Properties

Label 980.2.s.g.619.38
Level $980$
Weight $2$
Character 980.619
Analytic conductor $7.825$
Analytic rank $0$
Dimension $96$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,2,Mod(19,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(48\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 619.38
Character \(\chi\) \(=\) 980.619
Dual form 980.2.s.g.19.38

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.01395 + 0.985849i) q^{2} +(0.366665 + 0.211694i) q^{3} +(0.0562045 + 1.99921i) q^{4} +(-0.338104 + 2.21036i) q^{5} +(0.163083 + 0.576124i) q^{6} +(-1.91393 + 2.08252i) q^{8} +(-1.41037 - 2.44283i) q^{9} +(-2.52190 + 1.90788i) q^{10} +(-4.23964 - 2.44776i) q^{11} +(-0.402613 + 0.744938i) q^{12} -2.54664 q^{13} +(-0.591890 + 0.738886i) q^{15} +(-3.99368 + 0.224729i) q^{16} +(-2.55715 + 4.42911i) q^{17} +(0.978214 - 3.86733i) q^{18} +(3.13300 + 5.42652i) q^{19} +(-4.43797 - 0.551709i) q^{20} +(-1.88568 - 6.66155i) q^{22} +(2.31555 + 4.01064i) q^{23} +(-1.14263 + 0.358418i) q^{24} +(-4.77137 - 1.49466i) q^{25} +(-2.58218 - 2.51060i) q^{26} -2.46443i q^{27} -1.88958 q^{29} +(-1.32858 + 0.165682i) q^{30} +(-0.738782 + 1.27961i) q^{31} +(-4.27096 - 3.70930i) q^{32} +(-1.03635 - 1.79501i) q^{33} +(-6.95926 + 1.96995i) q^{34} +(4.80447 - 2.95693i) q^{36} +(2.04313 - 1.17960i) q^{37} +(-2.17301 + 8.59091i) q^{38} +(-0.933764 - 0.539109i) q^{39} +(-3.95600 - 4.93458i) q^{40} +7.05393i q^{41} +10.7790 q^{43} +(4.65529 - 8.61350i) q^{44} +(5.87639 - 2.29149i) q^{45} +(-1.60603 + 6.34939i) q^{46} +(10.5781 - 6.10725i) q^{47} +(-1.51192 - 0.763038i) q^{48} +(-3.36444 - 6.21937i) q^{50} +(-1.87523 + 1.08267i) q^{51} +(-0.143133 - 5.09127i) q^{52} +(-1.93661 - 1.11810i) q^{53} +(2.42956 - 2.49882i) q^{54} +(6.84386 - 8.54352i) q^{55} +2.65295i q^{57} +(-1.91594 - 1.86284i) q^{58} +(-2.84500 + 4.92768i) q^{59} +(-1.51046 - 1.14178i) q^{60} +(-3.35156 + 1.93502i) q^{61} +(-2.01059 + 0.569136i) q^{62} +(-0.673743 - 7.97158i) q^{64} +(0.861029 - 5.62899i) q^{65} +(0.718799 - 2.84174i) q^{66} +(0.444655 - 0.770165i) q^{67} +(-8.99844 - 4.86334i) q^{68} +1.96075i q^{69} +14.3310i q^{71} +(7.78659 + 1.73829i) q^{72} +(-3.93594 + 6.81724i) q^{73} +(3.23454 + 0.818154i) q^{74} +(-1.43308 - 1.55811i) q^{75} +(-10.6727 + 6.56853i) q^{76} +(-0.415314 - 1.46718i) q^{78} +(4.01812 - 2.31987i) q^{79} +(0.853547 - 8.90345i) q^{80} +(-3.70941 + 6.42488i) q^{81} +(-6.95411 + 7.15236i) q^{82} -4.32876i q^{83} +(-8.92534 - 7.14971i) q^{85} +(10.9294 + 10.6264i) q^{86} +(-0.692841 - 0.400012i) q^{87} +(13.2119 - 4.14428i) q^{88} +(1.89013 - 1.09127i) q^{89} +(8.21746 + 3.46977i) q^{90} +(-7.88798 + 4.85468i) q^{92} +(-0.541770 + 0.312791i) q^{93} +(16.7465 + 4.23590i) q^{94} +(-13.0538 + 5.09033i) q^{95} +(-0.780773 - 2.26421i) q^{96} -3.42330 q^{97} +13.8090i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 16 q^{4} + 64 q^{9} - 16 q^{16} + 16 q^{25} - 96 q^{29} + 8 q^{30} + 352 q^{36} + 48 q^{44} + 32 q^{46} + 64 q^{50} - 24 q^{60} - 160 q^{64} + 16 q^{65} + 112 q^{74} + 48 q^{81} - 128 q^{85} + 112 q^{86}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.01395 + 0.985849i 0.716974 + 0.697100i
\(3\) 0.366665 + 0.211694i 0.211694 + 0.122222i 0.602098 0.798422i \(-0.294331\pi\)
−0.390404 + 0.920643i \(0.627665\pi\)
\(4\) 0.0562045 + 1.99921i 0.0281022 + 0.999605i
\(5\) −0.338104 + 2.21036i −0.151205 + 0.988502i
\(6\) 0.163083 + 0.576124i 0.0665783 + 0.235202i
\(7\) 0 0
\(8\) −1.91393 + 2.08252i −0.676676 + 0.736280i
\(9\) −1.41037 2.44283i −0.470124 0.814278i
\(10\) −2.52190 + 1.90788i −0.797495 + 0.603325i
\(11\) −4.23964 2.44776i −1.27830 0.738026i −0.301763 0.953383i \(-0.597575\pi\)
−0.976535 + 0.215357i \(0.930909\pi\)
\(12\) −0.402613 + 0.744938i −0.116224 + 0.215045i
\(13\) −2.54664 −0.706311 −0.353156 0.935565i \(-0.614891\pi\)
−0.353156 + 0.935565i \(0.614891\pi\)
\(14\) 0 0
\(15\) −0.591890 + 0.738886i −0.152825 + 0.190780i
\(16\) −3.99368 + 0.224729i −0.998421 + 0.0561823i
\(17\) −2.55715 + 4.42911i −0.620199 + 1.07422i 0.369249 + 0.929330i \(0.379615\pi\)
−0.989448 + 0.144886i \(0.953718\pi\)
\(18\) 0.978214 3.86733i 0.230567 0.911539i
\(19\) 3.13300 + 5.42652i 0.718760 + 1.24493i 0.961491 + 0.274836i \(0.0886234\pi\)
−0.242731 + 0.970094i \(0.578043\pi\)
\(20\) −4.43797 0.551709i −0.992361 0.123366i
\(21\) 0 0
\(22\) −1.88568 6.66155i −0.402028 1.42025i
\(23\) 2.31555 + 4.01064i 0.482825 + 0.836277i 0.999806 0.0197200i \(-0.00627747\pi\)
−0.516981 + 0.855997i \(0.672944\pi\)
\(24\) −1.14263 + 0.358418i −0.233238 + 0.0731617i
\(25\) −4.77137 1.49466i −0.954274 0.298932i
\(26\) −2.58218 2.51060i −0.506407 0.492370i
\(27\) 2.46443i 0.474280i
\(28\) 0 0
\(29\) −1.88958 −0.350886 −0.175443 0.984490i \(-0.556136\pi\)
−0.175443 + 0.984490i \(0.556136\pi\)
\(30\) −1.32858 + 0.165682i −0.242564 + 0.0302492i
\(31\) −0.738782 + 1.27961i −0.132689 + 0.229824i −0.924712 0.380667i \(-0.875695\pi\)
0.792023 + 0.610491i \(0.209028\pi\)
\(32\) −4.27096 3.70930i −0.755006 0.655718i
\(33\) −1.03635 1.79501i −0.180405 0.312471i
\(34\) −6.95926 + 1.96995i −1.19350 + 0.337844i
\(35\) 0 0
\(36\) 4.80447 2.95693i 0.800745 0.492821i
\(37\) 2.04313 1.17960i 0.335888 0.193925i −0.322564 0.946548i \(-0.604545\pi\)
0.658452 + 0.752623i \(0.271211\pi\)
\(38\) −2.17301 + 8.59091i −0.352509 + 1.39363i
\(39\) −0.933764 0.539109i −0.149522 0.0863265i
\(40\) −3.95600 4.93458i −0.625498 0.780225i
\(41\) 7.05393i 1.10164i 0.834624 + 0.550819i \(0.185685\pi\)
−0.834624 + 0.550819i \(0.814315\pi\)
\(42\) 0 0
\(43\) 10.7790 1.64378 0.821890 0.569646i \(-0.192920\pi\)
0.821890 + 0.569646i \(0.192920\pi\)
\(44\) 4.65529 8.61350i 0.701812 1.29853i
\(45\) 5.87639 2.29149i 0.876001 0.341596i
\(46\) −1.60603 + 6.34939i −0.236796 + 0.936166i
\(47\) 10.5781 6.10725i 1.54297 0.890834i 0.544320 0.838878i \(-0.316788\pi\)
0.998649 0.0519561i \(-0.0165456\pi\)
\(48\) −1.51192 0.763038i −0.218226 0.110135i
\(49\) 0 0
\(50\) −3.36444 6.21937i −0.475804 0.879552i
\(51\) −1.87523 + 1.08267i −0.262585 + 0.151603i
\(52\) −0.143133 5.09127i −0.0198489 0.706032i
\(53\) −1.93661 1.11810i −0.266014 0.153583i 0.361061 0.932542i \(-0.382415\pi\)
−0.627075 + 0.778959i \(0.715748\pi\)
\(54\) 2.42956 2.49882i 0.330621 0.340046i
\(55\) 6.84386 8.54352i 0.922825 1.15201i
\(56\) 0 0
\(57\) 2.65295i 0.351392i
\(58\) −1.91594 1.86284i −0.251576 0.244602i
\(59\) −2.84500 + 4.92768i −0.370387 + 0.641529i −0.989625 0.143674i \(-0.954108\pi\)
0.619238 + 0.785203i \(0.287442\pi\)
\(60\) −1.51046 1.14178i −0.194999 0.147404i
\(61\) −3.35156 + 1.93502i −0.429123 + 0.247754i −0.698973 0.715148i \(-0.746359\pi\)
0.269850 + 0.962902i \(0.413026\pi\)
\(62\) −2.01059 + 0.569136i −0.255345 + 0.0722803i
\(63\) 0 0
\(64\) −0.673743 7.97158i −0.0842179 0.996447i
\(65\) 0.861029 5.62899i 0.106798 0.698190i
\(66\) 0.718799 2.84174i 0.0884780 0.349794i
\(67\) 0.444655 0.770165i 0.0543232 0.0940906i −0.837585 0.546307i \(-0.816033\pi\)
0.891908 + 0.452216i \(0.149367\pi\)
\(68\) −8.99844 4.86334i −1.09122 0.589766i
\(69\) 1.96075i 0.236046i
\(70\) 0 0
\(71\) 14.3310i 1.70078i 0.526152 + 0.850391i \(0.323634\pi\)
−0.526152 + 0.850391i \(0.676366\pi\)
\(72\) 7.78659 + 1.73829i 0.917659 + 0.204860i
\(73\) −3.93594 + 6.81724i −0.460667 + 0.797898i −0.998994 0.0448377i \(-0.985723\pi\)
0.538328 + 0.842736i \(0.319056\pi\)
\(74\) 3.23454 + 0.818154i 0.376008 + 0.0951085i
\(75\) −1.43308 1.55811i −0.165478 0.179915i
\(76\) −10.6727 + 6.56853i −1.22424 + 0.753462i
\(77\) 0 0
\(78\) −0.415314 1.46718i −0.0470250 0.166126i
\(79\) 4.01812 2.31987i 0.452074 0.261005i −0.256632 0.966509i \(-0.582613\pi\)
0.708706 + 0.705504i \(0.249279\pi\)
\(80\) 0.853547 8.90345i 0.0954295 0.995436i
\(81\) −3.70941 + 6.42488i −0.412156 + 0.713876i
\(82\) −6.95411 + 7.15236i −0.767953 + 0.789846i
\(83\) 4.32876i 0.475143i −0.971370 0.237571i \(-0.923649\pi\)
0.971370 0.237571i \(-0.0763514\pi\)
\(84\) 0 0
\(85\) −8.92534 7.14971i −0.968089 0.775495i
\(86\) 10.9294 + 10.6264i 1.17855 + 1.14588i
\(87\) −0.692841 0.400012i −0.0742804 0.0428858i
\(88\) 13.2119 4.14428i 1.40839 0.441782i
\(89\) 1.89013 1.09127i 0.200354 0.115674i −0.396467 0.918049i \(-0.629764\pi\)
0.596820 + 0.802375i \(0.296430\pi\)
\(90\) 8.21746 + 3.46977i 0.866196 + 0.365745i
\(91\) 0 0
\(92\) −7.88798 + 4.85468i −0.822378 + 0.506135i
\(93\) −0.541770 + 0.312791i −0.0561790 + 0.0324349i
\(94\) 16.7465 + 4.23590i 1.72727 + 0.436900i
\(95\) −13.0538 + 5.09033i −1.33930 + 0.522257i
\(96\) −0.780773 2.26421i −0.0796873 0.231090i
\(97\) −3.42330 −0.347584 −0.173792 0.984782i \(-0.555602\pi\)
−0.173792 + 0.984782i \(0.555602\pi\)
\(98\) 0 0
\(99\) 13.8090i 1.38785i
\(100\) 2.71997 9.62298i 0.271997 0.962298i
\(101\) −6.32803 3.65349i −0.629663 0.363536i 0.150959 0.988540i \(-0.451764\pi\)
−0.780621 + 0.625004i \(0.785097\pi\)
\(102\) −2.96874 0.750922i −0.293949 0.0743524i
\(103\) −5.84630 + 3.37536i −0.576053 + 0.332584i −0.759563 0.650434i \(-0.774587\pi\)
0.183510 + 0.983018i \(0.441254\pi\)
\(104\) 4.87409 5.30342i 0.477944 0.520043i
\(105\) 0 0
\(106\) −0.861354 3.04291i −0.0836621 0.295554i
\(107\) −4.91497 8.51298i −0.475148 0.822980i 0.524447 0.851443i \(-0.324272\pi\)
−0.999595 + 0.0284627i \(0.990939\pi\)
\(108\) 4.92692 0.138512i 0.474093 0.0133283i
\(109\) 4.70610 8.15121i 0.450763 0.780744i −0.547671 0.836694i \(-0.684485\pi\)
0.998434 + 0.0559497i \(0.0178186\pi\)
\(110\) 15.3620 1.91573i 1.46471 0.182658i
\(111\) 0.998857 0.0948073
\(112\) 0 0
\(113\) 15.9261i 1.49820i 0.662455 + 0.749102i \(0.269515\pi\)
−0.662455 + 0.749102i \(0.730485\pi\)
\(114\) −2.61541 + 2.68997i −0.244956 + 0.251939i
\(115\) −9.64786 + 3.76217i −0.899667 + 0.350825i
\(116\) −0.106203 3.77766i −0.00986067 0.350747i
\(117\) 3.59171 + 6.22102i 0.332054 + 0.575134i
\(118\) −7.74264 + 2.19170i −0.712768 + 0.201763i
\(119\) 0 0
\(120\) −0.405905 2.64680i −0.0370539 0.241618i
\(121\) 6.48302 + 11.2289i 0.589365 + 1.02081i
\(122\) −5.30597 1.34211i −0.480380 0.121509i
\(123\) −1.49327 + 2.58643i −0.134644 + 0.233210i
\(124\) −2.59973 1.40506i −0.233462 0.126178i
\(125\) 4.91696 10.0411i 0.439786 0.898103i
\(126\) 0 0
\(127\) 12.2192 1.08428 0.542138 0.840290i \(-0.317615\pi\)
0.542138 + 0.840290i \(0.317615\pi\)
\(128\) 7.17563 8.74702i 0.634242 0.773135i
\(129\) 3.95227 + 2.28185i 0.347978 + 0.200905i
\(130\) 6.42238 4.85869i 0.563280 0.426135i
\(131\) 4.92530 + 8.53087i 0.430325 + 0.745345i 0.996901 0.0786642i \(-0.0250655\pi\)
−0.566576 + 0.824010i \(0.691732\pi\)
\(132\) 3.53036 2.17277i 0.307278 0.189115i
\(133\) 0 0
\(134\) 1.21013 0.342549i 0.104539 0.0295917i
\(135\) 5.44728 + 0.833234i 0.468827 + 0.0717134i
\(136\) −4.32949 13.8023i −0.371250 1.18354i
\(137\) −4.06585 2.34742i −0.347369 0.200554i 0.316157 0.948707i \(-0.397607\pi\)
−0.663526 + 0.748153i \(0.730941\pi\)
\(138\) −1.93300 + 1.98811i −0.164548 + 0.169239i
\(139\) 13.8745 1.17682 0.588409 0.808564i \(-0.299755\pi\)
0.588409 + 0.808564i \(0.299755\pi\)
\(140\) 0 0
\(141\) 5.17147 0.435516
\(142\) −14.1282 + 14.5310i −1.18562 + 1.21942i
\(143\) 10.7968 + 6.23356i 0.902877 + 0.521276i
\(144\) 6.18155 + 9.43895i 0.515129 + 0.786579i
\(145\) 0.638873 4.17664i 0.0530555 0.346851i
\(146\) −10.7116 + 3.03213i −0.886501 + 0.250941i
\(147\) 0 0
\(148\) 2.47310 + 4.01834i 0.203288 + 0.330306i
\(149\) 2.73179 + 4.73161i 0.223797 + 0.387628i 0.955958 0.293504i \(-0.0948213\pi\)
−0.732161 + 0.681132i \(0.761488\pi\)
\(150\) 0.0829814 2.99266i 0.00677540 0.244349i
\(151\) −1.29567 0.748053i −0.105440 0.0608757i 0.446353 0.894857i \(-0.352723\pi\)
−0.551793 + 0.833981i \(0.686056\pi\)
\(152\) −17.2972 3.86145i −1.40299 0.313205i
\(153\) 14.4261 1.16628
\(154\) 0 0
\(155\) −2.57861 2.06561i −0.207119 0.165914i
\(156\) 1.02531 1.89709i 0.0820905 0.151889i
\(157\) 11.4517 19.8350i 0.913948 1.58300i 0.105515 0.994418i \(-0.466351\pi\)
0.808434 0.588587i \(-0.200316\pi\)
\(158\) 6.36123 + 1.60903i 0.506072 + 0.128007i
\(159\) −0.473392 0.819938i −0.0375424 0.0650253i
\(160\) 9.64291 8.18622i 0.762339 0.647178i
\(161\) 0 0
\(162\) −10.0951 + 2.85762i −0.793148 + 0.224516i
\(163\) 0.965256 + 1.67187i 0.0756047 + 0.130951i 0.901349 0.433093i \(-0.142578\pi\)
−0.825744 + 0.564045i \(0.809245\pi\)
\(164\) −14.1023 + 0.396462i −1.10120 + 0.0309585i
\(165\) 4.31801 1.68381i 0.336157 0.131084i
\(166\) 4.26750 4.38916i 0.331222 0.340665i
\(167\) 16.9677i 1.31300i 0.754327 + 0.656499i \(0.227963\pi\)
−0.754327 + 0.656499i \(0.772037\pi\)
\(168\) 0 0
\(169\) −6.51462 −0.501124
\(170\) −2.00135 16.0485i −0.153496 1.23086i
\(171\) 8.83740 15.3068i 0.675813 1.17054i
\(172\) 0.605827 + 21.5495i 0.0461939 + 1.64313i
\(173\) −5.01816 8.69171i −0.381524 0.660818i 0.609757 0.792589i \(-0.291267\pi\)
−0.991280 + 0.131770i \(0.957934\pi\)
\(174\) −0.308158 1.08863i −0.0233614 0.0825289i
\(175\) 0 0
\(176\) 17.4818 + 8.82279i 1.31774 + 0.665043i
\(177\) −2.08632 + 1.20454i −0.156818 + 0.0905386i
\(178\) 2.99233 + 0.756890i 0.224285 + 0.0567313i
\(179\) −3.07683 1.77641i −0.229973 0.132775i 0.380586 0.924745i \(-0.375722\pi\)
−0.610560 + 0.791970i \(0.709056\pi\)
\(180\) 4.91146 + 11.6194i 0.366079 + 0.866055i
\(181\) 22.2716i 1.65543i 0.561148 + 0.827716i \(0.310360\pi\)
−0.561148 + 0.827716i \(0.689640\pi\)
\(182\) 0 0
\(183\) −1.63853 −0.121124
\(184\) −12.7840 2.85393i −0.942451 0.210395i
\(185\) 1.91655 + 4.91487i 0.140908 + 0.361348i
\(186\) −0.857695 0.216948i −0.0628893 0.0159074i
\(187\) 21.6828 12.5185i 1.58560 0.915447i
\(188\) 12.8042 + 20.8045i 0.933843 + 1.51733i
\(189\) 0 0
\(190\) −18.2543 7.70775i −1.32431 0.559179i
\(191\) −15.4551 + 8.92302i −1.11829 + 0.645647i −0.940965 0.338505i \(-0.890079\pi\)
−0.177328 + 0.984152i \(0.556746\pi\)
\(192\) 1.44050 3.06552i 0.103959 0.221235i
\(193\) 15.7903 + 9.11654i 1.13661 + 0.656223i 0.945589 0.325363i \(-0.105487\pi\)
0.191022 + 0.981586i \(0.438820\pi\)
\(194\) −3.47107 3.37486i −0.249208 0.242301i
\(195\) 1.50733 1.88168i 0.107942 0.134750i
\(196\) 0 0
\(197\) 11.3569i 0.809148i −0.914505 0.404574i \(-0.867420\pi\)
0.914505 0.404574i \(-0.132580\pi\)
\(198\) −13.6136 + 14.0017i −0.967474 + 0.995055i
\(199\) 4.51414 7.81873i 0.319999 0.554255i −0.660488 0.750836i \(-0.729651\pi\)
0.980487 + 0.196581i \(0.0629840\pi\)
\(200\) 12.2447 7.07578i 0.865833 0.500333i
\(201\) 0.326079 0.188262i 0.0229998 0.0132789i
\(202\) −2.81454 9.94295i −0.198030 0.699584i
\(203\) 0 0
\(204\) −2.26987 3.68813i −0.158923 0.258221i
\(205\) −15.5917 2.38496i −1.08897 0.166573i
\(206\) −9.25547 2.34110i −0.644859 0.163112i
\(207\) 6.53156 11.3130i 0.453975 0.786307i
\(208\) 10.1705 0.572304i 0.705196 0.0396822i
\(209\) 30.6753i 2.12186i
\(210\) 0 0
\(211\) 4.40164i 0.303021i −0.988456 0.151511i \(-0.951586\pi\)
0.988456 0.151511i \(-0.0484138\pi\)
\(212\) 2.12648 3.93454i 0.146047 0.270225i
\(213\) −3.03379 + 5.25469i −0.207872 + 0.360045i
\(214\) 3.40896 13.4772i 0.233031 0.921281i
\(215\) −3.64442 + 23.8254i −0.248547 + 1.62488i
\(216\) 5.13222 + 4.71675i 0.349203 + 0.320934i
\(217\) 0 0
\(218\) 12.8076 3.62544i 0.867442 0.245546i
\(219\) −2.88634 + 1.66643i −0.195041 + 0.112607i
\(220\) 17.4650 + 13.2021i 1.17749 + 0.890087i
\(221\) 6.51214 11.2794i 0.438054 0.758731i
\(222\) 1.01279 + 0.984722i 0.0679743 + 0.0660902i
\(223\) 14.1103i 0.944899i −0.881358 0.472449i \(-0.843370\pi\)
0.881358 0.472449i \(-0.156630\pi\)
\(224\) 0 0
\(225\) 3.07819 + 13.7637i 0.205213 + 0.917580i
\(226\) −15.7008 + 16.1484i −1.04440 + 1.07417i
\(227\) 9.52419 + 5.49880i 0.632143 + 0.364968i 0.781582 0.623803i \(-0.214413\pi\)
−0.149439 + 0.988771i \(0.547747\pi\)
\(228\) −5.30381 + 0.149108i −0.351253 + 0.00987490i
\(229\) −7.02292 + 4.05469i −0.464088 + 0.267941i −0.713762 0.700389i \(-0.753010\pi\)
0.249674 + 0.968330i \(0.419677\pi\)
\(230\) −13.4914 5.69666i −0.889598 0.375626i
\(231\) 0 0
\(232\) 3.61652 3.93507i 0.237436 0.258350i
\(233\) −13.7475 + 7.93710i −0.900626 + 0.519977i −0.877403 0.479754i \(-0.840726\pi\)
−0.0232229 + 0.999730i \(0.507393\pi\)
\(234\) −2.49116 + 9.84871i −0.162852 + 0.643831i
\(235\) 9.92273 + 25.4462i 0.647287 + 1.65993i
\(236\) −10.0114 5.41079i −0.651685 0.352213i
\(237\) 1.96441 0.127602
\(238\) 0 0
\(239\) 24.4934i 1.58435i −0.610295 0.792174i \(-0.708949\pi\)
0.610295 0.792174i \(-0.291051\pi\)
\(240\) 2.19777 3.08389i 0.141866 0.199064i
\(241\) −16.6157 9.59308i −1.07031 0.617945i −0.142045 0.989860i \(-0.545368\pi\)
−0.928267 + 0.371916i \(0.878701\pi\)
\(242\) −4.49653 + 17.7769i −0.289048 + 1.14274i
\(243\) −9.12300 + 5.26717i −0.585241 + 0.337889i
\(244\) −4.05689 6.59171i −0.259716 0.421991i
\(245\) 0 0
\(246\) −4.06394 + 1.15038i −0.259107 + 0.0733452i
\(247\) −7.97864 13.8194i −0.507668 0.879308i
\(248\) −1.25083 3.98760i −0.0794275 0.253213i
\(249\) 0.916372 1.58720i 0.0580727 0.100585i
\(250\) 14.8846 5.33383i 0.941383 0.337341i
\(251\) −21.1323 −1.33386 −0.666929 0.745121i \(-0.732392\pi\)
−0.666929 + 0.745121i \(0.732392\pi\)
\(252\) 0 0
\(253\) 22.6716i 1.42535i
\(254\) 12.3897 + 12.0462i 0.777397 + 0.755848i
\(255\) −1.75906 4.51099i −0.110156 0.282489i
\(256\) 15.8990 1.79499i 0.993687 0.112187i
\(257\) 12.8260 + 22.2153i 0.800064 + 1.38575i 0.919573 + 0.392918i \(0.128534\pi\)
−0.119509 + 0.992833i \(0.538132\pi\)
\(258\) 1.75787 + 6.21003i 0.109440 + 0.386620i
\(259\) 0 0
\(260\) 11.3019 + 1.40500i 0.700916 + 0.0871346i
\(261\) 2.66501 + 4.61592i 0.164960 + 0.285719i
\(262\) −3.41612 + 13.5055i −0.211049 + 0.834373i
\(263\) −5.00988 + 8.67737i −0.308922 + 0.535069i −0.978127 0.208009i \(-0.933302\pi\)
0.669204 + 0.743078i \(0.266635\pi\)
\(264\) 5.72164 + 1.27731i 0.352143 + 0.0786130i
\(265\) 3.12619 3.90257i 0.192040 0.239733i
\(266\) 0 0
\(267\) 0.924061 0.0565516
\(268\) 1.56471 + 0.845672i 0.0955801 + 0.0516576i
\(269\) −11.8597 6.84723i −0.723102 0.417483i 0.0927916 0.995686i \(-0.470421\pi\)
−0.815893 + 0.578203i \(0.803754\pi\)
\(270\) 4.70185 + 6.21506i 0.286145 + 0.378236i
\(271\) −7.68044 13.3029i −0.466554 0.808095i 0.532716 0.846294i \(-0.321171\pi\)
−0.999270 + 0.0381991i \(0.987838\pi\)
\(272\) 9.21708 18.2631i 0.558868 1.10736i
\(273\) 0 0
\(274\) −1.80838 6.38849i −0.109249 0.385943i
\(275\) 16.5703 + 18.0160i 0.999228 + 1.08640i
\(276\) −3.91995 + 0.110203i −0.235953 + 0.00663343i
\(277\) 15.4230 + 8.90447i 0.926678 + 0.535018i 0.885759 0.464145i \(-0.153638\pi\)
0.0409188 + 0.999162i \(0.486972\pi\)
\(278\) 14.0681 + 13.6781i 0.843747 + 0.820360i
\(279\) 4.16783 0.249521
\(280\) 0 0
\(281\) 29.6169 1.76680 0.883398 0.468624i \(-0.155250\pi\)
0.883398 + 0.468624i \(0.155250\pi\)
\(282\) 5.24363 + 5.09829i 0.312254 + 0.303599i
\(283\) 3.09887 + 1.78914i 0.184209 + 0.106353i 0.589269 0.807937i \(-0.299416\pi\)
−0.405060 + 0.914290i \(0.632749\pi\)
\(284\) −28.6508 + 0.805468i −1.70011 + 0.0477957i
\(285\) −5.86398 0.896973i −0.347352 0.0531321i
\(286\) 4.80215 + 16.9646i 0.283957 + 1.00314i
\(287\) 0 0
\(288\) −3.03757 + 15.6647i −0.178991 + 0.923053i
\(289\) −4.57800 7.92933i −0.269294 0.466431i
\(290\) 4.76533 3.60509i 0.279830 0.211698i
\(291\) −1.25520 0.724692i −0.0735814 0.0424822i
\(292\) −13.8503 7.48560i −0.810528 0.438062i
\(293\) −17.7739 −1.03836 −0.519180 0.854665i \(-0.673763\pi\)
−0.519180 + 0.854665i \(0.673763\pi\)
\(294\) 0 0
\(295\) −9.93004 7.95453i −0.578149 0.463131i
\(296\) −1.45387 + 6.51252i −0.0845043 + 0.378532i
\(297\) −6.03233 + 10.4483i −0.350031 + 0.606272i
\(298\) −1.89474 + 7.49077i −0.109759 + 0.433928i
\(299\) −5.89687 10.2137i −0.341025 0.590672i
\(300\) 3.03444 2.95261i 0.175194 0.170469i
\(301\) 0 0
\(302\) −0.576278 2.03582i −0.0331611 0.117148i
\(303\) −1.54684 2.67921i −0.0888639 0.153917i
\(304\) −13.7317 20.9677i −0.787568 1.20258i
\(305\) −3.14392 8.06239i −0.180020 0.461651i
\(306\) 14.6274 + 14.2220i 0.836193 + 0.813015i
\(307\) 32.8923i 1.87726i 0.344923 + 0.938631i \(0.387905\pi\)
−0.344923 + 0.938631i \(0.612095\pi\)
\(308\) 0 0
\(309\) −2.85818 −0.162596
\(310\) −0.578206 4.63655i −0.0328399 0.263338i
\(311\) −9.93741 + 17.2121i −0.563499 + 0.976009i 0.433689 + 0.901063i \(0.357212\pi\)
−0.997188 + 0.0749459i \(0.976122\pi\)
\(312\) 2.90986 0.912761i 0.164738 0.0516749i
\(313\) 3.18572 + 5.51783i 0.180068 + 0.311886i 0.941903 0.335884i \(-0.109035\pi\)
−0.761836 + 0.647770i \(0.775702\pi\)
\(314\) 31.1658 8.82208i 1.75879 0.497859i
\(315\) 0 0
\(316\) 4.86373 + 7.90269i 0.273606 + 0.444561i
\(317\) 14.7244 8.50113i 0.827004 0.477471i −0.0258220 0.999667i \(-0.508220\pi\)
0.852826 + 0.522196i \(0.174887\pi\)
\(318\) 0.328338 1.29807i 0.0184123 0.0727923i
\(319\) 8.01112 + 4.62522i 0.448537 + 0.258963i
\(320\) 17.8478 + 1.20601i 0.997725 + 0.0674178i
\(321\) 4.16188i 0.232293i
\(322\) 0 0
\(323\) −32.0462 −1.78310
\(324\) −13.0532 7.05478i −0.725177 0.391932i
\(325\) 12.1510 + 3.80637i 0.674015 + 0.211139i
\(326\) −0.669488 + 2.64680i −0.0370795 + 0.146593i
\(327\) 3.45112 1.99251i 0.190848 0.110186i
\(328\) −14.6899 13.5007i −0.811115 0.745453i
\(329\) 0 0
\(330\) 6.03824 + 2.54961i 0.332394 + 0.140351i
\(331\) 12.6971 7.33065i 0.697893 0.402929i −0.108669 0.994078i \(-0.534659\pi\)
0.806562 + 0.591149i \(0.201326\pi\)
\(332\) 8.65409 0.243295i 0.474955 0.0133526i
\(333\) −5.76313 3.32735i −0.315818 0.182338i
\(334\) −16.7276 + 17.2044i −0.915291 + 0.941385i
\(335\) 1.55200 + 1.24324i 0.0847949 + 0.0679256i
\(336\) 0 0
\(337\) 15.2435i 0.830368i 0.909738 + 0.415184i \(0.136283\pi\)
−0.909738 + 0.415184i \(0.863717\pi\)
\(338\) −6.60552 6.42243i −0.359293 0.349334i
\(339\) −3.37147 + 5.83955i −0.183113 + 0.317161i
\(340\) 13.7921 18.2455i 0.747983 0.989500i
\(341\) 6.26433 3.61671i 0.339233 0.195856i
\(342\) 24.0509 6.80807i 1.30052 0.368138i
\(343\) 0 0
\(344\) −20.6302 + 22.4474i −1.11231 + 1.21028i
\(345\) −4.33396 0.662937i −0.233333 0.0356913i
\(346\) 3.48053 13.7601i 0.187114 0.739750i
\(347\) 16.7097 28.9420i 0.897024 1.55369i 0.0657437 0.997837i \(-0.479058\pi\)
0.831280 0.555854i \(-0.187609\pi\)
\(348\) 0.760768 1.40762i 0.0407814 0.0754562i
\(349\) 16.1586i 0.864951i 0.901646 + 0.432476i \(0.142360\pi\)
−0.901646 + 0.432476i \(0.857640\pi\)
\(350\) 0 0
\(351\) 6.27603i 0.334990i
\(352\) 9.02785 + 26.1804i 0.481186 + 1.39542i
\(353\) 11.3427 19.6461i 0.603711 1.04566i −0.388543 0.921431i \(-0.627021\pi\)
0.992254 0.124228i \(-0.0396453\pi\)
\(354\) −3.30293 0.835451i −0.175549 0.0444037i
\(355\) −31.6767 4.84538i −1.68123 0.257166i
\(356\) 2.28791 + 3.71744i 0.121259 + 0.197024i
\(357\) 0 0
\(358\) −1.36850 4.83449i −0.0723272 0.255511i
\(359\) −14.5214 + 8.38391i −0.766408 + 0.442486i −0.831592 0.555388i \(-0.812570\pi\)
0.0651839 + 0.997873i \(0.479237\pi\)
\(360\) −6.47493 + 16.6234i −0.341259 + 0.876132i
\(361\) −10.1314 + 17.5481i −0.533233 + 0.923586i
\(362\) −21.9564 + 22.5823i −1.15400 + 1.18690i
\(363\) 5.48966i 0.288133i
\(364\) 0 0
\(365\) −13.7378 11.0048i −0.719069 0.576016i
\(366\) −1.66139 1.61534i −0.0868425 0.0844354i
\(367\) −13.5474 7.82159i −0.707168 0.408284i 0.102844 0.994698i \(-0.467206\pi\)
−0.810012 + 0.586414i \(0.800539\pi\)
\(368\) −10.1489 15.4969i −0.529046 0.807830i
\(369\) 17.2316 9.94866i 0.897041 0.517907i
\(370\) −2.90203 + 6.87288i −0.150869 + 0.357304i
\(371\) 0 0
\(372\) −0.655785 1.06553i −0.0340009 0.0552453i
\(373\) 14.8129 8.55225i 0.766985 0.442819i −0.0648133 0.997897i \(-0.520645\pi\)
0.831798 + 0.555079i \(0.187312\pi\)
\(374\) 34.3267 + 8.68269i 1.77499 + 0.448971i
\(375\) 3.92851 2.64082i 0.202868 0.136372i
\(376\) −7.52724 + 33.7178i −0.388188 + 1.73886i
\(377\) 4.81207 0.247834
\(378\) 0 0
\(379\) 10.3762i 0.532990i −0.963836 0.266495i \(-0.914134\pi\)
0.963836 0.266495i \(-0.0858655\pi\)
\(380\) −10.9103 25.8113i −0.559688 1.32409i
\(381\) 4.48034 + 2.58672i 0.229535 + 0.132522i
\(382\) −24.4675 6.18888i −1.25187 0.316651i
\(383\) −8.00016 + 4.61890i −0.408789 + 0.236015i −0.690269 0.723552i \(-0.742508\pi\)
0.281480 + 0.959567i \(0.409175\pi\)
\(384\) 4.48274 1.68819i 0.228759 0.0861500i
\(385\) 0 0
\(386\) 7.02311 + 24.8106i 0.357467 + 1.26283i
\(387\) −15.2024 26.3313i −0.772780 1.33849i
\(388\) −0.192405 6.84390i −0.00976787 0.347446i
\(389\) −8.54214 + 14.7954i −0.433104 + 0.750158i −0.997139 0.0755930i \(-0.975915\pi\)
0.564035 + 0.825751i \(0.309248\pi\)
\(390\) 3.38342 0.421932i 0.171326 0.0213654i
\(391\) −23.6848 −1.19779
\(392\) 0 0
\(393\) 4.17063i 0.210380i
\(394\) 11.1962 11.5154i 0.564057 0.580138i
\(395\) 3.76919 + 9.66585i 0.189649 + 0.486342i
\(396\) −27.6071 + 0.776126i −1.38731 + 0.0390018i
\(397\) −16.7682 29.0434i −0.841573 1.45765i −0.888564 0.458752i \(-0.848297\pi\)
0.0469909 0.998895i \(-0.485037\pi\)
\(398\) 12.2852 3.47756i 0.615802 0.174315i
\(399\) 0 0
\(400\) 19.3912 + 4.89694i 0.969562 + 0.244847i
\(401\) 6.41428 + 11.1099i 0.320314 + 0.554800i 0.980553 0.196256i \(-0.0628784\pi\)
−0.660239 + 0.751056i \(0.729545\pi\)
\(402\) 0.516226 + 0.130576i 0.0257470 + 0.00651252i
\(403\) 1.88141 3.25870i 0.0937198 0.162327i
\(404\) 6.94843 12.8564i 0.345697 0.639630i
\(405\) −12.9471 10.3714i −0.643348 0.515359i
\(406\) 0 0
\(407\) −11.5495 −0.572487
\(408\) 1.33439 5.97734i 0.0660624 0.295923i
\(409\) 18.7038 + 10.7986i 0.924841 + 0.533957i 0.885176 0.465256i \(-0.154038\pi\)
0.0396649 + 0.999213i \(0.487371\pi\)
\(410\) −13.4581 17.7893i −0.664647 0.878552i
\(411\) −0.993870 1.72143i −0.0490240 0.0849121i
\(412\) −7.07664 11.4983i −0.348641 0.566479i
\(413\) 0 0
\(414\) 17.7756 5.03172i 0.873623 0.247296i
\(415\) 9.56811 + 1.46357i 0.469680 + 0.0718438i
\(416\) 10.8766 + 9.44626i 0.533269 + 0.463141i
\(417\) 5.08728 + 2.93714i 0.249125 + 0.143833i
\(418\) 30.2412 31.1033i 1.47915 1.52131i
\(419\) −18.7281 −0.914929 −0.457464 0.889228i \(-0.651242\pi\)
−0.457464 + 0.889228i \(0.651242\pi\)
\(420\) 0 0
\(421\) −18.9665 −0.924371 −0.462186 0.886783i \(-0.652935\pi\)
−0.462186 + 0.886783i \(0.652935\pi\)
\(422\) 4.33935 4.46306i 0.211236 0.217258i
\(423\) −29.8380 17.2270i −1.45077 0.837604i
\(424\) 6.03501 1.89305i 0.293086 0.0919348i
\(425\) 18.8211 17.3109i 0.912958 0.839700i
\(426\) −8.25645 + 2.33715i −0.400026 + 0.113235i
\(427\) 0 0
\(428\) 16.7430 10.3045i 0.809303 0.498088i
\(429\) 2.63921 + 4.57125i 0.127422 + 0.220702i
\(430\) −27.1835 + 20.5650i −1.31091 + 0.991734i
\(431\) 23.4036 + 13.5121i 1.12731 + 0.650854i 0.943258 0.332061i \(-0.107744\pi\)
0.184055 + 0.982916i \(0.441077\pi\)
\(432\) 0.553830 + 9.84216i 0.0266461 + 0.473531i
\(433\) 15.0015 0.720928 0.360464 0.932773i \(-0.382618\pi\)
0.360464 + 0.932773i \(0.382618\pi\)
\(434\) 0 0
\(435\) 1.11842 1.39618i 0.0536243 0.0669418i
\(436\) 16.5605 + 8.95036i 0.793103 + 0.428644i
\(437\) −14.5092 + 25.1307i −0.694071 + 1.20217i
\(438\) −4.56946 1.15581i −0.218337 0.0552268i
\(439\) −9.21899 15.9678i −0.439998 0.762099i 0.557690 0.830049i \(-0.311688\pi\)
−0.997689 + 0.0679495i \(0.978354\pi\)
\(440\) 4.69336 + 30.6041i 0.223747 + 1.45900i
\(441\) 0 0
\(442\) 17.7227 5.01676i 0.842985 0.238623i
\(443\) 10.4298 + 18.0649i 0.495533 + 0.858289i 0.999987 0.00514984i \(-0.00163925\pi\)
−0.504453 + 0.863439i \(0.668306\pi\)
\(444\) 0.0561402 + 1.99692i 0.00266430 + 0.0947699i
\(445\) 1.77304 + 4.54684i 0.0840499 + 0.215541i
\(446\) 13.9107 14.3072i 0.658689 0.677467i
\(447\) 2.31322i 0.109411i
\(448\) 0 0
\(449\) 14.6483 0.691298 0.345649 0.938364i \(-0.387659\pi\)
0.345649 + 0.938364i \(0.387659\pi\)
\(450\) −10.4478 + 16.9904i −0.492513 + 0.800935i
\(451\) 17.2663 29.9061i 0.813038 1.40822i
\(452\) −31.8397 + 0.895119i −1.49761 + 0.0421029i
\(453\) −0.316717 0.548569i −0.0148806 0.0257740i
\(454\) 4.23611 + 14.9649i 0.198811 + 0.702339i
\(455\) 0 0
\(456\) −5.52481 5.07756i −0.258723 0.237779i
\(457\) 1.03058 0.595004i 0.0482084 0.0278331i −0.475702 0.879606i \(-0.657806\pi\)
0.523910 + 0.851773i \(0.324473\pi\)
\(458\) −11.1182 2.81228i −0.519521 0.131409i
\(459\) 10.9152 + 6.30192i 0.509480 + 0.294148i
\(460\) −8.06363 19.0766i −0.375969 0.889453i
\(461\) 14.5645i 0.678336i 0.940726 + 0.339168i \(0.110146\pi\)
−0.940726 + 0.339168i \(0.889854\pi\)
\(462\) 0 0
\(463\) −4.69391 −0.218145 −0.109072 0.994034i \(-0.534788\pi\)
−0.109072 + 0.994034i \(0.534788\pi\)
\(464\) 7.54637 0.424643i 0.350331 0.0197136i
\(465\) −0.508206 1.30326i −0.0235675 0.0604374i
\(466\) −21.7641 5.50506i −1.00820 0.255017i
\(467\) 21.8947 12.6409i 1.01317 0.584952i 0.101050 0.994881i \(-0.467780\pi\)
0.912117 + 0.409929i \(0.134447\pi\)
\(468\) −12.2353 + 7.53023i −0.565575 + 0.348085i
\(469\) 0 0
\(470\) −15.0249 + 35.5836i −0.693048 + 1.64135i
\(471\) 8.39790 4.84853i 0.386955 0.223408i
\(472\) −4.81685 15.3560i −0.221713 0.706817i
\(473\) −45.6990 26.3843i −2.10124 1.21315i
\(474\) 1.99182 + 1.93661i 0.0914872 + 0.0889513i
\(475\) −6.83791 30.5747i −0.313745 1.40286i
\(476\) 0 0
\(477\) 6.30776i 0.288813i
\(478\) 24.1468 24.8352i 1.10445 1.13594i
\(479\) −2.05143 + 3.55318i −0.0937322 + 0.162349i −0.909079 0.416624i \(-0.863213\pi\)
0.815347 + 0.578973i \(0.196546\pi\)
\(480\) 5.26869 0.960251i 0.240482 0.0438293i
\(481\) −5.20311 + 3.00402i −0.237241 + 0.136971i
\(482\) −7.39023 26.1075i −0.336616 1.18916i
\(483\) 0 0
\(484\) −22.0846 + 13.5920i −1.00385 + 0.617820i
\(485\) 1.15743 7.56672i 0.0525562 0.343587i
\(486\) −14.4429 3.65324i −0.655145 0.165714i
\(487\) 16.9058 29.2816i 0.766073 1.32688i −0.173605 0.984815i \(-0.555542\pi\)
0.939678 0.342062i \(-0.111125\pi\)
\(488\) 2.38493 10.6832i 0.107961 0.483604i
\(489\) 0.817356i 0.0369621i
\(490\) 0 0
\(491\) 25.9116i 1.16937i −0.811259 0.584686i \(-0.801218\pi\)
0.811259 0.584686i \(-0.198782\pi\)
\(492\) −5.25474 2.84000i −0.236902 0.128037i
\(493\) 4.83193 8.36914i 0.217619 0.376927i
\(494\) 5.53387 21.8780i 0.248981 0.984336i
\(495\) −30.5228 4.66887i −1.37190 0.209850i
\(496\) 2.66289 5.27637i 0.119567 0.236916i
\(497\) 0 0
\(498\) 2.49390 0.705946i 0.111754 0.0316342i
\(499\) 21.0465 12.1512i 0.942170 0.543962i 0.0515304 0.998671i \(-0.483590\pi\)
0.890640 + 0.454709i \(0.150257\pi\)
\(500\) 20.3506 + 9.26568i 0.910107 + 0.414374i
\(501\) −3.59195 + 6.22145i −0.160477 + 0.277954i
\(502\) −21.4272 20.8332i −0.956341 0.929833i
\(503\) 11.5222i 0.513750i 0.966445 + 0.256875i \(0.0826928\pi\)
−0.966445 + 0.256875i \(0.917307\pi\)
\(504\) 0 0
\(505\) 10.2151 12.7520i 0.454564 0.567455i
\(506\) 22.3507 22.9879i 0.993612 1.02194i
\(507\) −2.38868 1.37911i −0.106085 0.0612482i
\(508\) 0.686771 + 24.4287i 0.0304705 + 1.08385i
\(509\) −23.4965 + 13.5657i −1.04147 + 0.601290i −0.920248 0.391336i \(-0.872013\pi\)
−0.121218 + 0.992626i \(0.538680\pi\)
\(510\) 2.66355 6.30810i 0.117944 0.279327i
\(511\) 0 0
\(512\) 17.8904 + 13.8540i 0.790653 + 0.612264i
\(513\) 13.3733 7.72108i 0.590445 0.340894i
\(514\) −8.89594 + 35.1698i −0.392383 + 1.55127i
\(515\) −5.48410 14.0636i −0.241658 0.619718i
\(516\) −4.33976 + 8.02968i −0.191047 + 0.353487i
\(517\) −59.7962 −2.62983
\(518\) 0 0
\(519\) 4.24926i 0.186522i
\(520\) 10.0745 + 12.5666i 0.441797 + 0.551082i
\(521\) 14.9657 + 8.64045i 0.655659 + 0.378545i 0.790621 0.612306i \(-0.209758\pi\)
−0.134962 + 0.990851i \(0.543091\pi\)
\(522\) −1.84841 + 7.30763i −0.0809028 + 0.319846i
\(523\) −16.4944 + 9.52305i −0.721250 + 0.416414i −0.815213 0.579162i \(-0.803380\pi\)
0.0939627 + 0.995576i \(0.470047\pi\)
\(524\) −16.7782 + 10.3262i −0.732958 + 0.451101i
\(525\) 0 0
\(526\) −13.6344 + 3.85946i −0.594486 + 0.168281i
\(527\) −3.77835 6.54429i −0.164587 0.285074i
\(528\) 4.54225 + 6.93581i 0.197676 + 0.301842i
\(529\) 0.776490 1.34492i 0.0337605 0.0584748i
\(530\) 7.01715 0.875081i 0.304806 0.0380111i
\(531\) 16.0500 0.696511
\(532\) 0 0
\(533\) 17.9638i 0.778100i
\(534\) 0.936955 + 0.910984i 0.0405460 + 0.0394221i
\(535\) 20.4785 7.98557i 0.885363 0.345247i
\(536\) 0.752842 + 2.40004i 0.0325178 + 0.103666i
\(537\) −0.752111 1.30269i −0.0324560 0.0562154i
\(538\) −5.27490 18.6347i −0.227417 0.803399i
\(539\) 0 0
\(540\) −1.35965 + 10.9371i −0.0585100 + 0.470657i
\(541\) −9.19403 15.9245i −0.395282 0.684649i 0.597855 0.801604i \(-0.296020\pi\)
−0.993137 + 0.116955i \(0.962687\pi\)
\(542\) 5.32705 21.0603i 0.228816 0.904617i
\(543\) −4.71475 + 8.16619i −0.202329 + 0.350445i
\(544\) 27.3504 9.43131i 1.17264 0.404364i
\(545\) 16.4259 + 13.1581i 0.703610 + 0.563632i
\(546\) 0 0
\(547\) 18.9519 0.810323 0.405161 0.914245i \(-0.367215\pi\)
0.405161 + 0.914245i \(0.367215\pi\)
\(548\) 4.46447 8.26043i 0.190713 0.352868i
\(549\) 9.45388 + 5.45820i 0.403482 + 0.232950i
\(550\) −0.959490 + 34.6032i −0.0409128 + 1.47549i
\(551\) −5.92005 10.2538i −0.252203 0.436828i
\(552\) −4.08329 3.75274i −0.173796 0.159727i
\(553\) 0 0
\(554\) 6.85974 + 24.2335i 0.291443 + 1.02958i
\(555\) −0.337717 + 2.20783i −0.0143353 + 0.0937172i
\(556\) 0.779807 + 27.7380i 0.0330712 + 1.17635i
\(557\) 22.0931 + 12.7555i 0.936116 + 0.540467i 0.888741 0.458411i \(-0.151581\pi\)
0.0473751 + 0.998877i \(0.484914\pi\)
\(558\) 4.22598 + 4.10885i 0.178900 + 0.173941i
\(559\) −27.4502 −1.16102
\(560\) 0 0
\(561\) 10.6004 0.447549
\(562\) 30.0302 + 29.1978i 1.26675 + 1.23163i
\(563\) −27.2462 15.7306i −1.14829 0.662965i −0.199819 0.979833i \(-0.564035\pi\)
−0.948470 + 0.316868i \(0.897369\pi\)
\(564\) 0.290660 + 10.3389i 0.0122390 + 0.435344i
\(565\) −35.2025 5.38468i −1.48098 0.226535i
\(566\) 1.37830 + 4.86912i 0.0579342 + 0.204665i
\(567\) 0 0
\(568\) −29.8446 27.4286i −1.25225 1.15088i
\(569\) −8.21728 14.2327i −0.344486 0.596668i 0.640774 0.767729i \(-0.278614\pi\)
−0.985260 + 0.171062i \(0.945280\pi\)
\(570\) −5.06152 6.69048i −0.212004 0.280233i
\(571\) −12.9962 7.50335i −0.543873 0.314005i 0.202774 0.979226i \(-0.435004\pi\)
−0.746647 + 0.665220i \(0.768338\pi\)
\(572\) −11.8554 + 21.9355i −0.495697 + 0.917169i
\(573\) −7.55580 −0.315648
\(574\) 0 0
\(575\) −5.05378 22.5972i −0.210757 0.942370i
\(576\) −18.5230 + 12.8887i −0.771793 + 0.537030i
\(577\) −1.24966 + 2.16447i −0.0520240 + 0.0901082i −0.890865 0.454269i \(-0.849901\pi\)
0.838841 + 0.544377i \(0.183234\pi\)
\(578\) 3.17524 12.5532i 0.132073 0.522144i
\(579\) 3.85983 + 6.68543i 0.160409 + 0.277837i
\(580\) 8.38589 + 1.04250i 0.348205 + 0.0432873i
\(581\) 0 0
\(582\) −0.558282 1.97225i −0.0231415 0.0817522i
\(583\) 5.47369 + 9.48071i 0.226697 + 0.392651i
\(584\) −6.66391 21.2444i −0.275754 0.879098i
\(585\) −14.9651 + 5.83562i −0.618729 + 0.241273i
\(586\) −18.0219 17.5224i −0.744477 0.723842i
\(587\) 22.1562i 0.914482i 0.889343 + 0.457241i \(0.151162\pi\)
−0.889343 + 0.457241i \(0.848838\pi\)
\(588\) 0 0
\(589\) −9.25842 −0.381487
\(590\) −2.22663 17.8550i −0.0916690 0.735081i
\(591\) 2.40419 4.16419i 0.0988953 0.171292i
\(592\) −7.89451 + 5.17010i −0.324462 + 0.212490i
\(593\) 14.3251 + 24.8118i 0.588262 + 1.01890i 0.994460 + 0.105115i \(0.0335211\pi\)
−0.406198 + 0.913785i \(0.633146\pi\)
\(594\) −16.4169 + 4.64713i −0.673596 + 0.190674i
\(595\) 0 0
\(596\) −9.30594 + 5.72737i −0.381186 + 0.234602i
\(597\) 3.31036 1.91123i 0.135484 0.0782216i
\(598\) 4.08999 16.1696i 0.167252 0.661224i
\(599\) −14.2033 8.20030i −0.580333 0.335055i 0.180933 0.983495i \(-0.442088\pi\)
−0.761266 + 0.648440i \(0.775422\pi\)
\(600\) 5.98761 0.00230331i 0.244443 9.40322e-5i
\(601\) 22.1672i 0.904220i −0.891962 0.452110i \(-0.850671\pi\)
0.891962 0.452110i \(-0.149329\pi\)
\(602\) 0 0
\(603\) −2.50851 −0.102155
\(604\) 1.42269 2.63235i 0.0578885 0.107109i
\(605\) −27.0119 + 10.5333i −1.09819 + 0.428238i
\(606\) 1.07287 4.24155i 0.0435824 0.172301i
\(607\) 24.8986 14.3752i 1.01060 0.583472i 0.0992347 0.995064i \(-0.468361\pi\)
0.911368 + 0.411592i \(0.135027\pi\)
\(608\) 6.74768 34.7977i 0.273654 1.41123i
\(609\) 0 0
\(610\) 4.76050 11.2743i 0.192747 0.456484i
\(611\) −26.9385 + 15.5530i −1.08982 + 0.629206i
\(612\) 0.810812 + 28.8408i 0.0327751 + 1.16582i
\(613\) 10.5198 + 6.07359i 0.424890 + 0.245310i 0.697167 0.716909i \(-0.254444\pi\)
−0.272278 + 0.962219i \(0.587777\pi\)
\(614\) −32.4268 + 33.3513i −1.30864 + 1.34595i
\(615\) −5.21205 4.17515i −0.210170 0.168358i
\(616\) 0 0
\(617\) 15.9265i 0.641175i 0.947219 + 0.320588i \(0.103880\pi\)
−0.947219 + 0.320588i \(0.896120\pi\)
\(618\) −2.89806 2.81773i −0.116577 0.113346i
\(619\) 1.94167 3.36308i 0.0780424 0.135173i −0.824363 0.566062i \(-0.808466\pi\)
0.902405 + 0.430888i \(0.141800\pi\)
\(620\) 3.98466 5.27127i 0.160028 0.211699i
\(621\) 9.88396 5.70651i 0.396630 0.228994i
\(622\) −27.0446 + 7.65549i −1.08439 + 0.306957i
\(623\) 0 0
\(624\) 3.85031 + 1.94319i 0.154136 + 0.0777897i
\(625\) 20.5320 + 14.2632i 0.821279 + 0.570527i
\(626\) −2.20957 + 8.73546i −0.0883123 + 0.349139i
\(627\) 6.49378 11.2476i 0.259337 0.449184i
\(628\) 40.2980 + 21.7796i 1.60806 + 0.869101i
\(629\) 12.0656i 0.481089i
\(630\) 0 0
\(631\) 12.2743i 0.488633i −0.969696 0.244316i \(-0.921436\pi\)
0.969696 0.244316i \(-0.0785636\pi\)
\(632\) −2.85925 + 12.8079i −0.113735 + 0.509470i
\(633\) 0.931800 1.61393i 0.0370357 0.0641478i
\(634\) 23.3107 + 5.89626i 0.925785 + 0.234171i
\(635\) −4.13134 + 27.0087i −0.163947 + 1.07181i
\(636\) 1.61262 0.992493i 0.0639446 0.0393549i
\(637\) 0 0
\(638\) 3.56314 + 12.5875i 0.141066 + 0.498345i
\(639\) 35.0084 20.2121i 1.38491 0.799578i
\(640\) 16.9079 + 18.8181i 0.668345 + 0.743851i
\(641\) −7.41350 + 12.8406i −0.292816 + 0.507172i −0.974474 0.224499i \(-0.927926\pi\)
0.681659 + 0.731670i \(0.261259\pi\)
\(642\) 4.10298 4.21995i 0.161932 0.166548i
\(643\) 11.8058i 0.465577i −0.972527 0.232789i \(-0.925215\pi\)
0.972527 0.232789i \(-0.0747850\pi\)
\(644\) 0 0
\(645\) −6.37998 + 7.96444i −0.251211 + 0.313600i
\(646\) −32.4934 31.5927i −1.27843 1.24300i
\(647\) 29.9706 + 17.3035i 1.17827 + 0.680272i 0.955613 0.294626i \(-0.0951950\pi\)
0.222653 + 0.974898i \(0.428528\pi\)
\(648\) −6.28037 20.0217i −0.246716 0.786526i
\(649\) 24.1235 13.9277i 0.946931 0.546711i
\(650\) 8.56802 + 15.8385i 0.336065 + 0.621237i
\(651\) 0 0
\(652\) −3.28817 + 2.02372i −0.128775 + 0.0792549i
\(653\) −24.4111 + 14.0937i −0.955279 + 0.551531i −0.894717 0.446634i \(-0.852623\pi\)
−0.0605622 + 0.998164i \(0.519289\pi\)
\(654\) 5.46359 + 1.38198i 0.213643 + 0.0540396i
\(655\) −20.5215 + 8.00236i −0.801843 + 0.312678i
\(656\) −1.58522 28.1712i −0.0618926 1.09990i
\(657\) 22.2045 0.866281
\(658\) 0 0
\(659\) 9.79123i 0.381412i −0.981647 0.190706i \(-0.938922\pi\)
0.981647 0.190706i \(-0.0610777\pi\)
\(660\) 3.60897 + 8.53798i 0.140479 + 0.332340i
\(661\) −0.707548 0.408503i −0.0275204 0.0158889i 0.486177 0.873861i \(-0.338391\pi\)
−0.513697 + 0.857972i \(0.671724\pi\)
\(662\) 20.1011 + 5.08444i 0.781253 + 0.197612i
\(663\) 4.77554 2.75716i 0.185467 0.107079i
\(664\) 9.01470 + 8.28494i 0.349838 + 0.321518i
\(665\) 0 0
\(666\) −2.56329 9.05536i −0.0993255 0.350888i
\(667\) −4.37540 7.57842i −0.169416 0.293438i
\(668\) −33.9219 + 0.953659i −1.31248 + 0.0368982i
\(669\) 2.98708 5.17377i 0.115487 0.200029i
\(670\) 0.348008 + 2.79063i 0.0134447 + 0.107811i
\(671\) 18.9459 0.731397
\(672\) 0 0
\(673\) 9.43129i 0.363550i −0.983340 0.181775i \(-0.941816\pi\)
0.983340 0.181775i \(-0.0581842\pi\)
\(674\) −15.0278 + 15.4562i −0.578850 + 0.595352i
\(675\) −3.68349 + 11.7587i −0.141778 + 0.452594i
\(676\) −0.366151 13.0241i −0.0140827 0.500927i
\(677\) 1.23700 + 2.14255i 0.0475418 + 0.0823449i 0.888817 0.458262i \(-0.151528\pi\)
−0.841275 + 0.540607i \(0.818195\pi\)
\(678\) −9.17542 + 2.59728i −0.352380 + 0.0997479i
\(679\) 0 0
\(680\) 31.9719 4.90311i 1.22606 0.188026i
\(681\) 2.32812 + 4.03243i 0.0892139 + 0.154523i
\(682\) 9.91728 + 2.50850i 0.379752 + 0.0960556i
\(683\) −9.37801 + 16.2432i −0.358840 + 0.621528i −0.987767 0.155935i \(-0.950161\pi\)
0.628928 + 0.777464i \(0.283494\pi\)
\(684\) 31.0982 + 16.8075i 1.18907 + 0.642651i
\(685\) 6.56332 8.19332i 0.250772 0.313051i
\(686\) 0 0
\(687\) −3.43341 −0.130993
\(688\) −43.0478 + 2.42235i −1.64118 + 0.0923513i
\(689\) 4.93186 + 2.84741i 0.187889 + 0.108478i
\(690\) −3.74088 4.94482i −0.142413 0.188246i
\(691\) −2.11063 3.65572i −0.0802923 0.139070i 0.823083 0.567921i \(-0.192252\pi\)
−0.903375 + 0.428851i \(0.858919\pi\)
\(692\) 17.0945 10.5209i 0.649836 0.399943i
\(693\) 0 0
\(694\) 45.4753 12.8727i 1.72622 0.488640i
\(695\) −4.69101 + 30.6676i −0.177940 + 1.16329i
\(696\) 2.15908 0.677258i 0.0818398 0.0256714i
\(697\) −31.2426 18.0379i −1.18340 0.683236i
\(698\) −15.9300 + 16.3841i −0.602958 + 0.620147i
\(699\) −6.72095 −0.254210
\(700\) 0 0
\(701\) −12.2843 −0.463971 −0.231985 0.972719i \(-0.574522\pi\)
−0.231985 + 0.972719i \(0.574522\pi\)
\(702\) −6.18721 + 6.36360i −0.233521 + 0.240179i
\(703\) 12.8022 + 7.39138i 0.482846 + 0.278771i
\(704\) −16.6561 + 35.4458i −0.627749 + 1.33591i
\(705\) −1.74849 + 11.4308i −0.0658521 + 0.430509i
\(706\) 30.8691 8.73809i 1.16177 0.328862i
\(707\) 0 0
\(708\) −2.52539 4.10329i −0.0949098 0.154211i
\(709\) −1.46808 2.54279i −0.0551348 0.0954963i 0.837141 0.546988i \(-0.184226\pi\)
−0.892276 + 0.451491i \(0.850892\pi\)
\(710\) −27.3419 36.1415i −1.02612 1.35636i
\(711\) −11.3341 6.54374i −0.425062 0.245410i
\(712\) −1.34500 + 6.02485i −0.0504060 + 0.225791i
\(713\) −6.84273 −0.256262
\(714\) 0 0
\(715\) −17.4288 + 21.7573i −0.651802 + 0.813677i
\(716\) 3.37849 6.25108i 0.126260 0.233614i
\(717\) 5.18511 8.98088i 0.193642 0.335397i
\(718\) −22.9892 5.81496i −0.857951 0.217013i
\(719\) 23.7638 + 41.1601i 0.886240 + 1.53501i 0.844285 + 0.535894i \(0.180025\pi\)
0.0419549 + 0.999120i \(0.486641\pi\)
\(720\) −22.9535 + 10.4721i −0.855426 + 0.390272i
\(721\) 0 0
\(722\) −27.5726 + 7.80495i −1.02615 + 0.290470i
\(723\) −4.06160 7.03489i −0.151052 0.261630i
\(724\) −44.5255 + 1.25176i −1.65478 + 0.0465213i
\(725\) 9.01587 + 2.82428i 0.334841 + 0.104891i
\(726\) −5.41198 + 5.56627i −0.200857 + 0.206584i
\(727\) 8.28795i 0.307383i 0.988119 + 0.153692i \(0.0491162\pi\)
−0.988119 + 0.153692i \(0.950884\pi\)
\(728\) 0 0
\(729\) 17.7963 0.659124
\(730\) −3.08045 24.7017i −0.114013 0.914251i
\(731\) −27.5634 + 47.7413i −1.01947 + 1.76578i
\(732\) −0.0920928 3.27577i −0.00340385 0.121076i
\(733\) −20.9930 36.3610i −0.775395 1.34302i −0.934572 0.355773i \(-0.884218\pi\)
0.159178 0.987250i \(-0.449116\pi\)
\(734\) −6.02552 21.2864i −0.222406 0.785696i
\(735\) 0 0
\(736\) 4.98709 25.7184i 0.183826 0.947991i
\(737\) −3.77035 + 2.17681i −0.138883 + 0.0801840i
\(738\) 27.2799 + 6.90026i 1.00419 + 0.254002i
\(739\) 22.4500 + 12.9615i 0.825836 + 0.476796i 0.852425 0.522850i \(-0.175131\pi\)
−0.0265891 + 0.999646i \(0.508465\pi\)
\(740\) −9.71814 + 4.10782i −0.357246 + 0.151007i
\(741\) 6.75612i 0.248192i
\(742\) 0 0
\(743\) −11.2976 −0.414470 −0.207235 0.978291i \(-0.566446\pi\)
−0.207235 + 0.978291i \(0.566446\pi\)
\(744\) 0.385518 1.72691i 0.0141338 0.0633115i
\(745\) −11.3822 + 4.43847i −0.417011 + 0.162613i
\(746\) 23.4509 + 5.93172i 0.858597 + 0.217176i
\(747\) −10.5744 + 6.10515i −0.386898 + 0.223376i
\(748\) 26.2459 + 42.6448i 0.959644 + 1.55925i
\(749\) 0 0
\(750\) 6.58679 + 1.19525i 0.240515 + 0.0436442i
\(751\) 4.86553 2.80911i 0.177546 0.102506i −0.408593 0.912717i \(-0.633981\pi\)
0.586139 + 0.810210i \(0.300647\pi\)
\(752\) −40.8730 + 26.7676i −1.49048 + 0.976114i
\(753\) −7.74847 4.47358i −0.282370 0.163026i
\(754\) 4.87922 + 4.74398i 0.177691 + 0.172765i
\(755\) 2.09153 2.61097i 0.0761187 0.0950228i
\(756\) 0 0
\(757\) 27.0456i 0.982990i −0.870880 0.491495i \(-0.836451\pi\)
0.870880 0.491495i \(-0.163549\pi\)
\(758\) 10.2294 10.5210i 0.371547 0.382139i
\(759\) 4.79944 8.31287i 0.174208 0.301738i
\(760\) 14.3834 36.9274i 0.521742 1.33950i
\(761\) −22.3558 + 12.9071i −0.810396 + 0.467883i −0.847094 0.531444i \(-0.821650\pi\)
0.0366971 + 0.999326i \(0.488316\pi\)
\(762\) 1.99274 + 7.03975i 0.0721892 + 0.255023i
\(763\) 0 0
\(764\) −18.7076 30.3965i −0.676818 1.09971i
\(765\) −4.87752 + 31.8869i −0.176347 + 1.15287i
\(766\) −12.6653 3.20360i −0.457617 0.115751i
\(767\) 7.24519 12.5490i 0.261609 0.453119i
\(768\) 6.20959 + 2.70756i 0.224069 + 0.0977007i
\(769\) 5.58909i 0.201548i 0.994909 + 0.100774i \(0.0321319\pi\)
−0.994909 + 0.100774i \(0.967868\pi\)
\(770\) 0 0
\(771\) 10.8608i 0.391140i
\(772\) −17.3384 + 32.0805i −0.624022 + 1.15460i
\(773\) 4.38608 7.59692i 0.157756 0.273242i −0.776303 0.630360i \(-0.782907\pi\)
0.934059 + 0.357118i \(0.116241\pi\)
\(774\) 10.5442 41.6859i 0.379002 1.49837i
\(775\) 5.43758 5.00125i 0.195324 0.179650i
\(776\) 6.55196 7.12908i 0.235202 0.255919i
\(777\) 0 0
\(778\) −23.2474 + 6.58062i −0.833459 + 0.235927i
\(779\) −38.2783 + 22.1000i −1.37146 + 0.791814i
\(780\) 3.84659 + 2.90772i 0.137730 + 0.104113i
\(781\) 35.0789 60.7584i 1.25522 2.17411i
\(782\) −24.0153 23.3496i −0.858784 0.834980i
\(783\) 4.65674i 0.166418i
\(784\) 0 0
\(785\) 39.9706 + 32.0187i 1.42661 + 1.14280i
\(786\) −4.11161 + 4.22882i −0.146656 + 0.150837i
\(787\) −8.56726 4.94631i −0.305390 0.176317i 0.339472 0.940616i \(-0.389752\pi\)
−0.644862 + 0.764299i \(0.723085\pi\)
\(788\) 22.7049 0.638310i 0.808828 0.0227389i
\(789\) −3.67389 + 2.12112i −0.130794 + 0.0755140i
\(790\) −5.70728 + 13.5166i −0.203056 + 0.480898i
\(791\) 0 0
\(792\) −28.7574 26.4294i −1.02185 0.939129i
\(793\) 8.53522 4.92781i 0.303094 0.174992i
\(794\) 11.6302 45.9796i 0.412741 1.63176i
\(795\) 1.97241 0.769141i 0.0699543 0.0272786i
\(796\) 15.8850 + 8.58527i 0.563029 + 0.304297i
\(797\) 31.5699 1.11826 0.559132 0.829079i \(-0.311135\pi\)
0.559132 + 0.829079i \(0.311135\pi\)
\(798\) 0 0
\(799\) 62.4685i 2.20998i
\(800\) 14.8342 + 24.0821i 0.524467 + 0.851431i
\(801\) −5.33158 3.07819i −0.188382 0.108762i
\(802\) −4.44885 + 17.5884i −0.157095 + 0.621067i
\(803\) 33.3739 19.2684i 1.17774 0.679968i
\(804\) 0.394702 + 0.641319i 0.0139200 + 0.0226176i
\(805\) 0 0
\(806\) 5.12025 1.44938i 0.180353 0.0510524i
\(807\) −2.89903 5.02128i −0.102051 0.176757i
\(808\) 19.7199 6.18570i 0.693742 0.217612i
\(809\) −15.3882 + 26.6532i −0.541021 + 0.937076i 0.457824 + 0.889043i \(0.348629\pi\)
−0.998846 + 0.0480338i \(0.984704\pi\)
\(810\) −2.90316 23.2800i −0.102007 0.817977i
\(811\) 19.0962 0.670557 0.335278 0.942119i \(-0.391170\pi\)
0.335278 + 0.942119i \(0.391170\pi\)
\(812\) 0 0
\(813\) 6.50362i 0.228092i
\(814\) −11.7106 11.3860i −0.410458 0.399081i
\(815\) −4.02180 + 1.56830i −0.140877 + 0.0549350i
\(816\) 7.24577 4.74524i 0.253653 0.166117i
\(817\) 33.7706 + 58.4924i 1.18148 + 2.04639i
\(818\) 8.31894 + 29.3884i 0.290865 + 1.02754i
\(819\) 0 0
\(820\) 3.89171 31.3052i 0.135905 1.09322i
\(821\) −24.0855 41.7174i −0.840591 1.45595i −0.889396 0.457137i \(-0.848875\pi\)
0.0488054 0.998808i \(-0.484459\pi\)
\(822\) 0.689335 2.72526i 0.0240433 0.0950543i
\(823\) −4.76754 + 8.25762i −0.166186 + 0.287843i −0.937076 0.349126i \(-0.886479\pi\)
0.770890 + 0.636969i \(0.219812\pi\)
\(824\) 4.16016 18.6352i 0.144926 0.649188i
\(825\) 2.26188 + 10.1137i 0.0787485 + 0.352113i
\(826\) 0 0
\(827\) 0.650873 0.0226331 0.0113165 0.999936i \(-0.496398\pi\)
0.0113165 + 0.999936i \(0.496398\pi\)
\(828\) 22.9842 + 12.4221i 0.798755 + 0.431699i
\(829\) −40.5282 23.3989i −1.40760 0.812679i −0.412445 0.910983i \(-0.635325\pi\)
−0.995156 + 0.0983034i \(0.968658\pi\)
\(830\) 8.25876 + 10.9167i 0.286666 + 0.378924i
\(831\) 3.77005 + 6.52991i 0.130781 + 0.226520i
\(832\) 1.71578 + 20.3008i 0.0594841 + 0.703802i
\(833\) 0 0
\(834\) 2.26269 + 7.99342i 0.0783505 + 0.276789i
\(835\) −37.5046 5.73684i −1.29790 0.198531i
\(836\) 61.3264 1.72409i 2.12102 0.0596289i
\(837\) 3.15351 + 1.82068i 0.109001 + 0.0629318i
\(838\) −18.9895 18.4631i −0.655980 0.637797i
\(839\) 50.2124 1.73353 0.866763 0.498720i \(-0.166197\pi\)
0.866763 + 0.498720i \(0.166197\pi\)
\(840\) 0 0
\(841\) −25.4295 −0.876879
\(842\) −19.2312 18.6981i −0.662750 0.644379i
\(843\) 10.8595 + 6.26972i 0.374020 + 0.215941i
\(844\) 8.79980 0.247392i 0.302901 0.00851557i
\(845\) 2.20262 14.3996i 0.0757723 0.495363i
\(846\) −13.2712 46.8831i −0.456272 1.61187i
\(847\) 0 0
\(848\) 7.98548 + 4.03014i 0.274223 + 0.138395i
\(849\) 0.757499 + 1.31203i 0.0259973 + 0.0450286i
\(850\) 36.1496 + 1.00237i 1.23992 + 0.0343810i
\(851\) 9.46191 + 5.46284i 0.324350 + 0.187264i
\(852\) −10.6757 5.76986i −0.365745 0.197672i
\(853\) 12.0132 0.411323 0.205661 0.978623i \(-0.434065\pi\)
0.205661 + 0.978623i \(0.434065\pi\)
\(854\) 0 0
\(855\) 30.8456 + 24.7091i 1.05490 + 0.845034i
\(856\) 27.1353 + 6.05774i 0.927466 + 0.207049i
\(857\) 13.5132 23.4056i 0.461603 0.799519i −0.537438 0.843303i \(-0.680608\pi\)
0.999041 + 0.0437838i \(0.0139413\pi\)
\(858\) −1.83052 + 7.23690i −0.0624930 + 0.247064i
\(859\) −10.2882 17.8197i −0.351030 0.608002i 0.635400 0.772183i \(-0.280835\pi\)
−0.986430 + 0.164181i \(0.947502\pi\)
\(860\) −47.8369 5.94686i −1.63122 0.202786i
\(861\) 0 0
\(862\) 10.4093 + 36.7731i 0.354543 + 1.25250i
\(863\) 4.73195 + 8.19598i 0.161078 + 0.278994i 0.935255 0.353974i \(-0.115170\pi\)
−0.774178 + 0.632968i \(0.781836\pi\)
\(864\) −9.14132 + 10.5255i −0.310994 + 0.358084i
\(865\) 20.9085 8.15323i 0.710909 0.277218i
\(866\) 15.2109 + 14.7892i 0.516886 + 0.502559i
\(867\) 3.87654i 0.131654i
\(868\) 0 0
\(869\) −22.7139 −0.770515
\(870\) 2.51045 0.313069i 0.0851123 0.0106140i
\(871\) −1.13238 + 1.96133i −0.0383691 + 0.0664573i
\(872\) 7.96787 + 25.4014i 0.269826 + 0.860199i
\(873\) 4.82813 + 8.36256i 0.163407 + 0.283030i
\(874\) −39.4868 + 11.1775i −1.33566 + 0.378084i
\(875\) 0 0
\(876\) −3.49377 5.67674i −0.118043 0.191799i
\(877\) −17.5315 + 10.1218i −0.591996 + 0.341789i −0.765886 0.642976i \(-0.777700\pi\)
0.173890 + 0.984765i \(0.444366\pi\)
\(878\) 6.39417 25.2791i 0.215793 0.853128i
\(879\) −6.51705 3.76262i −0.219815 0.126910i
\(880\) −25.4122 + 35.6581i −0.856645 + 1.20204i
\(881\) 58.2514i 1.96254i −0.192638 0.981270i \(-0.561704\pi\)
0.192638 0.981270i \(-0.438296\pi\)
\(882\) 0 0
\(883\) 39.7551 1.33786 0.668932 0.743323i \(-0.266752\pi\)
0.668932 + 0.743323i \(0.266752\pi\)
\(884\) 22.9158 + 12.3852i 0.770742 + 0.416559i
\(885\) −1.95707 5.01878i −0.0657861 0.168704i
\(886\) −7.23395 + 28.5991i −0.243029 + 0.960807i
\(887\) 39.2114 22.6387i 1.31659 0.760134i 0.333412 0.942781i \(-0.391800\pi\)
0.983178 + 0.182648i \(0.0584667\pi\)
\(888\) −1.91174 + 2.08014i −0.0641539 + 0.0698048i
\(889\) 0 0
\(890\) −2.68472 + 6.35823i −0.0899919 + 0.213128i
\(891\) 31.4531 18.1595i 1.05372 0.608365i
\(892\) 28.2095 0.793064i 0.944525 0.0265538i
\(893\) 66.2822 + 38.2681i 2.21805 + 1.28059i
\(894\) −2.28048 + 2.34550i −0.0762708 + 0.0784451i
\(895\) 4.96680 6.20030i 0.166022 0.207253i
\(896\) 0 0
\(897\) 4.99333i 0.166722i
\(898\) 14.8527 + 14.4410i 0.495642 + 0.481904i
\(899\) 1.39598 2.41792i 0.0465587 0.0806420i
\(900\) −27.3435 + 6.92754i −0.911451 + 0.230918i
\(901\) 9.90440 5.71831i 0.329963 0.190504i
\(902\) 46.9901 13.3015i 1.56460 0.442890i
\(903\) 0 0
\(904\) −33.1664 30.4815i −1.10310 1.01380i
\(905\) −49.2281 7.53010i −1.63640 0.250309i
\(906\) 0.219670 0.868459i 0.00729806 0.0288526i
\(907\) −25.2789 + 43.7844i −0.839373 + 1.45384i 0.0510468 + 0.998696i \(0.483744\pi\)
−0.890420 + 0.455140i \(0.849589\pi\)
\(908\) −10.4579 + 19.3499i −0.347059 + 0.642150i
\(909\) 20.6111i 0.683627i
\(910\) 0 0
\(911\) 0.524910i 0.0173910i −0.999962 0.00869552i \(-0.997232\pi\)
0.999962 0.00869552i \(-0.00276790\pi\)
\(912\) −0.596196 10.5950i −0.0197420 0.350837i
\(913\) −10.5957 + 18.3524i −0.350668 + 0.607374i
\(914\) 1.63154 + 0.412687i 0.0539666 + 0.0136505i
\(915\) 0.553994 3.62174i 0.0183145 0.119731i
\(916\) −8.50089 13.8124i −0.280877 0.456375i
\(917\) 0 0
\(918\) 4.85481 + 17.1506i 0.160233 + 0.566055i
\(919\) −18.6304 + 10.7563i −0.614561 + 0.354817i −0.774749 0.632269i \(-0.782124\pi\)
0.160187 + 0.987087i \(0.448790\pi\)
\(920\) 10.6305 27.2924i 0.350478 0.899802i
\(921\) −6.96310 + 12.0604i −0.229442 + 0.397405i
\(922\) −14.3584 + 14.7677i −0.472868 + 0.486349i
\(923\) 36.4960i 1.20128i
\(924\) 0 0
\(925\) −11.5116 + 2.57453i −0.378500 + 0.0846499i
\(926\) −4.75941 4.62749i −0.156404 0.152069i
\(927\) 16.4909 + 9.52103i 0.541632 + 0.312711i
\(928\) 8.07030 + 7.00901i 0.264921 + 0.230082i
\(929\) −13.5117 + 7.80096i −0.443303 + 0.255941i −0.704998 0.709210i \(-0.749052\pi\)
0.261695 + 0.965151i \(0.415719\pi\)
\(930\) 0.769522 1.82246i 0.0252336 0.0597609i
\(931\) 0 0
\(932\) −16.6406 27.0380i −0.545081 0.885658i
\(933\) −7.28740 + 4.20738i −0.238579 + 0.137743i
\(934\) 34.6623 + 8.76757i 1.13418 + 0.286884i
\(935\) 20.3394 + 52.1592i 0.665171 + 1.70579i
\(936\) −19.8297 4.42681i −0.648153 0.144695i
\(937\) 7.15521 0.233751 0.116875 0.993147i \(-0.462712\pi\)
0.116875 + 0.993147i \(0.462712\pi\)
\(938\) 0 0
\(939\) 2.69759i 0.0880326i
\(940\) −50.3146 + 21.2678i −1.64108 + 0.693679i
\(941\) 6.17342 + 3.56423i 0.201248 + 0.116191i 0.597237 0.802065i \(-0.296265\pi\)
−0.395990 + 0.918255i \(0.629598\pi\)
\(942\) 13.2950 + 3.36287i 0.433174 + 0.109568i
\(943\) −28.2908 + 16.3337i −0.921275 + 0.531899i
\(944\) 10.2546 20.3189i 0.333760 0.661325i
\(945\) 0 0
\(946\) −20.3257 71.8048i −0.660846 2.33457i
\(947\) 11.5507 + 20.0064i 0.375348 + 0.650122i 0.990379 0.138381i \(-0.0441899\pi\)
−0.615031 + 0.788503i \(0.710857\pi\)
\(948\) 0.110408 + 3.92726i 0.00358590 + 0.127552i
\(949\) 10.0234 17.3611i 0.325374 0.563564i
\(950\) 23.2087 37.7425i 0.752991 1.22453i
\(951\) 7.19855 0.233429
\(952\) 0 0
\(953\) 36.2840i 1.17535i 0.809096 + 0.587677i \(0.199957\pi\)
−0.809096 + 0.587677i \(0.800043\pi\)
\(954\) −6.21850 + 6.39578i −0.201331 + 0.207071i
\(955\) −14.4976 37.1783i −0.469132 1.20306i
\(956\) 48.9675 1.37664i 1.58372 0.0445237i
\(957\) 1.95826 + 3.39181i 0.0633017 + 0.109642i
\(958\) −5.58295 + 1.58036i −0.180377 + 0.0510592i
\(959\) 0 0
\(960\) 6.28887 + 4.22048i 0.202972 + 0.136215i
\(961\) 14.4084 + 24.9561i 0.464787 + 0.805035i
\(962\) −8.23722 2.08355i −0.265579 0.0671762i
\(963\) −13.8639 + 24.0129i −0.446757 + 0.773805i
\(964\) 18.2447 33.7575i 0.587622 1.08725i
\(965\) −25.4896 + 31.8199i −0.820539 + 1.02432i
\(966\) 0 0
\(967\) 41.0345 1.31958 0.659790 0.751450i \(-0.270645\pi\)
0.659790 + 0.751450i \(0.270645\pi\)
\(968\) −35.7924 7.99037i −1.15041 0.256820i
\(969\) −11.7502 6.78399i −0.377471 0.217933i
\(970\) 8.63323 6.53126i 0.277196 0.209706i
\(971\) 22.1241 + 38.3201i 0.709997 + 1.22975i 0.964858 + 0.262773i \(0.0846372\pi\)
−0.254860 + 0.966978i \(0.582030\pi\)
\(972\) −11.0429 17.9428i −0.354202 0.575514i
\(973\) 0 0
\(974\) 46.0089 13.0237i 1.47422 0.417306i
\(975\) 3.64955 + 3.96795i 0.116879 + 0.127076i
\(976\) 12.9502 8.48106i 0.414526 0.271472i
\(977\) 9.99116 + 5.76840i 0.319646 + 0.184547i 0.651235 0.758876i \(-0.274251\pi\)
−0.331589 + 0.943424i \(0.607585\pi\)
\(978\) −0.805789 + 0.828761i −0.0257663 + 0.0265009i
\(979\) −10.6846 −0.341483
\(980\) 0 0
\(981\) −26.5494 −0.847658
\(982\) 25.5449 26.2731i 0.815170 0.838409i
\(983\) 13.6399 + 7.87503i 0.435047 + 0.251174i 0.701494 0.712675i \(-0.252517\pi\)
−0.266448 + 0.963849i \(0.585850\pi\)
\(984\) −2.52825 8.06001i −0.0805978 0.256944i
\(985\) 25.1029 + 3.83982i 0.799845 + 0.122347i
\(986\) 13.1501 3.72237i 0.418783 0.118545i
\(987\) 0 0
\(988\) 27.1795 16.7277i 0.864694 0.532178i
\(989\) 24.9592 + 43.2307i 0.793658 + 1.37466i
\(990\) −26.3459 34.8249i −0.837328 1.10681i
\(991\) −2.35222 1.35806i −0.0747208 0.0431401i 0.462174 0.886789i \(-0.347070\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(992\) 7.90176 2.72479i 0.250881 0.0865120i
\(993\) 6.20742 0.196986
\(994\) 0 0
\(995\) 15.7559 + 12.6214i 0.499497 + 0.400126i
\(996\) 3.22466 + 1.74281i 0.102177 + 0.0552231i
\(997\) 4.48080 7.76097i 0.141908 0.245792i −0.786307 0.617836i \(-0.788010\pi\)
0.928215 + 0.372044i \(0.121343\pi\)
\(998\) 33.3194 + 8.42791i 1.05471 + 0.266781i
\(999\) −2.90704 5.03515i −0.0919748 0.159305i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.s.g.619.38 96
4.3 odd 2 inner 980.2.s.g.619.19 96
5.4 even 2 inner 980.2.s.g.619.11 96
7.2 even 3 inner 980.2.s.g.19.29 96
7.3 odd 6 980.2.c.e.979.8 yes 48
7.4 even 3 980.2.c.e.979.7 yes 48
7.5 odd 6 inner 980.2.s.g.19.30 96
7.6 odd 2 inner 980.2.s.g.619.37 96
20.19 odd 2 inner 980.2.s.g.619.30 96
28.3 even 6 980.2.c.e.979.43 yes 48
28.11 odd 6 980.2.c.e.979.44 yes 48
28.19 even 6 inner 980.2.s.g.19.11 96
28.23 odd 6 inner 980.2.s.g.19.12 96
28.27 even 2 inner 980.2.s.g.619.20 96
35.4 even 6 980.2.c.e.979.42 yes 48
35.9 even 6 inner 980.2.s.g.19.20 96
35.19 odd 6 inner 980.2.s.g.19.19 96
35.24 odd 6 980.2.c.e.979.41 yes 48
35.34 odd 2 inner 980.2.s.g.619.12 96
140.19 even 6 inner 980.2.s.g.19.38 96
140.39 odd 6 980.2.c.e.979.5 48
140.59 even 6 980.2.c.e.979.6 yes 48
140.79 odd 6 inner 980.2.s.g.19.37 96
140.139 even 2 inner 980.2.s.g.619.29 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
980.2.c.e.979.5 48 140.39 odd 6
980.2.c.e.979.6 yes 48 140.59 even 6
980.2.c.e.979.7 yes 48 7.4 even 3
980.2.c.e.979.8 yes 48 7.3 odd 6
980.2.c.e.979.41 yes 48 35.24 odd 6
980.2.c.e.979.42 yes 48 35.4 even 6
980.2.c.e.979.43 yes 48 28.3 even 6
980.2.c.e.979.44 yes 48 28.11 odd 6
980.2.s.g.19.11 96 28.19 even 6 inner
980.2.s.g.19.12 96 28.23 odd 6 inner
980.2.s.g.19.19 96 35.19 odd 6 inner
980.2.s.g.19.20 96 35.9 even 6 inner
980.2.s.g.19.29 96 7.2 even 3 inner
980.2.s.g.19.30 96 7.5 odd 6 inner
980.2.s.g.19.37 96 140.79 odd 6 inner
980.2.s.g.19.38 96 140.19 even 6 inner
980.2.s.g.619.11 96 5.4 even 2 inner
980.2.s.g.619.12 96 35.34 odd 2 inner
980.2.s.g.619.19 96 4.3 odd 2 inner
980.2.s.g.619.20 96 28.27 even 2 inner
980.2.s.g.619.29 96 140.139 even 2 inner
980.2.s.g.619.30 96 20.19 odd 2 inner
980.2.s.g.619.37 96 7.6 odd 2 inner
980.2.s.g.619.38 96 1.1 even 1 trivial