 0.0259973 0.0450286i
\(850\) 32.2787 16.3061i 1.10715 0.559294i
\(851\) 9.46191 5.46284i 0.324350 0.187264i
\(852\) −10.6757 + 5.76986i −0.365745 + 0.197672i
\(853\) 12.0132 0.411323 0.205661 0.978623i \(-0.434065\pi\)
0.205661 + 0.978623i \(0.434065\pi\)
\(854\) 0 0
\(855\) −30.8456 24.7091i −1.05490 0.845034i
\(856\) 27.1353 6.05774i 0.927466 0.207049i
\(857\) 13.5132 + 23.4056i 0.461603 + 0.799519i 0.999041 0.0437838i \(-0.0139413\pi\)
−0.537438 + 0.843303i \(0.680608\pi\)
\(858\) 1.83052 + 7.23690i 0.0624930 + 0.247064i
\(859\) 10.2882 17.8197i 0.351030 0.608002i −0.635400 0.772183i \(-0.719165\pi\)
0.986430 + 0.164181i \(0.0524982\pi\)
\(860\) 16.2441 + 45.3857i 0.553919 + 1.54764i
\(861\) 0 0
\(862\) −10.4093 + 36.7731i −0.354543 + 1.25250i
\(863\) −4.73195 + 8.19598i −0.161078 + 0.278994i −0.935255 0.353974i \(-0.884830\pi\)
0.774178 + 0.632968i \(0.218164\pi\)
\(864\) 9.14132 + 10.5255i 0.310994 + 0.358084i
\(865\) −3.39332 + 22.1839i −0.115376 + 0.754274i
\(866\) −15.2109 + 14.7892i −0.516886 + 0.502559i
\(867\) 3.87654i 0.131654i
\(868\) 0 0
\(869\) −22.7139 −0.770515
\(870\) −0.242396 2.51826i −0.00821798 0.0853770i
\(871\) 1.13238 + 1.96133i 0.0383691 + 0.0664573i
\(872\) −7.96787 + 25.4014i −0.269826 + 0.860199i
\(873\) 4.82813 8.36256i 0.163407 0.283030i
\(874\) 39.4868 + 11.1775i 1.33566 + 0.378084i
\(875\) 0 0
\(876\) −3.49377 + 5.67674i −0.118043 + 0.191799i
\(877\) 17.5315 + 10.1218i 0.591996 + 0.341789i 0.765886 0.642976i \(-0.222300\pi\)
−0.173890 + 0.984765i \(0.555634\pi\)
\(878\) 6.39417 + 25.2791i 0.215793 + 0.853128i
\(879\) −6.51705 + 3.76262i −0.219815 + 0.126910i
\(880\) 29.2522 32.5821i 0.986090 1.09834i
\(881\) 58.2514i 1.96254i −0.192638 0.981270i \(-0.561704\pi\)
0.192638 0.981270i \(-0.438296\pi\)
\(882\) 0 0
\(883\) −39.7551 −1.33786 −0.668932 0.743323i \(-0.733248\pi\)
−0.668932 + 0.743323i \(0.733248\pi\)
\(884\) 22.9158 12.3852i 0.770742 0.416559i
\(885\) 5.32492 + 0.814518i 0.178995 + 0.0273797i
\(886\) −7.23395 28.5991i −0.243029 0.960807i
\(887\) 39.2114 + 22.6387i 1.31659 + 0.760134i 0.983178 0.182648i \(-0.0584667\pi\)
0.333412 + 0.942781i \(0.391800\pi\)
\(888\) −1.91174 2.08014i −0.0641539 0.0698048i
\(889\) 0 0
\(890\) 5.61899 4.00770i 0.188349 0.134339i
\(891\) 31.4531 + 18.1595i 1.05372 + 0.608365i
\(892\) 28.2095 + 0.793064i 0.944525 + 0.0265538i
\(893\) −66.2822 + 38.2681i −2.21805 + 1.28059i
\(894\) 2.28048 + 2.34550i 0.0762708 + 0.0784451i
\(895\) −4.96680 + 6.20030i −0.166022 + 0.207253i
\(896\) 0 0
\(897\) 4.99333i 0.166722i
\(898\) −14.8527 + 14.4410i −0.495642 + 0.481904i
\(899\) −1.39598 2.41792i −0.0465587 0.0806420i
\(900\) 27.6895 5.38038i 0.922985 0.179346i
\(901\) −9.90440 5.71831i −0.329963 0.190504i
\(902\) 46.9901 + 13.3015i 1.56460 + 0.442890i
\(903\) 0 0
\(904\) −33.1664 + 30.4815i −1.10310 + 1.01380i
\(905\) 18.0928 + 46.3978i 0.601425 + 1.54232i
\(906\) −0.219670 0.868459i −0.00729806 0.0288526i
\(907\) 25.2789 + 43.7844i 0.839373 + 1.45384i 0.890420 + 0.455140i \(0.150411\pi\)
−0.0510468 + 0.998696i \(0.516256\pi\)
\(908\) −10.4579 19.3499i −0.347059 0.642150i
\(909\) 20.6111i 0.683627i
\(910\) 0 0
\(911\) 0.524910i 0.0173910i 0.999962 + 0.00869552i \(0.00276790\pi\)
−0.999962 + 0.00869552i \(0.997232\pi\)
\(912\) 0.596196 10.5950i 0.0197420 0.350837i
\(913\) −10.5957 18.3524i −0.350668 0.607374i
\(914\) 1.63154 0.412687i 0.0539666 0.0136505i
\(915\) 3.41352 1.33110i 0.112847 0.0440048i
\(916\) 8.50089 13.8124i 0.280877 0.456375i
\(917\) 0 0
\(918\) −4.85481 + 17.1506i −0.160233 + 0.566055i
\(919\) −18.6304 10.7563i −0.614561 0.354817i 0.160187 0.987087i \(-0.448790\pi\)
−0.774749 + 0.632269i \(0.782124\pi\)
\(920\) −24.3142 + 16.3309i −0.801616 + 0.538415i
\(921\) −6.96310 12.0604i −0.229442 0.397405i
\(922\) −14.3584 14.7677i −0.472868 0.486349i
\(923\) 36.4960i 1.20128i
\(924\) 0 0
\(925\) −11.5116 + 2.57453i −0.378500 + 0.0846499i
\(926\) −4.75941 + 4.62749i −0.156404 + 0.152069i
\(927\) 16.4909 9.52103i 0.541632 0.312711i
\(928\) −8.07030 + 7.00901i −0.264921 + 0.230082i
\(929\) 13.5117 + 7.80096i 0.443303 + 0.255941i 0.704998 0.709210i \(-0.250948\pi\)
−0.261695 + 0.965151i \(0.584281\pi\)
\(930\) −1.61058 + 1.14873i −0.0528129 + 0.0376684i
\(931\) 0 0
\(932\) 16.6406 27.0380i 0.545081 0.885658i
\(933\) 7.28740 + 4.20738i 0.238579 + 0.137743i
\(934\) −34.6623 + 8.76757i −1.13418 + 0.286884i
\(935\) 55.3409 + 8.46514i 1.80984 + 0.276840i
\(936\) 19.8297 4.42681i 0.648153 0.144695i
\(937\) 7.15521 0.233751 0.116875 0.993147i \(-0.462712\pi\)
0.116875 + 0.993147i \(0.462712\pi\)
\(938\) 0 0
\(939\) 2.69759i 0.0880326i
\(940\) 9.77371 53.7434i 0.318783 1.75292i
\(941\) −6.17342 + 3.56423i −0.201248 + 0.116191i −0.597237 0.802065i \(-0.703735\pi\)
0.395990 + 0.918255i \(0.370402\pi\)
\(942\) −13.2950 + 3.36287i −0.433174 + 0.109568i
\(943\) −28.2908 16.3337i −0.921275 0.531899i
\(944\) −10.2546 20.3189i −0.333760 0.661325i
\(945\) 0 0
\(946\) −20.3257 + 71.8048i −0.660846 + 2.33457i
\(947\) −11.5507 + 20.0064i −0.375348 + 0.650122i −0.990379 0.138381i \(-0.955810\pi\)
0.615031 + 0.788503i \(0.289143\pi\)
\(948\) 0.110408 3.92726i 0.00358590 0.127552i
\(949\) 10.0234 + 17.3611i 0.325374 + 0.563564i
\(950\) −37.0754 24.2602i −1.20288 0.787105i
\(951\) −7.19855 −0.233429
\(952\) 0 0
\(953\) 36.2840i 1.17535i 0.809096 + 0.587677i \(0.199957\pi\)
−0.809096 + 0.587677i \(0.800043\pi\)
\(954\) −6.21850 6.39578i −0.201331 0.207071i
\(955\) −39.4461 6.03381i −1.27645 0.195250i
\(956\) 48.9675 + 1.37664i 1.58372 + 0.0445237i
\(957\) 1.95826 3.39181i 0.0633017 0.109642i
\(958\) −5.58295 1.58036i −0.180377 0.0510592i
\(959\) 0 0
\(960\) 5.49131 + 5.21612i 0.177231 + 0.168350i
\(961\) 14.4084 24.9561i 0.464787 0.805035i
\(962\) −8.23722 + 2.08355i −0.265579 + 0.0671762i
\(963\) 13.8639 + 24.0129i 0.446757 + 0.773805i
\(964\) −18.2447 33.7575i −0.587622 1.08725i
\(965\) −25.4896 + 31.8199i −0.820539 + 1.02432i
\(966\) 0 0
\(967\) −41.0345 −1.31958 −0.659790 0.751450i \(-0.729355\pi\)
−0.659790 + 0.751450i \(0.729355\pi\)
\(968\) 35.7924 7.99037i 1.15041 0.256820i
\(969\) 11.7502 6.78399i 0.377471 0.217933i
\(970\) 4.48956 9.85057i 0.144151 0.316283i
\(971\) −22.1241 + 38.3201i −0.709997 + 1.22975i 0.254860 + 0.966978i \(0.417970\pi\)
−0.964858 + 0.262773i \(0.915363\pi\)
\(972\) −11.0429 + 17.9428i −0.354202 + 0.575514i
\(973\) 0 0
\(974\) 46.0089 + 13.0237i 1.47422 + 0.417306i
\(975\) −1.61157 + 5.14458i −0.0516116 + 0.164758i
\(976\) −12.9502 8.48106i −0.414526 0.271472i
\(977\) −9.99116 + 5.76840i −0.319646 + 0.184547i −0.651235 0.758876i \(-0.725749\pi\)
0.331589 + 0.943424i \(0.392415\pi\)
\(978\) −0.805789 0.828761i −0.0257663 0.0265009i
\(979\) 10.6846 0.341483
\(980\) 0 0
\(981\) −26.5494 −0.847658
\(982\) −25.5449 26.2731i −0.815170 0.838409i
\(983\) 13.6399 7.87503i 0.435047 0.251174i −0.266448 0.963849i \(-0.585850\pi\)
0.701494 + 0.712675i \(0.252517\pi\)
\(984\) −2.52825 + 8.06001i −0.0805978 + 0.256944i
\(985\) −9.22606 23.6597i −0.293967 0.753859i
\(986\) −13.1501 3.72237i −0.418783 0.118545i
\(987\) 0 0
\(988\) −27.1795 16.7277i −0.864694 0.532178i
\(989\) 24.9592 43.2307i 0.793658 1.37466i
\(990\) 39.7354 + 18.1101i 1.26287 + 0.575576i
\(991\) −2.35222 + 1.35806i −0.0747208 + 0.0431401i −0.536895 0.843649i \(-0.680403\pi\)
0.462174 + 0.886789i \(0.347070\pi\)
\(992\) 7.90176 + 2.72479i 0.250881 + 0.0865120i
\(993\) 6.20742 0.196986
\(994\) 0 0
\(995\) −15.7559 12.6214i −0.499497 0.400126i
\(996\) 3.22466 1.74281i 0.102177 0.0552231i
\(997\) 4.48080 + 7.76097i 0.141908 + 0.245792i 0.928215 0.372044i \(-0.121343\pi\)
−0.786307 + 0.617836i \(0.788010\pi\)
\(998\) −33.3194 + 8.42791i −1.05471 + 0.266781i
\(999\) 2.90704 5.03515i 0.0919748 0.159305i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.s.g.19.12 96
4.3 odd 2 inner 980.2.s.g.19.29 96
5.4 even 2 inner 980.2.s.g.19.37 96
7.2 even 3 980.2.c.e.979.44 yes 48
7.3 odd 6 inner 980.2.s.g.619.20 96
7.4 even 3 inner 980.2.s.g.619.19 96
7.5 odd 6 980.2.c.e.979.43 yes 48
7.6 odd 2 inner 980.2.s.g.19.11 96
20.19 odd 2 inner 980.2.s.g.19.20 96
28.3 even 6 inner 980.2.s.g.619.37 96
28.11 odd 6 inner 980.2.s.g.619.38 96
28.19 even 6 980.2.c.e.979.8 yes 48
28.23 odd 6 980.2.c.e.979.7 yes 48
28.27 even 2 inner 980.2.s.g.19.30 96
35.4 even 6 inner 980.2.s.g.619.30 96
35.9 even 6 980.2.c.e.979.5 48
35.19 odd 6 980.2.c.e.979.6 yes 48
35.24 odd 6 inner 980.2.s.g.619.29 96
35.34 odd 2 inner 980.2.s.g.19.38 96
140.19 even 6 980.2.c.e.979.41 yes 48
140.39 odd 6 inner 980.2.s.g.619.11 96
140.59 even 6 inner 980.2.s.g.619.12 96
140.79 odd 6 980.2.c.e.979.42 yes 48
140.139 even 2 inner 980.2.s.g.19.19 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
980.2.c.e.979.5 48 35.9 even 6
980.2.c.e.979.6 yes 48 35.19 odd 6
980.2.c.e.979.7 yes 48 28.23 odd 6
980.2.c.e.979.8 yes 48 28.19 even 6
980.2.c.e.979.41 yes 48 140.19 even 6
980.2.c.e.979.42 yes 48 140.79 odd 6
980.2.c.e.979.43 yes 48 7.5 odd 6
980.2.c.e.979.44 yes 48 7.2 even 3
980.2.s.g.19.11 96 7.6 odd 2 inner
980.2.s.g.19.12 96 1.1 even 1 trivial
980.2.s.g.19.19 96 140.139 even 2 inner
980.2.s.g.19.20 96 20.19 odd 2 inner
980.2.s.g.19.29 96 4.3 odd 2 inner
980.2.s.g.19.30 96 28.27 even 2 inner
980.2.s.g.19.37 96 5.4 even 2 inner
980.2.s.g.19.38 96 35.34 odd 2 inner
980.2.s.g.619.11 96 140.39 odd 6 inner
980.2.s.g.619.12 96 140.59 even 6 inner
980.2.s.g.619.19 96 7.4 even 3 inner
980.2.s.g.619.20 96 7.3 odd 6 inner
980.2.s.g.619.29 96 35.24 odd 6 inner
980.2.s.g.619.30 96 35.4 even 6 inner
980.2.s.g.619.37 96 28.3 even 6 inner
980.2.s.g.619.38 96 28.11 odd 6 inner