Properties

Label 9801.2.a.cq.1.15
Level $9801$
Weight $2$
Character 9801.1
Self dual yes
Analytic conductor $78.261$
Analytic rank $1$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9801,2,Mod(1,9801)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9801, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9801.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9801 = 3^{4} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9801.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.2613790211\)
Analytic rank: \(1\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 891)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.15
Character \(\chi\) \(=\) 9801.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.629509 q^{2} -1.60372 q^{4} -1.36679 q^{5} +0.587994 q^{7} -2.26857 q^{8} -0.860404 q^{10} -3.79991 q^{13} +0.370148 q^{14} +1.77935 q^{16} +0.193493 q^{17} +1.94578 q^{19} +2.19194 q^{20} +0.321232 q^{23} -3.13190 q^{25} -2.39208 q^{26} -0.942977 q^{28} +4.17141 q^{29} +5.63559 q^{31} +5.65726 q^{32} +0.121806 q^{34} -0.803662 q^{35} +10.2849 q^{37} +1.22489 q^{38} +3.10065 q^{40} -6.86081 q^{41} -6.81088 q^{43} +0.202218 q^{46} +5.08784 q^{47} -6.65426 q^{49} -1.97156 q^{50} +6.09398 q^{52} +7.86594 q^{53} -1.33391 q^{56} +2.62594 q^{58} -7.20462 q^{59} +8.63734 q^{61} +3.54766 q^{62} +0.00260672 q^{64} +5.19366 q^{65} -9.09740 q^{67} -0.310308 q^{68} -0.505913 q^{70} -2.86490 q^{71} -0.424593 q^{73} +6.47446 q^{74} -3.12049 q^{76} +4.10547 q^{79} -2.43199 q^{80} -4.31894 q^{82} +7.44009 q^{83} -0.264464 q^{85} -4.28751 q^{86} +3.38915 q^{89} -2.23433 q^{91} -0.515165 q^{92} +3.20284 q^{94} -2.65947 q^{95} +6.46421 q^{97} -4.18892 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 26 q^{4} - 18 q^{7} - 16 q^{10} - 18 q^{13} + 18 q^{16} - 36 q^{19} + 20 q^{25} - 46 q^{28} - 12 q^{31} + 42 q^{34} + 14 q^{37} - 42 q^{40} - 42 q^{43} - 26 q^{46} + 38 q^{49} - 36 q^{52} - 40 q^{58}+ \cdots - 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.629509 0.445130 0.222565 0.974918i \(-0.428557\pi\)
0.222565 + 0.974918i \(0.428557\pi\)
\(3\) 0 0
\(4\) −1.60372 −0.801859
\(5\) −1.36679 −0.611245 −0.305622 0.952153i \(-0.598865\pi\)
−0.305622 + 0.952153i \(0.598865\pi\)
\(6\) 0 0
\(7\) 0.587994 0.222241 0.111120 0.993807i \(-0.464556\pi\)
0.111120 + 0.993807i \(0.464556\pi\)
\(8\) −2.26857 −0.802062
\(9\) 0 0
\(10\) −0.860404 −0.272084
\(11\) 0 0
\(12\) 0 0
\(13\) −3.79991 −1.05391 −0.526953 0.849895i \(-0.676666\pi\)
−0.526953 + 0.849895i \(0.676666\pi\)
\(14\) 0.370148 0.0989262
\(15\) 0 0
\(16\) 1.77935 0.444837
\(17\) 0.193493 0.0469290 0.0234645 0.999725i \(-0.492530\pi\)
0.0234645 + 0.999725i \(0.492530\pi\)
\(18\) 0 0
\(19\) 1.94578 0.446394 0.223197 0.974773i \(-0.428351\pi\)
0.223197 + 0.974773i \(0.428351\pi\)
\(20\) 2.19194 0.490132
\(21\) 0 0
\(22\) 0 0
\(23\) 0.321232 0.0669815 0.0334907 0.999439i \(-0.489338\pi\)
0.0334907 + 0.999439i \(0.489338\pi\)
\(24\) 0 0
\(25\) −3.13190 −0.626380
\(26\) −2.39208 −0.469125
\(27\) 0 0
\(28\) −0.942977 −0.178206
\(29\) 4.17141 0.774611 0.387306 0.921951i \(-0.373406\pi\)
0.387306 + 0.921951i \(0.373406\pi\)
\(30\) 0 0
\(31\) 5.63559 1.01218 0.506091 0.862480i \(-0.331090\pi\)
0.506091 + 0.862480i \(0.331090\pi\)
\(32\) 5.65726 1.00007
\(33\) 0 0
\(34\) 0.121806 0.0208895
\(35\) −0.803662 −0.135844
\(36\) 0 0
\(37\) 10.2849 1.69083 0.845417 0.534107i \(-0.179352\pi\)
0.845417 + 0.534107i \(0.179352\pi\)
\(38\) 1.22489 0.198703
\(39\) 0 0
\(40\) 3.10065 0.490256
\(41\) −6.86081 −1.07148 −0.535739 0.844384i \(-0.679967\pi\)
−0.535739 + 0.844384i \(0.679967\pi\)
\(42\) 0 0
\(43\) −6.81088 −1.03865 −0.519325 0.854577i \(-0.673817\pi\)
−0.519325 + 0.854577i \(0.673817\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0.202218 0.0298155
\(47\) 5.08784 0.742138 0.371069 0.928605i \(-0.378991\pi\)
0.371069 + 0.928605i \(0.378991\pi\)
\(48\) 0 0
\(49\) −6.65426 −0.950609
\(50\) −1.97156 −0.278821
\(51\) 0 0
\(52\) 6.09398 0.845084
\(53\) 7.86594 1.08047 0.540235 0.841514i \(-0.318335\pi\)
0.540235 + 0.841514i \(0.318335\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −1.33391 −0.178251
\(57\) 0 0
\(58\) 2.62594 0.344803
\(59\) −7.20462 −0.937962 −0.468981 0.883208i \(-0.655379\pi\)
−0.468981 + 0.883208i \(0.655379\pi\)
\(60\) 0 0
\(61\) 8.63734 1.10590 0.552949 0.833215i \(-0.313502\pi\)
0.552949 + 0.833215i \(0.313502\pi\)
\(62\) 3.54766 0.450553
\(63\) 0 0
\(64\) 0.00260672 0.000325841 0
\(65\) 5.19366 0.644194
\(66\) 0 0
\(67\) −9.09740 −1.11142 −0.555712 0.831375i \(-0.687554\pi\)
−0.555712 + 0.831375i \(0.687554\pi\)
\(68\) −0.310308 −0.0376304
\(69\) 0 0
\(70\) −0.505913 −0.0604681
\(71\) −2.86490 −0.340001 −0.170000 0.985444i \(-0.554377\pi\)
−0.170000 + 0.985444i \(0.554377\pi\)
\(72\) 0 0
\(73\) −0.424593 −0.0496948 −0.0248474 0.999691i \(-0.507910\pi\)
−0.0248474 + 0.999691i \(0.507910\pi\)
\(74\) 6.47446 0.752641
\(75\) 0 0
\(76\) −3.12049 −0.357945
\(77\) 0 0
\(78\) 0 0
\(79\) 4.10547 0.461901 0.230950 0.972966i \(-0.425816\pi\)
0.230950 + 0.972966i \(0.425816\pi\)
\(80\) −2.43199 −0.271904
\(81\) 0 0
\(82\) −4.31894 −0.476947
\(83\) 7.44009 0.816656 0.408328 0.912835i \(-0.366112\pi\)
0.408328 + 0.912835i \(0.366112\pi\)
\(84\) 0 0
\(85\) −0.264464 −0.0286851
\(86\) −4.28751 −0.462335
\(87\) 0 0
\(88\) 0 0
\(89\) 3.38915 0.359249 0.179625 0.983735i \(-0.442512\pi\)
0.179625 + 0.983735i \(0.442512\pi\)
\(90\) 0 0
\(91\) −2.23433 −0.234221
\(92\) −0.515165 −0.0537097
\(93\) 0 0
\(94\) 3.20284 0.330348
\(95\) −2.65947 −0.272856
\(96\) 0 0
\(97\) 6.46421 0.656341 0.328171 0.944618i \(-0.393568\pi\)
0.328171 + 0.944618i \(0.393568\pi\)
\(98\) −4.18892 −0.423145
\(99\) 0 0
\(100\) 5.02268 0.502268
\(101\) 18.4974 1.84056 0.920280 0.391260i \(-0.127961\pi\)
0.920280 + 0.391260i \(0.127961\pi\)
\(102\) 0 0
\(103\) 3.23669 0.318920 0.159460 0.987204i \(-0.449025\pi\)
0.159460 + 0.987204i \(0.449025\pi\)
\(104\) 8.62038 0.845298
\(105\) 0 0
\(106\) 4.95168 0.480950
\(107\) −16.8700 −1.63088 −0.815441 0.578840i \(-0.803506\pi\)
−0.815441 + 0.578840i \(0.803506\pi\)
\(108\) 0 0
\(109\) −8.90745 −0.853179 −0.426589 0.904445i \(-0.640285\pi\)
−0.426589 + 0.904445i \(0.640285\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.04625 0.0988609
\(113\) 2.88544 0.271440 0.135720 0.990747i \(-0.456665\pi\)
0.135720 + 0.990747i \(0.456665\pi\)
\(114\) 0 0
\(115\) −0.439055 −0.0409421
\(116\) −6.68977 −0.621129
\(117\) 0 0
\(118\) −4.53538 −0.417515
\(119\) 0.113773 0.0104295
\(120\) 0 0
\(121\) 0 0
\(122\) 5.43729 0.492269
\(123\) 0 0
\(124\) −9.03790 −0.811627
\(125\) 11.1146 0.994116
\(126\) 0 0
\(127\) 1.28445 0.113976 0.0569882 0.998375i \(-0.481850\pi\)
0.0569882 + 0.998375i \(0.481850\pi\)
\(128\) −11.3129 −0.999927
\(129\) 0 0
\(130\) 3.26946 0.286750
\(131\) 6.33798 0.553752 0.276876 0.960906i \(-0.410701\pi\)
0.276876 + 0.960906i \(0.410701\pi\)
\(132\) 0 0
\(133\) 1.14411 0.0992069
\(134\) −5.72690 −0.494729
\(135\) 0 0
\(136\) −0.438953 −0.0376400
\(137\) −16.5640 −1.41516 −0.707579 0.706634i \(-0.750213\pi\)
−0.707579 + 0.706634i \(0.750213\pi\)
\(138\) 0 0
\(139\) −17.4492 −1.48002 −0.740010 0.672596i \(-0.765179\pi\)
−0.740010 + 0.672596i \(0.765179\pi\)
\(140\) 1.28885 0.108927
\(141\) 0 0
\(142\) −1.80348 −0.151345
\(143\) 0 0
\(144\) 0 0
\(145\) −5.70142 −0.473477
\(146\) −0.267285 −0.0221207
\(147\) 0 0
\(148\) −16.4941 −1.35581
\(149\) 6.30584 0.516595 0.258297 0.966065i \(-0.416839\pi\)
0.258297 + 0.966065i \(0.416839\pi\)
\(150\) 0 0
\(151\) −16.2316 −1.32091 −0.660453 0.750867i \(-0.729636\pi\)
−0.660453 + 0.750867i \(0.729636\pi\)
\(152\) −4.41416 −0.358035
\(153\) 0 0
\(154\) 0 0
\(155\) −7.70264 −0.618691
\(156\) 0 0
\(157\) −17.0442 −1.36028 −0.680138 0.733084i \(-0.738080\pi\)
−0.680138 + 0.733084i \(0.738080\pi\)
\(158\) 2.58443 0.205606
\(159\) 0 0
\(160\) −7.73226 −0.611289
\(161\) 0.188882 0.0148860
\(162\) 0 0
\(163\) 18.5735 1.45479 0.727396 0.686218i \(-0.240730\pi\)
0.727396 + 0.686218i \(0.240730\pi\)
\(164\) 11.0028 0.859174
\(165\) 0 0
\(166\) 4.68360 0.363518
\(167\) 9.46682 0.732564 0.366282 0.930504i \(-0.380630\pi\)
0.366282 + 0.930504i \(0.380630\pi\)
\(168\) 0 0
\(169\) 1.43932 0.110717
\(170\) −0.166482 −0.0127686
\(171\) 0 0
\(172\) 10.9227 0.832851
\(173\) 17.9680 1.36608 0.683042 0.730379i \(-0.260657\pi\)
0.683042 + 0.730379i \(0.260657\pi\)
\(174\) 0 0
\(175\) −1.84154 −0.139207
\(176\) 0 0
\(177\) 0 0
\(178\) 2.13350 0.159913
\(179\) −26.4579 −1.97756 −0.988779 0.149387i \(-0.952270\pi\)
−0.988779 + 0.149387i \(0.952270\pi\)
\(180\) 0 0
\(181\) −0.878966 −0.0653330 −0.0326665 0.999466i \(-0.510400\pi\)
−0.0326665 + 0.999466i \(0.510400\pi\)
\(182\) −1.40653 −0.104259
\(183\) 0 0
\(184\) −0.728738 −0.0537233
\(185\) −14.0573 −1.03351
\(186\) 0 0
\(187\) 0 0
\(188\) −8.15946 −0.595090
\(189\) 0 0
\(190\) −1.67416 −0.121456
\(191\) −15.5215 −1.12309 −0.561547 0.827445i \(-0.689794\pi\)
−0.561547 + 0.827445i \(0.689794\pi\)
\(192\) 0 0
\(193\) −9.67458 −0.696391 −0.348196 0.937422i \(-0.613206\pi\)
−0.348196 + 0.937422i \(0.613206\pi\)
\(194\) 4.06928 0.292157
\(195\) 0 0
\(196\) 10.6716 0.762254
\(197\) −26.0364 −1.85502 −0.927508 0.373803i \(-0.878053\pi\)
−0.927508 + 0.373803i \(0.878053\pi\)
\(198\) 0 0
\(199\) −20.4538 −1.44993 −0.724967 0.688784i \(-0.758145\pi\)
−0.724967 + 0.688784i \(0.758145\pi\)
\(200\) 7.10494 0.502395
\(201\) 0 0
\(202\) 11.6443 0.819289
\(203\) 2.45277 0.172150
\(204\) 0 0
\(205\) 9.37725 0.654936
\(206\) 2.03752 0.141961
\(207\) 0 0
\(208\) −6.76136 −0.468816
\(209\) 0 0
\(210\) 0 0
\(211\) 15.9168 1.09576 0.547880 0.836557i \(-0.315435\pi\)
0.547880 + 0.836557i \(0.315435\pi\)
\(212\) −12.6148 −0.866385
\(213\) 0 0
\(214\) −10.6198 −0.725955
\(215\) 9.30901 0.634869
\(216\) 0 0
\(217\) 3.31370 0.224948
\(218\) −5.60732 −0.379776
\(219\) 0 0
\(220\) 0 0
\(221\) −0.735256 −0.0494587
\(222\) 0 0
\(223\) 2.50161 0.167520 0.0837602 0.996486i \(-0.473307\pi\)
0.0837602 + 0.996486i \(0.473307\pi\)
\(224\) 3.32644 0.222257
\(225\) 0 0
\(226\) 1.81641 0.120826
\(227\) −16.1138 −1.06951 −0.534754 0.845008i \(-0.679596\pi\)
−0.534754 + 0.845008i \(0.679596\pi\)
\(228\) 0 0
\(229\) 3.30474 0.218383 0.109192 0.994021i \(-0.465174\pi\)
0.109192 + 0.994021i \(0.465174\pi\)
\(230\) −0.276389 −0.0182246
\(231\) 0 0
\(232\) −9.46315 −0.621287
\(233\) −4.31187 −0.282480 −0.141240 0.989975i \(-0.545109\pi\)
−0.141240 + 0.989975i \(0.545109\pi\)
\(234\) 0 0
\(235\) −6.95399 −0.453628
\(236\) 11.5542 0.752113
\(237\) 0 0
\(238\) 0.0716211 0.00464250
\(239\) 15.0401 0.972866 0.486433 0.873718i \(-0.338298\pi\)
0.486433 + 0.873718i \(0.338298\pi\)
\(240\) 0 0
\(241\) −13.7709 −0.887064 −0.443532 0.896259i \(-0.646275\pi\)
−0.443532 + 0.896259i \(0.646275\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −13.8519 −0.886775
\(245\) 9.09495 0.581055
\(246\) 0 0
\(247\) −7.39381 −0.470457
\(248\) −12.7848 −0.811833
\(249\) 0 0
\(250\) 6.99672 0.442511
\(251\) 27.6416 1.74472 0.872361 0.488862i \(-0.162588\pi\)
0.872361 + 0.488862i \(0.162588\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0.808572 0.0507343
\(255\) 0 0
\(256\) −7.12678 −0.445424
\(257\) −10.9826 −0.685074 −0.342537 0.939504i \(-0.611286\pi\)
−0.342537 + 0.939504i \(0.611286\pi\)
\(258\) 0 0
\(259\) 6.04748 0.375772
\(260\) −8.32917 −0.516553
\(261\) 0 0
\(262\) 3.98982 0.246492
\(263\) 17.9503 1.10687 0.553433 0.832894i \(-0.313318\pi\)
0.553433 + 0.832894i \(0.313318\pi\)
\(264\) 0 0
\(265\) −10.7511 −0.660432
\(266\) 0.720228 0.0441600
\(267\) 0 0
\(268\) 14.5897 0.891206
\(269\) −24.1477 −1.47231 −0.736156 0.676812i \(-0.763361\pi\)
−0.736156 + 0.676812i \(0.763361\pi\)
\(270\) 0 0
\(271\) 14.5492 0.883803 0.441902 0.897064i \(-0.354304\pi\)
0.441902 + 0.897064i \(0.354304\pi\)
\(272\) 0.344291 0.0208757
\(273\) 0 0
\(274\) −10.4272 −0.629930
\(275\) 0 0
\(276\) 0 0
\(277\) −24.1116 −1.44873 −0.724364 0.689418i \(-0.757866\pi\)
−0.724364 + 0.689418i \(0.757866\pi\)
\(278\) −10.9844 −0.658802
\(279\) 0 0
\(280\) 1.82317 0.108955
\(281\) 1.18791 0.0708648 0.0354324 0.999372i \(-0.488719\pi\)
0.0354324 + 0.999372i \(0.488719\pi\)
\(282\) 0 0
\(283\) −15.3522 −0.912594 −0.456297 0.889828i \(-0.650825\pi\)
−0.456297 + 0.889828i \(0.650825\pi\)
\(284\) 4.59448 0.272632
\(285\) 0 0
\(286\) 0 0
\(287\) −4.03412 −0.238126
\(288\) 0 0
\(289\) −16.9626 −0.997798
\(290\) −3.58910 −0.210759
\(291\) 0 0
\(292\) 0.680927 0.0398482
\(293\) −32.0977 −1.87517 −0.937583 0.347761i \(-0.886942\pi\)
−0.937583 + 0.347761i \(0.886942\pi\)
\(294\) 0 0
\(295\) 9.84717 0.573325
\(296\) −23.3321 −1.35615
\(297\) 0 0
\(298\) 3.96959 0.229952
\(299\) −1.22065 −0.0705921
\(300\) 0 0
\(301\) −4.00476 −0.230830
\(302\) −10.2179 −0.587975
\(303\) 0 0
\(304\) 3.46223 0.198572
\(305\) −11.8054 −0.675975
\(306\) 0 0
\(307\) −33.1199 −1.89025 −0.945126 0.326707i \(-0.894061\pi\)
−0.945126 + 0.326707i \(0.894061\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −4.84889 −0.275398
\(311\) 33.9824 1.92697 0.963483 0.267769i \(-0.0862865\pi\)
0.963483 + 0.267769i \(0.0862865\pi\)
\(312\) 0 0
\(313\) 4.71328 0.266410 0.133205 0.991088i \(-0.457473\pi\)
0.133205 + 0.991088i \(0.457473\pi\)
\(314\) −10.7295 −0.605500
\(315\) 0 0
\(316\) −6.58401 −0.370379
\(317\) −17.4171 −0.978242 −0.489121 0.872216i \(-0.662682\pi\)
−0.489121 + 0.872216i \(0.662682\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.00356283 −0.000199168 0
\(321\) 0 0
\(322\) 0.118903 0.00662622
\(323\) 0.376496 0.0209488
\(324\) 0 0
\(325\) 11.9009 0.660145
\(326\) 11.6922 0.647572
\(327\) 0 0
\(328\) 15.5643 0.859392
\(329\) 2.99162 0.164933
\(330\) 0 0
\(331\) 12.9769 0.713275 0.356637 0.934243i \(-0.383923\pi\)
0.356637 + 0.934243i \(0.383923\pi\)
\(332\) −11.9318 −0.654843
\(333\) 0 0
\(334\) 5.95945 0.326087
\(335\) 12.4342 0.679353
\(336\) 0 0
\(337\) 10.3436 0.563452 0.281726 0.959495i \(-0.409093\pi\)
0.281726 + 0.959495i \(0.409093\pi\)
\(338\) 0.906064 0.0492834
\(339\) 0 0
\(340\) 0.424125 0.0230014
\(341\) 0 0
\(342\) 0 0
\(343\) −8.02863 −0.433505
\(344\) 15.4510 0.833062
\(345\) 0 0
\(346\) 11.3110 0.608085
\(347\) 6.14370 0.329811 0.164905 0.986309i \(-0.447268\pi\)
0.164905 + 0.986309i \(0.447268\pi\)
\(348\) 0 0
\(349\) −20.3782 −1.09082 −0.545409 0.838170i \(-0.683626\pi\)
−0.545409 + 0.838170i \(0.683626\pi\)
\(350\) −1.15927 −0.0619653
\(351\) 0 0
\(352\) 0 0
\(353\) 11.9881 0.638064 0.319032 0.947744i \(-0.396642\pi\)
0.319032 + 0.947744i \(0.396642\pi\)
\(354\) 0 0
\(355\) 3.91570 0.207824
\(356\) −5.43524 −0.288067
\(357\) 0 0
\(358\) −16.6555 −0.880271
\(359\) 17.8820 0.943773 0.471887 0.881659i \(-0.343573\pi\)
0.471887 + 0.881659i \(0.343573\pi\)
\(360\) 0 0
\(361\) −15.2139 −0.800733
\(362\) −0.553317 −0.0290817
\(363\) 0 0
\(364\) 3.58323 0.187812
\(365\) 0.580327 0.0303757
\(366\) 0 0
\(367\) 27.6194 1.44172 0.720860 0.693081i \(-0.243747\pi\)
0.720860 + 0.693081i \(0.243747\pi\)
\(368\) 0.571583 0.0297958
\(369\) 0 0
\(370\) −8.84920 −0.460048
\(371\) 4.62513 0.240125
\(372\) 0 0
\(373\) −12.3887 −0.641463 −0.320731 0.947170i \(-0.603929\pi\)
−0.320731 + 0.947170i \(0.603929\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −11.5421 −0.595241
\(377\) −15.8510 −0.816367
\(378\) 0 0
\(379\) 16.8316 0.864579 0.432290 0.901735i \(-0.357706\pi\)
0.432290 + 0.901735i \(0.357706\pi\)
\(380\) 4.26504 0.218792
\(381\) 0 0
\(382\) −9.77091 −0.499923
\(383\) 12.4490 0.636114 0.318057 0.948072i \(-0.396970\pi\)
0.318057 + 0.948072i \(0.396970\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −6.09024 −0.309985
\(387\) 0 0
\(388\) −10.3668 −0.526293
\(389\) −1.22879 −0.0623020 −0.0311510 0.999515i \(-0.509917\pi\)
−0.0311510 + 0.999515i \(0.509917\pi\)
\(390\) 0 0
\(391\) 0.0621561 0.00314337
\(392\) 15.0957 0.762447
\(393\) 0 0
\(394\) −16.3902 −0.825724
\(395\) −5.61129 −0.282335
\(396\) 0 0
\(397\) 20.5917 1.03347 0.516734 0.856146i \(-0.327148\pi\)
0.516734 + 0.856146i \(0.327148\pi\)
\(398\) −12.8759 −0.645409
\(399\) 0 0
\(400\) −5.57273 −0.278637
\(401\) −6.73871 −0.336515 −0.168258 0.985743i \(-0.553814\pi\)
−0.168258 + 0.985743i \(0.553814\pi\)
\(402\) 0 0
\(403\) −21.4147 −1.06674
\(404\) −29.6646 −1.47587
\(405\) 0 0
\(406\) 1.54404 0.0766294
\(407\) 0 0
\(408\) 0 0
\(409\) −29.1705 −1.44239 −0.721194 0.692733i \(-0.756407\pi\)
−0.721194 + 0.692733i \(0.756407\pi\)
\(410\) 5.90307 0.291532
\(411\) 0 0
\(412\) −5.19073 −0.255729
\(413\) −4.23628 −0.208454
\(414\) 0 0
\(415\) −10.1690 −0.499177
\(416\) −21.4971 −1.05398
\(417\) 0 0
\(418\) 0 0
\(419\) −37.9702 −1.85497 −0.927483 0.373865i \(-0.878032\pi\)
−0.927483 + 0.373865i \(0.878032\pi\)
\(420\) 0 0
\(421\) −8.10826 −0.395173 −0.197586 0.980285i \(-0.563310\pi\)
−0.197586 + 0.980285i \(0.563310\pi\)
\(422\) 10.0198 0.487756
\(423\) 0 0
\(424\) −17.8445 −0.866604
\(425\) −0.606001 −0.0293954
\(426\) 0 0
\(427\) 5.07871 0.245776
\(428\) 27.0547 1.30774
\(429\) 0 0
\(430\) 5.86011 0.282600
\(431\) −30.4491 −1.46668 −0.733342 0.679860i \(-0.762041\pi\)
−0.733342 + 0.679860i \(0.762041\pi\)
\(432\) 0 0
\(433\) 24.0856 1.15748 0.578739 0.815513i \(-0.303545\pi\)
0.578739 + 0.815513i \(0.303545\pi\)
\(434\) 2.08600 0.100131
\(435\) 0 0
\(436\) 14.2850 0.684129
\(437\) 0.625048 0.0299001
\(438\) 0 0
\(439\) −34.3175 −1.63789 −0.818943 0.573874i \(-0.805440\pi\)
−0.818943 + 0.573874i \(0.805440\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −0.462851 −0.0220156
\(443\) 8.54020 0.405757 0.202879 0.979204i \(-0.434970\pi\)
0.202879 + 0.979204i \(0.434970\pi\)
\(444\) 0 0
\(445\) −4.63224 −0.219589
\(446\) 1.57479 0.0745684
\(447\) 0 0
\(448\) 0.00153274 7.24151e−5 0
\(449\) 36.8685 1.73993 0.869965 0.493113i \(-0.164141\pi\)
0.869965 + 0.493113i \(0.164141\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −4.62744 −0.217656
\(453\) 0 0
\(454\) −10.1438 −0.476071
\(455\) 3.05384 0.143166
\(456\) 0 0
\(457\) −23.6841 −1.10789 −0.553947 0.832552i \(-0.686879\pi\)
−0.553947 + 0.832552i \(0.686879\pi\)
\(458\) 2.08036 0.0972090
\(459\) 0 0
\(460\) 0.704120 0.0328298
\(461\) 28.6862 1.33605 0.668024 0.744140i \(-0.267140\pi\)
0.668024 + 0.744140i \(0.267140\pi\)
\(462\) 0 0
\(463\) 10.8631 0.504852 0.252426 0.967616i \(-0.418772\pi\)
0.252426 + 0.967616i \(0.418772\pi\)
\(464\) 7.42239 0.344576
\(465\) 0 0
\(466\) −2.71436 −0.125740
\(467\) −29.4876 −1.36452 −0.682261 0.731108i \(-0.739003\pi\)
−0.682261 + 0.731108i \(0.739003\pi\)
\(468\) 0 0
\(469\) −5.34922 −0.247004
\(470\) −4.37760 −0.201924
\(471\) 0 0
\(472\) 16.3442 0.752304
\(473\) 0 0
\(474\) 0 0
\(475\) −6.09400 −0.279612
\(476\) −0.182460 −0.00836302
\(477\) 0 0
\(478\) 9.46791 0.433052
\(479\) −21.3570 −0.975828 −0.487914 0.872892i \(-0.662242\pi\)
−0.487914 + 0.872892i \(0.662242\pi\)
\(480\) 0 0
\(481\) −39.0818 −1.78198
\(482\) −8.66894 −0.394859
\(483\) 0 0
\(484\) 0 0
\(485\) −8.83519 −0.401185
\(486\) 0 0
\(487\) −2.27641 −0.103154 −0.0515769 0.998669i \(-0.516425\pi\)
−0.0515769 + 0.998669i \(0.516425\pi\)
\(488\) −19.5945 −0.886999
\(489\) 0 0
\(490\) 5.72535 0.258645
\(491\) 9.52567 0.429887 0.214944 0.976626i \(-0.431043\pi\)
0.214944 + 0.976626i \(0.431043\pi\)
\(492\) 0 0
\(493\) 0.807139 0.0363517
\(494\) −4.65447 −0.209415
\(495\) 0 0
\(496\) 10.0277 0.450256
\(497\) −1.68454 −0.0755620
\(498\) 0 0
\(499\) −12.7232 −0.569571 −0.284785 0.958591i \(-0.591922\pi\)
−0.284785 + 0.958591i \(0.591922\pi\)
\(500\) −17.8246 −0.797141
\(501\) 0 0
\(502\) 17.4007 0.776629
\(503\) 5.78240 0.257825 0.128912 0.991656i \(-0.458851\pi\)
0.128912 + 0.991656i \(0.458851\pi\)
\(504\) 0 0
\(505\) −25.2820 −1.12503
\(506\) 0 0
\(507\) 0 0
\(508\) −2.05989 −0.0913930
\(509\) −9.24772 −0.409898 −0.204949 0.978773i \(-0.565703\pi\)
−0.204949 + 0.978773i \(0.565703\pi\)
\(510\) 0 0
\(511\) −0.249658 −0.0110442
\(512\) 18.1394 0.801656
\(513\) 0 0
\(514\) −6.91363 −0.304947
\(515\) −4.42385 −0.194938
\(516\) 0 0
\(517\) 0 0
\(518\) 3.80695 0.167268
\(519\) 0 0
\(520\) −11.7822 −0.516684
\(521\) 25.3513 1.11066 0.555331 0.831629i \(-0.312591\pi\)
0.555331 + 0.831629i \(0.312591\pi\)
\(522\) 0 0
\(523\) −20.9860 −0.917655 −0.458827 0.888525i \(-0.651730\pi\)
−0.458827 + 0.888525i \(0.651730\pi\)
\(524\) −10.1643 −0.444031
\(525\) 0 0
\(526\) 11.2999 0.492699
\(527\) 1.09045 0.0475007
\(528\) 0 0
\(529\) −22.8968 −0.995513
\(530\) −6.76789 −0.293978
\(531\) 0 0
\(532\) −1.83483 −0.0795500
\(533\) 26.0705 1.12924
\(534\) 0 0
\(535\) 23.0576 0.996869
\(536\) 20.6381 0.891432
\(537\) 0 0
\(538\) −15.2012 −0.655371
\(539\) 0 0
\(540\) 0 0
\(541\) 11.1538 0.479540 0.239770 0.970830i \(-0.422928\pi\)
0.239770 + 0.970830i \(0.422928\pi\)
\(542\) 9.15888 0.393408
\(543\) 0 0
\(544\) 1.09464 0.0469324
\(545\) 12.1746 0.521501
\(546\) 0 0
\(547\) −6.09638 −0.260662 −0.130331 0.991471i \(-0.541604\pi\)
−0.130331 + 0.991471i \(0.541604\pi\)
\(548\) 26.5640 1.13476
\(549\) 0 0
\(550\) 0 0
\(551\) 8.11667 0.345782
\(552\) 0 0
\(553\) 2.41399 0.102653
\(554\) −15.1785 −0.644872
\(555\) 0 0
\(556\) 27.9836 1.18677
\(557\) 9.90178 0.419552 0.209776 0.977749i \(-0.432727\pi\)
0.209776 + 0.977749i \(0.432727\pi\)
\(558\) 0 0
\(559\) 25.8807 1.09464
\(560\) −1.42999 −0.0604282
\(561\) 0 0
\(562\) 0.747801 0.0315441
\(563\) −0.551557 −0.0232453 −0.0116227 0.999932i \(-0.503700\pi\)
−0.0116227 + 0.999932i \(0.503700\pi\)
\(564\) 0 0
\(565\) −3.94378 −0.165916
\(566\) −9.66436 −0.406223
\(567\) 0 0
\(568\) 6.49923 0.272702
\(569\) −19.2487 −0.806946 −0.403473 0.914991i \(-0.632197\pi\)
−0.403473 + 0.914991i \(0.632197\pi\)
\(570\) 0 0
\(571\) −27.4122 −1.14716 −0.573582 0.819148i \(-0.694447\pi\)
−0.573582 + 0.819148i \(0.694447\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −2.53951 −0.105997
\(575\) −1.00607 −0.0419558
\(576\) 0 0
\(577\) −30.0033 −1.24905 −0.624526 0.781004i \(-0.714708\pi\)
−0.624526 + 0.781004i \(0.714708\pi\)
\(578\) −10.6781 −0.444150
\(579\) 0 0
\(580\) 9.14347 0.379662
\(581\) 4.37473 0.181494
\(582\) 0 0
\(583\) 0 0
\(584\) 0.963220 0.0398583
\(585\) 0 0
\(586\) −20.2058 −0.834694
\(587\) −5.84198 −0.241124 −0.120562 0.992706i \(-0.538470\pi\)
−0.120562 + 0.992706i \(0.538470\pi\)
\(588\) 0 0
\(589\) 10.9656 0.451832
\(590\) 6.19889 0.255204
\(591\) 0 0
\(592\) 18.3005 0.752145
\(593\) −35.2941 −1.44936 −0.724678 0.689088i \(-0.758011\pi\)
−0.724678 + 0.689088i \(0.758011\pi\)
\(594\) 0 0
\(595\) −0.155503 −0.00637500
\(596\) −10.1128 −0.414236
\(597\) 0 0
\(598\) −0.768412 −0.0314227
\(599\) 22.8350 0.933012 0.466506 0.884518i \(-0.345513\pi\)
0.466506 + 0.884518i \(0.345513\pi\)
\(600\) 0 0
\(601\) −11.4829 −0.468399 −0.234200 0.972189i \(-0.575247\pi\)
−0.234200 + 0.972189i \(0.575247\pi\)
\(602\) −2.52103 −0.102750
\(603\) 0 0
\(604\) 26.0309 1.05918
\(605\) 0 0
\(606\) 0 0
\(607\) −12.9207 −0.524434 −0.262217 0.965009i \(-0.584454\pi\)
−0.262217 + 0.965009i \(0.584454\pi\)
\(608\) 11.0078 0.446426
\(609\) 0 0
\(610\) −7.43161 −0.300897
\(611\) −19.3333 −0.782143
\(612\) 0 0
\(613\) −24.0982 −0.973317 −0.486659 0.873592i \(-0.661784\pi\)
−0.486659 + 0.873592i \(0.661784\pi\)
\(614\) −20.8493 −0.841408
\(615\) 0 0
\(616\) 0 0
\(617\) 22.7911 0.917534 0.458767 0.888556i \(-0.348291\pi\)
0.458767 + 0.888556i \(0.348291\pi\)
\(618\) 0 0
\(619\) −20.3174 −0.816624 −0.408312 0.912842i \(-0.633883\pi\)
−0.408312 + 0.912842i \(0.633883\pi\)
\(620\) 12.3529 0.496103
\(621\) 0 0
\(622\) 21.3923 0.857751
\(623\) 1.99280 0.0798399
\(624\) 0 0
\(625\) 0.468279 0.0187312
\(626\) 2.96705 0.118587
\(627\) 0 0
\(628\) 27.3341 1.09075
\(629\) 1.99006 0.0793491
\(630\) 0 0
\(631\) 15.3567 0.611339 0.305670 0.952138i \(-0.401120\pi\)
0.305670 + 0.952138i \(0.401120\pi\)
\(632\) −9.31355 −0.370473
\(633\) 0 0
\(634\) −10.9642 −0.435445
\(635\) −1.75556 −0.0696675
\(636\) 0 0
\(637\) 25.2856 1.00185
\(638\) 0 0
\(639\) 0 0
\(640\) 15.4623 0.611201
\(641\) 13.5329 0.534517 0.267259 0.963625i \(-0.413882\pi\)
0.267259 + 0.963625i \(0.413882\pi\)
\(642\) 0 0
\(643\) 12.6487 0.498816 0.249408 0.968399i \(-0.419764\pi\)
0.249408 + 0.968399i \(0.419764\pi\)
\(644\) −0.302914 −0.0119365
\(645\) 0 0
\(646\) 0.237008 0.00932495
\(647\) −1.62146 −0.0637461 −0.0318730 0.999492i \(-0.510147\pi\)
−0.0318730 + 0.999492i \(0.510147\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 7.49175 0.293851
\(651\) 0 0
\(652\) −29.7867 −1.16654
\(653\) 33.0538 1.29350 0.646748 0.762704i \(-0.276129\pi\)
0.646748 + 0.762704i \(0.276129\pi\)
\(654\) 0 0
\(655\) −8.66266 −0.338478
\(656\) −12.2078 −0.476633
\(657\) 0 0
\(658\) 1.88325 0.0734169
\(659\) 47.9012 1.86597 0.932983 0.359922i \(-0.117197\pi\)
0.932983 + 0.359922i \(0.117197\pi\)
\(660\) 0 0
\(661\) −18.5052 −0.719768 −0.359884 0.932997i \(-0.617184\pi\)
−0.359884 + 0.932997i \(0.617184\pi\)
\(662\) 8.16908 0.317500
\(663\) 0 0
\(664\) −16.8784 −0.655009
\(665\) −1.56375 −0.0606397
\(666\) 0 0
\(667\) 1.33999 0.0518846
\(668\) −15.1821 −0.587413
\(669\) 0 0
\(670\) 7.82744 0.302401
\(671\) 0 0
\(672\) 0 0
\(673\) −39.1351 −1.50855 −0.754273 0.656560i \(-0.772011\pi\)
−0.754273 + 0.656560i \(0.772011\pi\)
\(674\) 6.51139 0.250809
\(675\) 0 0
\(676\) −2.30826 −0.0887792
\(677\) 12.4835 0.479780 0.239890 0.970800i \(-0.422889\pi\)
0.239890 + 0.970800i \(0.422889\pi\)
\(678\) 0 0
\(679\) 3.80092 0.145866
\(680\) 0.599955 0.0230072
\(681\) 0 0
\(682\) 0 0
\(683\) 17.3888 0.665363 0.332681 0.943039i \(-0.392047\pi\)
0.332681 + 0.943039i \(0.392047\pi\)
\(684\) 0 0
\(685\) 22.6394 0.865008
\(686\) −5.05410 −0.192966
\(687\) 0 0
\(688\) −12.1189 −0.462030
\(689\) −29.8899 −1.13871
\(690\) 0 0
\(691\) 3.65485 0.139037 0.0695185 0.997581i \(-0.477854\pi\)
0.0695185 + 0.997581i \(0.477854\pi\)
\(692\) −28.8156 −1.09541
\(693\) 0 0
\(694\) 3.86751 0.146809
\(695\) 23.8493 0.904655
\(696\) 0 0
\(697\) −1.32752 −0.0502834
\(698\) −12.8282 −0.485556
\(699\) 0 0
\(700\) 2.95331 0.111625
\(701\) −5.58621 −0.210988 −0.105494 0.994420i \(-0.533642\pi\)
−0.105494 + 0.994420i \(0.533642\pi\)
\(702\) 0 0
\(703\) 20.0123 0.754777
\(704\) 0 0
\(705\) 0 0
\(706\) 7.54665 0.284022
\(707\) 10.8764 0.409048
\(708\) 0 0
\(709\) 13.8571 0.520413 0.260207 0.965553i \(-0.416209\pi\)
0.260207 + 0.965553i \(0.416209\pi\)
\(710\) 2.46497 0.0925086
\(711\) 0 0
\(712\) −7.68854 −0.288140
\(713\) 1.81033 0.0677974
\(714\) 0 0
\(715\) 0 0
\(716\) 42.4310 1.58572
\(717\) 0 0
\(718\) 11.2569 0.420102
\(719\) 26.6724 0.994712 0.497356 0.867547i \(-0.334304\pi\)
0.497356 + 0.867547i \(0.334304\pi\)
\(720\) 0 0
\(721\) 1.90315 0.0708771
\(722\) −9.57731 −0.356430
\(723\) 0 0
\(724\) 1.40961 0.0523879
\(725\) −13.0644 −0.485201
\(726\) 0 0
\(727\) −22.6397 −0.839659 −0.419830 0.907603i \(-0.637910\pi\)
−0.419830 + 0.907603i \(0.637910\pi\)
\(728\) 5.06873 0.187860
\(729\) 0 0
\(730\) 0.365321 0.0135211
\(731\) −1.31786 −0.0487428
\(732\) 0 0
\(733\) −22.0364 −0.813934 −0.406967 0.913443i \(-0.633414\pi\)
−0.406967 + 0.913443i \(0.633414\pi\)
\(734\) 17.3867 0.641753
\(735\) 0 0
\(736\) 1.81729 0.0669863
\(737\) 0 0
\(738\) 0 0
\(739\) −48.6055 −1.78798 −0.893990 0.448086i \(-0.852106\pi\)
−0.893990 + 0.448086i \(0.852106\pi\)
\(740\) 22.5439 0.828732
\(741\) 0 0
\(742\) 2.91156 0.106887
\(743\) −5.50420 −0.201929 −0.100965 0.994890i \(-0.532193\pi\)
−0.100965 + 0.994890i \(0.532193\pi\)
\(744\) 0 0
\(745\) −8.61873 −0.315766
\(746\) −7.79881 −0.285535
\(747\) 0 0
\(748\) 0 0
\(749\) −9.91945 −0.362449
\(750\) 0 0
\(751\) −3.72066 −0.135769 −0.0678843 0.997693i \(-0.521625\pi\)
−0.0678843 + 0.997693i \(0.521625\pi\)
\(752\) 9.05304 0.330130
\(753\) 0 0
\(754\) −9.97834 −0.363390
\(755\) 22.1851 0.807397
\(756\) 0 0
\(757\) −30.4331 −1.10611 −0.553055 0.833145i \(-0.686538\pi\)
−0.553055 + 0.833145i \(0.686538\pi\)
\(758\) 10.5956 0.384851
\(759\) 0 0
\(760\) 6.03321 0.218847
\(761\) 22.4600 0.814175 0.407087 0.913389i \(-0.366544\pi\)
0.407087 + 0.913389i \(0.366544\pi\)
\(762\) 0 0
\(763\) −5.23753 −0.189611
\(764\) 24.8921 0.900563
\(765\) 0 0
\(766\) 7.83676 0.283154
\(767\) 27.3769 0.988523
\(768\) 0 0
\(769\) −38.9595 −1.40492 −0.702458 0.711725i \(-0.747914\pi\)
−0.702458 + 0.711725i \(0.747914\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 15.5153 0.558408
\(773\) −53.3792 −1.91992 −0.959959 0.280141i \(-0.909619\pi\)
−0.959959 + 0.280141i \(0.909619\pi\)
\(774\) 0 0
\(775\) −17.6501 −0.634010
\(776\) −14.6645 −0.526426
\(777\) 0 0
\(778\) −0.773534 −0.0277325
\(779\) −13.3497 −0.478301
\(780\) 0 0
\(781\) 0 0
\(782\) 0.0391279 0.00139921
\(783\) 0 0
\(784\) −11.8402 −0.422866
\(785\) 23.2958 0.831462
\(786\) 0 0
\(787\) −28.8324 −1.02776 −0.513882 0.857861i \(-0.671793\pi\)
−0.513882 + 0.857861i \(0.671793\pi\)
\(788\) 41.7550 1.48746
\(789\) 0 0
\(790\) −3.53236 −0.125676
\(791\) 1.69662 0.0603250
\(792\) 0 0
\(793\) −32.8211 −1.16551
\(794\) 12.9627 0.460028
\(795\) 0 0
\(796\) 32.8022 1.16264
\(797\) 33.1727 1.17504 0.587519 0.809211i \(-0.300105\pi\)
0.587519 + 0.809211i \(0.300105\pi\)
\(798\) 0 0
\(799\) 0.984462 0.0348278
\(800\) −17.7180 −0.626425
\(801\) 0 0
\(802\) −4.24208 −0.149793
\(803\) 0 0
\(804\) 0 0
\(805\) −0.258162 −0.00909900
\(806\) −13.4808 −0.474840
\(807\) 0 0
\(808\) −41.9627 −1.47624
\(809\) −24.5695 −0.863816 −0.431908 0.901918i \(-0.642160\pi\)
−0.431908 + 0.901918i \(0.642160\pi\)
\(810\) 0 0
\(811\) −37.3592 −1.31186 −0.655929 0.754822i \(-0.727723\pi\)
−0.655929 + 0.754822i \(0.727723\pi\)
\(812\) −3.93354 −0.138040
\(813\) 0 0
\(814\) 0 0
\(815\) −25.3860 −0.889234
\(816\) 0 0
\(817\) −13.2525 −0.463647
\(818\) −18.3631 −0.642051
\(819\) 0 0
\(820\) −15.0385 −0.525166
\(821\) −12.2011 −0.425822 −0.212911 0.977072i \(-0.568294\pi\)
−0.212911 + 0.977072i \(0.568294\pi\)
\(822\) 0 0
\(823\) −49.4786 −1.72471 −0.862357 0.506300i \(-0.831013\pi\)
−0.862357 + 0.506300i \(0.831013\pi\)
\(824\) −7.34266 −0.255794
\(825\) 0 0
\(826\) −2.66678 −0.0927890
\(827\) −3.03613 −0.105577 −0.0527884 0.998606i \(-0.516811\pi\)
−0.0527884 + 0.998606i \(0.516811\pi\)
\(828\) 0 0
\(829\) −48.1573 −1.67257 −0.836286 0.548294i \(-0.815278\pi\)
−0.836286 + 0.548294i \(0.815278\pi\)
\(830\) −6.40148 −0.222199
\(831\) 0 0
\(832\) −0.00990532 −0.000343405 0
\(833\) −1.28755 −0.0446111
\(834\) 0 0
\(835\) −12.9391 −0.447776
\(836\) 0 0
\(837\) 0 0
\(838\) −23.9026 −0.825702
\(839\) −38.9382 −1.34430 −0.672148 0.740417i \(-0.734628\pi\)
−0.672148 + 0.740417i \(0.734628\pi\)
\(840\) 0 0
\(841\) −11.5993 −0.399977
\(842\) −5.10423 −0.175903
\(843\) 0 0
\(844\) −25.5261 −0.878646
\(845\) −1.96724 −0.0676750
\(846\) 0 0
\(847\) 0 0
\(848\) 13.9962 0.480633
\(849\) 0 0
\(850\) −0.381483 −0.0130848
\(851\) 3.30385 0.113254
\(852\) 0 0
\(853\) 37.0104 1.26721 0.633606 0.773656i \(-0.281574\pi\)
0.633606 + 0.773656i \(0.281574\pi\)
\(854\) 3.19709 0.109402
\(855\) 0 0
\(856\) 38.2708 1.30807
\(857\) −28.5426 −0.974997 −0.487499 0.873124i \(-0.662091\pi\)
−0.487499 + 0.873124i \(0.662091\pi\)
\(858\) 0 0
\(859\) 38.3413 1.30819 0.654094 0.756413i \(-0.273050\pi\)
0.654094 + 0.756413i \(0.273050\pi\)
\(860\) −14.9290 −0.509076
\(861\) 0 0
\(862\) −19.1680 −0.652865
\(863\) 27.9656 0.951961 0.475981 0.879456i \(-0.342093\pi\)
0.475981 + 0.879456i \(0.342093\pi\)
\(864\) 0 0
\(865\) −24.5584 −0.835012
\(866\) 15.1621 0.515229
\(867\) 0 0
\(868\) −5.31423 −0.180377
\(869\) 0 0
\(870\) 0 0
\(871\) 34.5693 1.17134
\(872\) 20.2072 0.684302
\(873\) 0 0
\(874\) 0.393474 0.0133094
\(875\) 6.53530 0.220933
\(876\) 0 0
\(877\) 21.0397 0.710459 0.355229 0.934779i \(-0.384403\pi\)
0.355229 + 0.934779i \(0.384403\pi\)
\(878\) −21.6032 −0.729073
\(879\) 0 0
\(880\) 0 0
\(881\) 17.0076 0.573000 0.286500 0.958080i \(-0.407508\pi\)
0.286500 + 0.958080i \(0.407508\pi\)
\(882\) 0 0
\(883\) 6.75447 0.227306 0.113653 0.993521i \(-0.463745\pi\)
0.113653 + 0.993521i \(0.463745\pi\)
\(884\) 1.17914 0.0396589
\(885\) 0 0
\(886\) 5.37614 0.180615
\(887\) −33.8492 −1.13654 −0.568272 0.822841i \(-0.692388\pi\)
−0.568272 + 0.822841i \(0.692388\pi\)
\(888\) 0 0
\(889\) 0.755248 0.0253302
\(890\) −2.91604 −0.0977459
\(891\) 0 0
\(892\) −4.01188 −0.134328
\(893\) 9.89985 0.331286
\(894\) 0 0
\(895\) 36.1623 1.20877
\(896\) −6.65191 −0.222225
\(897\) 0 0
\(898\) 23.2090 0.774496
\(899\) 23.5084 0.784048
\(900\) 0 0
\(901\) 1.52201 0.0507054
\(902\) 0 0
\(903\) 0 0
\(904\) −6.54585 −0.217712
\(905\) 1.20136 0.0399345
\(906\) 0 0
\(907\) 28.1467 0.934595 0.467297 0.884100i \(-0.345228\pi\)
0.467297 + 0.884100i \(0.345228\pi\)
\(908\) 25.8419 0.857595
\(909\) 0 0
\(910\) 1.92242 0.0637277
\(911\) 8.18259 0.271101 0.135551 0.990770i \(-0.456720\pi\)
0.135551 + 0.990770i \(0.456720\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −14.9093 −0.493157
\(915\) 0 0
\(916\) −5.29987 −0.175113
\(917\) 3.72670 0.123066
\(918\) 0 0
\(919\) −11.6564 −0.384509 −0.192255 0.981345i \(-0.561580\pi\)
−0.192255 + 0.981345i \(0.561580\pi\)
\(920\) 0.996028 0.0328381
\(921\) 0 0
\(922\) 18.0582 0.594716
\(923\) 10.8863 0.358328
\(924\) 0 0
\(925\) −32.2114 −1.05910
\(926\) 6.83844 0.224725
\(927\) 0 0
\(928\) 23.5988 0.774668
\(929\) 31.7731 1.04244 0.521221 0.853422i \(-0.325477\pi\)
0.521221 + 0.853422i \(0.325477\pi\)
\(930\) 0 0
\(931\) −12.9478 −0.424346
\(932\) 6.91502 0.226509
\(933\) 0 0
\(934\) −18.5627 −0.607391
\(935\) 0 0
\(936\) 0 0
\(937\) 43.2510 1.41295 0.706474 0.707739i \(-0.250285\pi\)
0.706474 + 0.707739i \(0.250285\pi\)
\(938\) −3.36738 −0.109949
\(939\) 0 0
\(940\) 11.1522 0.363746
\(941\) 12.2021 0.397776 0.198888 0.980022i \(-0.436267\pi\)
0.198888 + 0.980022i \(0.436267\pi\)
\(942\) 0 0
\(943\) −2.20391 −0.0717692
\(944\) −12.8195 −0.417240
\(945\) 0 0
\(946\) 0 0
\(947\) 31.1861 1.01341 0.506706 0.862119i \(-0.330863\pi\)
0.506706 + 0.862119i \(0.330863\pi\)
\(948\) 0 0
\(949\) 1.61341 0.0523736
\(950\) −3.83623 −0.124464
\(951\) 0 0
\(952\) −0.258102 −0.00836514
\(953\) 18.3282 0.593707 0.296854 0.954923i \(-0.404063\pi\)
0.296854 + 0.954923i \(0.404063\pi\)
\(954\) 0 0
\(955\) 21.2145 0.686485
\(956\) −24.1201 −0.780101
\(957\) 0 0
\(958\) −13.4445 −0.434371
\(959\) −9.73954 −0.314506
\(960\) 0 0
\(961\) 0.759889 0.0245126
\(962\) −24.6024 −0.793213
\(963\) 0 0
\(964\) 22.0847 0.711300
\(965\) 13.2231 0.425666
\(966\) 0 0
\(967\) −20.8508 −0.670515 −0.335258 0.942127i \(-0.608823\pi\)
−0.335258 + 0.942127i \(0.608823\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −5.56183 −0.178580
\(971\) −28.4589 −0.913289 −0.456644 0.889649i \(-0.650949\pi\)
−0.456644 + 0.889649i \(0.650949\pi\)
\(972\) 0 0
\(973\) −10.2600 −0.328921
\(974\) −1.43302 −0.0459169
\(975\) 0 0
\(976\) 15.3688 0.491944
\(977\) −22.2591 −0.712131 −0.356066 0.934461i \(-0.615882\pi\)
−0.356066 + 0.934461i \(0.615882\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −14.5857 −0.465924
\(981\) 0 0
\(982\) 5.99650 0.191356
\(983\) −23.0934 −0.736566 −0.368283 0.929714i \(-0.620054\pi\)
−0.368283 + 0.929714i \(0.620054\pi\)
\(984\) 0 0
\(985\) 35.5862 1.13387
\(986\) 0.508102 0.0161813
\(987\) 0 0
\(988\) 11.8576 0.377240
\(989\) −2.18787 −0.0695703
\(990\) 0 0
\(991\) −6.16408 −0.195809 −0.0979043 0.995196i \(-0.531214\pi\)
−0.0979043 + 0.995196i \(0.531214\pi\)
\(992\) 31.8820 1.01226
\(993\) 0 0
\(994\) −1.06044 −0.0336350
\(995\) 27.9560 0.886264
\(996\) 0 0
\(997\) −25.3794 −0.803774 −0.401887 0.915689i \(-0.631646\pi\)
−0.401887 + 0.915689i \(0.631646\pi\)
\(998\) −8.00940 −0.253533
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9801.2.a.cq.1.15 24
3.2 odd 2 inner 9801.2.a.cq.1.10 24
11.2 odd 10 891.2.f.g.730.7 yes 48
11.6 odd 10 891.2.f.g.487.7 yes 48
11.10 odd 2 9801.2.a.cr.1.10 24
33.2 even 10 891.2.f.g.730.6 yes 48
33.17 even 10 891.2.f.g.487.6 48
33.32 even 2 9801.2.a.cr.1.15 24
99.2 even 30 891.2.n.l.433.6 96
99.13 odd 30 891.2.n.l.136.6 96
99.50 even 30 891.2.n.l.784.6 96
99.61 odd 30 891.2.n.l.190.6 96
99.68 even 30 891.2.n.l.136.7 96
99.79 odd 30 891.2.n.l.433.7 96
99.83 even 30 891.2.n.l.190.7 96
99.94 odd 30 891.2.n.l.784.7 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
891.2.f.g.487.6 48 33.17 even 10
891.2.f.g.487.7 yes 48 11.6 odd 10
891.2.f.g.730.6 yes 48 33.2 even 10
891.2.f.g.730.7 yes 48 11.2 odd 10
891.2.n.l.136.6 96 99.13 odd 30
891.2.n.l.136.7 96 99.68 even 30
891.2.n.l.190.6 96 99.61 odd 30
891.2.n.l.190.7 96 99.83 even 30
891.2.n.l.433.6 96 99.2 even 30
891.2.n.l.433.7 96 99.79 odd 30
891.2.n.l.784.6 96 99.50 even 30
891.2.n.l.784.7 96 99.94 odd 30
9801.2.a.cq.1.10 24 3.2 odd 2 inner
9801.2.a.cq.1.15 24 1.1 even 1 trivial
9801.2.a.cr.1.10 24 11.10 odd 2
9801.2.a.cr.1.15 24 33.32 even 2