Properties

Label 891.2.n.l.190.6
Level $891$
Weight $2$
Character 891.190
Analytic conductor $7.115$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(136,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([20, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.136");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(12\) over \(\Q(\zeta_{15})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 190.6
Character \(\chi\) \(=\) 891.190
Dual form 891.2.n.l.136.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.575085 - 0.256045i) q^{2} +(-1.07310 - 1.19179i) q^{4} +(-1.24862 + 0.555922i) q^{5} +(0.575145 - 0.122251i) q^{7} +(0.701028 + 2.15754i) q^{8} +0.860404 q^{10} +(3.22133 + 0.789325i) q^{11} +(-0.397199 - 3.77909i) q^{13} +(-0.362059 - 0.0769581i) q^{14} +(-0.185992 + 1.76960i) q^{16} +(0.156539 + 0.113732i) q^{17} +(-0.601281 - 1.85055i) q^{19} +(2.00243 + 0.891541i) q^{20} +(-1.65044 - 1.27873i) q^{22} +(-0.160616 + 0.278195i) q^{23} +(-2.09565 + 2.32745i) q^{25} +(-0.739193 + 2.27500i) q^{26} +(-0.762884 - 0.554268i) q^{28} +(4.08026 - 0.867285i) q^{29} +(-0.589080 - 5.60472i) q^{31} +(2.82863 - 4.89933i) q^{32} +(-0.0609029 - 0.105487i) q^{34} +(-0.650176 + 0.472381i) q^{35} +(3.17822 - 9.78156i) q^{37} +(-0.128036 + 1.21818i) q^{38} +(-2.07474 - 2.30423i) q^{40} +(-6.71088 - 1.42644i) q^{41} +(-3.40544 - 5.89840i) q^{43} +(-2.51609 - 4.68619i) q^{44} +(0.163598 - 0.118861i) q^{46} +(3.40443 - 3.78100i) q^{47} +(-6.07897 + 2.70653i) q^{49} +(1.80111 - 0.801905i) q^{50} +(-4.07767 + 4.52871i) q^{52} +(-6.36368 + 4.62348i) q^{53} +(-4.46102 + 0.805240i) q^{55} +(0.666954 + 1.15520i) q^{56} +(-2.56856 - 0.545964i) q^{58} +(-4.82083 - 5.35408i) q^{59} +(0.902848 - 8.59003i) q^{61} +(-1.09629 + 3.37402i) q^{62} +(-0.00210888 + 0.00153219i) q^{64} +(2.59683 + 4.49784i) q^{65} +(4.54870 - 7.87858i) q^{67} +(-0.0324361 - 0.308608i) q^{68} +(0.494857 - 0.105185i) q^{70} +(2.31775 + 1.68394i) q^{71} +(0.131206 - 0.403812i) q^{73} +(-4.33226 + 4.81146i) q^{74} +(-1.56025 + 2.70242i) q^{76} +(1.94923 + 0.0601658i) q^{77} +(-3.75053 - 1.66984i) q^{79} +(-0.751525 - 2.31296i) q^{80} +(3.49410 + 2.53861i) q^{82} +(0.777701 - 7.39933i) q^{83} +(-0.258684 - 0.0549851i) q^{85} +(0.448167 + 4.26403i) q^{86} +(0.555241 + 7.50349i) q^{88} +3.38915 q^{89} +(-0.690444 - 2.12497i) q^{91} +(0.503908 - 0.107109i) q^{92} +(-2.92594 + 1.30271i) q^{94} +(1.77953 + 1.97637i) q^{95} +(5.90535 + 2.62923i) q^{97} +4.18892 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 8 q^{4} + 14 q^{7} + 64 q^{10} + 14 q^{13} + 4 q^{16} - 16 q^{19} - 16 q^{22} + 20 q^{25} - 36 q^{28} + 4 q^{31} - 84 q^{34} - 24 q^{37} + 106 q^{40} - 84 q^{43} - 76 q^{46} + 54 q^{49} - 52 q^{52}+ \cdots + 66 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.575085 0.256045i −0.406647 0.181051i 0.193211 0.981157i \(-0.438110\pi\)
−0.599858 + 0.800106i \(0.704776\pi\)
\(3\) 0 0
\(4\) −1.07310 1.19179i −0.536548 0.595897i
\(5\) −1.24862 + 0.555922i −0.558400 + 0.248616i −0.666475 0.745527i \(-0.732198\pi\)
0.108075 + 0.994143i \(0.465531\pi\)
\(6\) 0 0
\(7\) 0.575145 0.122251i 0.217384 0.0462065i −0.0979319 0.995193i \(-0.531223\pi\)
0.315316 + 0.948987i \(0.397889\pi\)
\(8\) 0.701028 + 2.15754i 0.247851 + 0.762806i
\(9\) 0 0
\(10\) 0.860404 0.272084
\(11\) 3.22133 + 0.789325i 0.971268 + 0.237990i
\(12\) 0 0
\(13\) −0.397199 3.77909i −0.110163 1.04813i −0.900320 0.435228i \(-0.856668\pi\)
0.790157 0.612904i \(-0.209999\pi\)
\(14\) −0.362059 0.0769581i −0.0967644 0.0205679i
\(15\) 0 0
\(16\) −0.185992 + 1.76960i −0.0464981 + 0.442400i
\(17\) 0.156539 + 0.113732i 0.0379663 + 0.0275842i 0.606607 0.795002i \(-0.292530\pi\)
−0.568640 + 0.822586i \(0.692530\pi\)
\(18\) 0 0
\(19\) −0.601281 1.85055i −0.137943 0.424546i 0.858093 0.513494i \(-0.171649\pi\)
−0.996036 + 0.0889487i \(0.971649\pi\)
\(20\) 2.00243 + 0.891541i 0.447758 + 0.199355i
\(21\) 0 0
\(22\) −1.65044 1.27873i −0.351874 0.272627i
\(23\) −0.160616 + 0.278195i −0.0334907 + 0.0580076i −0.882285 0.470716i \(-0.843996\pi\)
0.848794 + 0.528723i \(0.177329\pi\)
\(24\) 0 0
\(25\) −2.09565 + 2.32745i −0.419130 + 0.465491i
\(26\) −0.739193 + 2.27500i −0.144968 + 0.446165i
\(27\) 0 0
\(28\) −0.762884 0.554268i −0.144172 0.104747i
\(29\) 4.08026 0.867285i 0.757684 0.161051i 0.187158 0.982330i \(-0.440072\pi\)
0.570527 + 0.821279i \(0.306739\pi\)
\(30\) 0 0
\(31\) −0.589080 5.60472i −0.105802 1.00664i −0.910656 0.413165i \(-0.864423\pi\)
0.804854 0.593472i \(-0.202243\pi\)
\(32\) 2.82863 4.89933i 0.500036 0.866088i
\(33\) 0 0
\(34\) −0.0609029 0.105487i −0.0104448 0.0180908i
\(35\) −0.650176 + 0.472381i −0.109900 + 0.0798469i
\(36\) 0 0
\(37\) 3.17822 9.78156i 0.522496 1.60808i −0.246718 0.969087i \(-0.579352\pi\)
0.769214 0.638991i \(-0.220648\pi\)
\(38\) −0.128036 + 1.21818i −0.0207702 + 0.197615i
\(39\) 0 0
\(40\) −2.07474 2.30423i −0.328046 0.364331i
\(41\) −6.71088 1.42644i −1.04806 0.222773i −0.348475 0.937318i \(-0.613300\pi\)
−0.699589 + 0.714545i \(0.746634\pi\)
\(42\) 0 0
\(43\) −3.40544 5.89840i −0.519325 0.899497i −0.999748 0.0224601i \(-0.992850\pi\)
0.480423 0.877037i \(-0.340483\pi\)
\(44\) −2.51609 4.68619i −0.379314 0.706469i
\(45\) 0 0
\(46\) 0.163598 0.118861i 0.0241212 0.0175251i
\(47\) 3.40443 3.78100i 0.496587 0.551516i −0.441795 0.897116i \(-0.645658\pi\)
0.938382 + 0.345600i \(0.112325\pi\)
\(48\) 0 0
\(49\) −6.07897 + 2.70653i −0.868425 + 0.386648i
\(50\) 1.80111 0.801905i 0.254715 0.113407i
\(51\) 0 0
\(52\) −4.07767 + 4.52871i −0.565471 + 0.628019i
\(53\) −6.36368 + 4.62348i −0.874119 + 0.635084i −0.931689 0.363257i \(-0.881665\pi\)
0.0575702 + 0.998341i \(0.481665\pi\)
\(54\) 0 0
\(55\) −4.46102 + 0.805240i −0.601524 + 0.108579i
\(56\) 0.666954 + 1.15520i 0.0891255 + 0.154370i
\(57\) 0 0
\(58\) −2.56856 0.545964i −0.337268 0.0716886i
\(59\) −4.82083 5.35408i −0.627619 0.697042i 0.342542 0.939502i \(-0.388712\pi\)
−0.970161 + 0.242461i \(0.922045\pi\)
\(60\) 0 0
\(61\) 0.902848 8.59003i 0.115598 1.09984i −0.770852 0.637015i \(-0.780169\pi\)
0.886449 0.462825i \(-0.153164\pi\)
\(62\) −1.09629 + 3.37402i −0.139229 + 0.428501i
\(63\) 0 0
\(64\) −0.00210888 + 0.00153219i −0.000263611 + 0.000191524i
\(65\) 2.59683 + 4.49784i 0.322097 + 0.557889i
\(66\) 0 0
\(67\) 4.54870 7.87858i 0.555712 0.962522i −0.442135 0.896948i \(-0.645779\pi\)
0.997848 0.0655738i \(-0.0208878\pi\)
\(68\) −0.0324361 0.308608i −0.00393345 0.0374243i
\(69\) 0 0
\(70\) 0.494857 0.105185i 0.0591467 0.0125720i
\(71\) 2.31775 + 1.68394i 0.275066 + 0.199847i 0.716763 0.697317i \(-0.245623\pi\)
−0.441696 + 0.897165i \(0.645623\pi\)
\(72\) 0 0
\(73\) 0.131206 0.403812i 0.0153565 0.0472626i −0.943085 0.332553i \(-0.892090\pi\)
0.958441 + 0.285290i \(0.0920900\pi\)
\(74\) −4.33226 + 4.81146i −0.503615 + 0.559321i
\(75\) 0 0
\(76\) −1.56025 + 2.70242i −0.178972 + 0.309989i
\(77\) 1.94923 + 0.0601658i 0.222135 + 0.00685653i
\(78\) 0 0
\(79\) −3.75053 1.66984i −0.421968 0.187872i 0.184757 0.982784i \(-0.440850\pi\)
−0.606725 + 0.794912i \(0.707517\pi\)
\(80\) −0.751525 2.31296i −0.0840230 0.258596i
\(81\) 0 0
\(82\) 3.49410 + 2.53861i 0.385859 + 0.280343i
\(83\) 0.777701 7.39933i 0.0853638 0.812182i −0.865153 0.501508i \(-0.832779\pi\)
0.950517 0.310674i \(-0.100555\pi\)
\(84\) 0 0
\(85\) −0.258684 0.0549851i −0.0280583 0.00596397i
\(86\) 0.448167 + 4.26403i 0.0483271 + 0.459802i
\(87\) 0 0
\(88\) 0.555241 + 7.50349i 0.0591889 + 0.799875i
\(89\) 3.38915 0.359249 0.179625 0.983735i \(-0.442512\pi\)
0.179625 + 0.983735i \(0.442512\pi\)
\(90\) 0 0
\(91\) −0.690444 2.12497i −0.0723782 0.222757i
\(92\) 0.503908 0.107109i 0.0525360 0.0111669i
\(93\) 0 0
\(94\) −2.92594 + 1.30271i −0.301788 + 0.134365i
\(95\) 1.77953 + 1.97637i 0.182576 + 0.202771i
\(96\) 0 0
\(97\) 5.90535 + 2.62923i 0.599598 + 0.266958i 0.684010 0.729473i \(-0.260235\pi\)
−0.0844122 + 0.996431i \(0.526901\pi\)
\(98\) 4.18892 0.423145
\(99\) 0 0
\(100\) 5.02268 0.502268
\(101\) −16.8982 7.52357i −1.68144 0.748623i −0.999858 0.0168783i \(-0.994627\pi\)
−0.681578 0.731745i \(-0.738706\pi\)
\(102\) 0 0
\(103\) 2.16577 + 2.40533i 0.213399 + 0.237004i 0.840335 0.542067i \(-0.182358\pi\)
−0.626936 + 0.779071i \(0.715691\pi\)
\(104\) 7.87511 3.50622i 0.772218 0.343814i
\(105\) 0 0
\(106\) 4.84348 1.02951i 0.470440 0.0999951i
\(107\) 5.21311 + 16.0443i 0.503970 + 1.55106i 0.802495 + 0.596659i \(0.203506\pi\)
−0.298524 + 0.954402i \(0.596494\pi\)
\(108\) 0 0
\(109\) 8.90745 0.853179 0.426589 0.904445i \(-0.359715\pi\)
0.426589 + 0.904445i \(0.359715\pi\)
\(110\) 2.77165 + 0.679138i 0.264266 + 0.0647533i
\(111\) 0 0
\(112\) 0.109362 + 1.04051i 0.0103338 + 0.0983194i
\(113\) −2.82239 0.599918i −0.265508 0.0564355i 0.0732338 0.997315i \(-0.476668\pi\)
−0.338742 + 0.940879i \(0.610001\pi\)
\(114\) 0 0
\(115\) 0.0458937 0.436650i 0.00427961 0.0407178i
\(116\) −5.41213 3.93215i −0.502504 0.365091i
\(117\) 0 0
\(118\) 1.40151 + 4.31340i 0.129019 + 0.397081i
\(119\) 0.103937 + 0.0462756i 0.00952786 + 0.00424208i
\(120\) 0 0
\(121\) 9.75393 + 5.08535i 0.886721 + 0.462305i
\(122\) −2.71864 + 4.70883i −0.246134 + 0.426317i
\(123\) 0 0
\(124\) −6.04753 + 6.71647i −0.543085 + 0.603157i
\(125\) 3.43459 10.5706i 0.307199 0.945461i
\(126\) 0 0
\(127\) 1.03914 + 0.754980i 0.0922088 + 0.0669936i 0.632934 0.774205i \(-0.281850\pi\)
−0.540726 + 0.841199i \(0.681850\pi\)
\(128\) −11.0657 + 2.35208i −0.978077 + 0.207897i
\(129\) 0 0
\(130\) −0.341751 3.25155i −0.0299736 0.285180i
\(131\) 3.16899 5.48885i 0.276876 0.479563i −0.693731 0.720234i \(-0.744034\pi\)
0.970607 + 0.240671i \(0.0773675\pi\)
\(132\) 0 0
\(133\) −0.572055 0.990829i −0.0496035 0.0859157i
\(134\) −4.63316 + 3.36619i −0.400244 + 0.290794i
\(135\) 0 0
\(136\) −0.135644 + 0.417470i −0.0116314 + 0.0357977i
\(137\) 1.73141 16.4733i 0.147924 1.40741i −0.628801 0.777566i \(-0.716454\pi\)
0.776725 0.629840i \(-0.216879\pi\)
\(138\) 0 0
\(139\) 11.6758 + 12.9673i 0.990327 + 1.09987i 0.994999 + 0.0998800i \(0.0318459\pi\)
−0.00467295 + 0.999989i \(0.501487\pi\)
\(140\) 1.26068 + 0.267966i 0.106547 + 0.0226473i
\(141\) 0 0
\(142\) −0.901739 1.56186i −0.0756723 0.131068i
\(143\) 1.70342 12.4872i 0.142447 1.04423i
\(144\) 0 0
\(145\) −4.61255 + 3.35121i −0.383051 + 0.278303i
\(146\) −0.178849 + 0.198631i −0.0148016 + 0.0164389i
\(147\) 0 0
\(148\) −15.0681 + 6.70877i −1.23859 + 0.551458i
\(149\) −5.76068 + 2.56482i −0.471933 + 0.210118i −0.628901 0.777486i \(-0.716495\pi\)
0.156968 + 0.987604i \(0.449828\pi\)
\(150\) 0 0
\(151\) 10.8610 12.0624i 0.883859 0.981625i −0.116074 0.993241i \(-0.537031\pi\)
0.999933 + 0.0116160i \(0.00369757\pi\)
\(152\) 3.57113 2.59458i 0.289657 0.210448i
\(153\) 0 0
\(154\) −1.10557 0.533690i −0.0890892 0.0430059i
\(155\) 3.85132 + 6.67068i 0.309346 + 0.535802i
\(156\) 0 0
\(157\) 16.6718 + 3.54369i 1.33055 + 0.282817i 0.817692 0.575656i \(-0.195253\pi\)
0.512859 + 0.858473i \(0.328587\pi\)
\(158\) 1.72932 + 1.92061i 0.137577 + 0.152795i
\(159\) 0 0
\(160\) −0.808242 + 7.68991i −0.0638971 + 0.607940i
\(161\) −0.0583679 + 0.179638i −0.00460003 + 0.0141574i
\(162\) 0 0
\(163\) −15.0263 + 10.9173i −1.17695 + 0.855105i −0.991824 0.127609i \(-0.959270\pi\)
−0.185127 + 0.982715i \(0.559270\pi\)
\(164\) 5.50140 + 9.52870i 0.429587 + 0.744067i
\(165\) 0 0
\(166\) −2.34180 + 4.05612i −0.181759 + 0.314816i
\(167\) 0.989552 + 9.41496i 0.0765738 + 0.728551i 0.963693 + 0.267012i \(0.0860362\pi\)
−0.887119 + 0.461540i \(0.847297\pi\)
\(168\) 0 0
\(169\) −1.40787 + 0.299251i −0.108297 + 0.0230193i
\(170\) 0.134687 + 0.0978558i 0.0103300 + 0.00750520i
\(171\) 0 0
\(172\) −3.37531 + 10.3881i −0.257365 + 0.792088i
\(173\) −12.0230 + 13.3528i −0.914088 + 1.01520i 0.0857336 + 0.996318i \(0.472677\pi\)
−0.999822 + 0.0188797i \(0.993990\pi\)
\(174\) 0 0
\(175\) −0.920769 + 1.59482i −0.0696036 + 0.120557i
\(176\) −1.99593 + 5.55366i −0.150449 + 0.418623i
\(177\) 0 0
\(178\) −1.94905 0.867774i −0.146088 0.0650424i
\(179\) −8.17595 25.1630i −0.611099 1.88077i −0.447625 0.894221i \(-0.647730\pi\)
−0.163474 0.986548i \(-0.552270\pi\)
\(180\) 0 0
\(181\) 0.711098 + 0.516643i 0.0528555 + 0.0384018i 0.613899 0.789384i \(-0.289600\pi\)
−0.561044 + 0.827786i \(0.689600\pi\)
\(182\) −0.147022 + 1.39882i −0.0108980 + 0.103688i
\(183\) 0 0
\(184\) −0.712813 0.151513i −0.0525493 0.0111697i
\(185\) 1.46939 + 13.9803i 0.108032 + 1.02785i
\(186\) 0 0
\(187\) 0.414493 + 0.489930i 0.0303107 + 0.0358272i
\(188\) −8.15946 −0.595090
\(189\) 0 0
\(190\) −0.517344 1.59222i −0.0375321 0.115512i
\(191\) 15.1823 3.22709i 1.09855 0.233504i 0.377240 0.926115i \(-0.376873\pi\)
0.721311 + 0.692611i \(0.243540\pi\)
\(192\) 0 0
\(193\) 8.83817 3.93501i 0.636185 0.283248i −0.0631912 0.998001i \(-0.520128\pi\)
0.699376 + 0.714754i \(0.253461\pi\)
\(194\) −2.72288 3.02407i −0.195491 0.217115i
\(195\) 0 0
\(196\) 9.74896 + 4.34051i 0.696354 + 0.310037i
\(197\) 26.0364 1.85502 0.927508 0.373803i \(-0.121947\pi\)
0.927508 + 0.373803i \(0.121947\pi\)
\(198\) 0 0
\(199\) −20.4538 −1.44993 −0.724967 0.688784i \(-0.758145\pi\)
−0.724967 + 0.688784i \(0.758145\pi\)
\(200\) −6.49069 2.88984i −0.458961 0.204343i
\(201\) 0 0
\(202\) 7.79155 + 8.65339i 0.548212 + 0.608851i
\(203\) 2.24071 0.997629i 0.157267 0.0700199i
\(204\) 0 0
\(205\) 9.17233 1.94964i 0.640624 0.136169i
\(206\) −0.629630 1.93780i −0.0438684 0.135013i
\(207\) 0 0
\(208\) 6.76136 0.468816
\(209\) −0.476237 6.43584i −0.0329420 0.445177i
\(210\) 0 0
\(211\) 1.66376 + 15.8297i 0.114538 + 1.08976i 0.889243 + 0.457435i \(0.151232\pi\)
−0.774705 + 0.632323i \(0.782102\pi\)
\(212\) 12.3391 + 2.62275i 0.847452 + 0.180132i
\(213\) 0 0
\(214\) 1.11007 10.5616i 0.0758830 0.721979i
\(215\) 7.53115 + 5.47170i 0.513620 + 0.373167i
\(216\) 0 0
\(217\) −1.02399 3.15151i −0.0695128 0.213939i
\(218\) −5.12254 2.28070i −0.346942 0.154469i
\(219\) 0 0
\(220\) 5.74679 + 4.45252i 0.387448 + 0.300189i
\(221\) 0.367628 0.636751i 0.0247294 0.0428325i
\(222\) 0 0
\(223\) 1.67391 1.85906i 0.112093 0.124492i −0.684487 0.729025i \(-0.739974\pi\)
0.796580 + 0.604533i \(0.206640\pi\)
\(224\) 1.02793 3.16363i 0.0686812 0.211379i
\(225\) 0 0
\(226\) 1.46951 + 1.06766i 0.0977504 + 0.0710198i
\(227\) −15.7616 + 3.35024i −1.04614 + 0.222363i −0.698756 0.715360i \(-0.746263\pi\)
−0.347382 + 0.937724i \(0.612929\pi\)
\(228\) 0 0
\(229\) −0.345439 3.28663i −0.0228273 0.217187i −0.999989 0.00469002i \(-0.998507\pi\)
0.977162 0.212497i \(-0.0681596\pi\)
\(230\) −0.138195 + 0.239360i −0.00911228 + 0.0157829i
\(231\) 0 0
\(232\) 4.73158 + 8.19533i 0.310643 + 0.538050i
\(233\) −3.48837 + 2.53445i −0.228531 + 0.166037i −0.696158 0.717888i \(-0.745109\pi\)
0.467627 + 0.883926i \(0.345109\pi\)
\(234\) 0 0
\(235\) −2.14890 + 6.61363i −0.140179 + 0.431426i
\(236\) −1.20774 + 11.4909i −0.0786173 + 0.747993i
\(237\) 0 0
\(238\) −0.0479238 0.0532248i −0.00310644 0.00345005i
\(239\) 14.7115 + 3.12702i 0.951606 + 0.202270i 0.657459 0.753490i \(-0.271631\pi\)
0.294147 + 0.955760i \(0.404965\pi\)
\(240\) 0 0
\(241\) −6.88547 11.9260i −0.443532 0.768220i 0.554417 0.832239i \(-0.312941\pi\)
−0.997949 + 0.0640192i \(0.979608\pi\)
\(242\) −4.30727 5.42195i −0.276882 0.348536i
\(243\) 0 0
\(244\) −11.2064 + 8.14192i −0.717416 + 0.521233i
\(245\) 6.08571 6.75886i 0.388802 0.431808i
\(246\) 0 0
\(247\) −6.75458 + 3.00733i −0.429784 + 0.191352i
\(248\) 11.6795 5.20003i 0.741646 0.330202i
\(249\) 0 0
\(250\) −4.68172 + 5.19958i −0.296098 + 0.328850i
\(251\) −22.3625 + 16.2473i −1.41151 + 1.02552i −0.418409 + 0.908259i \(0.637412\pi\)
−0.993101 + 0.117264i \(0.962588\pi\)
\(252\) 0 0
\(253\) −0.736983 + 0.769379i −0.0463337 + 0.0483705i
\(254\) −0.404286 0.700244i −0.0253672 0.0439372i
\(255\) 0 0
\(256\) 6.97104 + 1.48174i 0.435690 + 0.0926088i
\(257\) −7.34877 8.16164i −0.458404 0.509109i 0.468986 0.883206i \(-0.344619\pi\)
−0.927390 + 0.374097i \(0.877953\pi\)
\(258\) 0 0
\(259\) 0.632134 6.01435i 0.0392789 0.373714i
\(260\) 2.57385 7.92151i 0.159624 0.491271i
\(261\) 0 0
\(262\) −3.22783 + 2.34516i −0.199416 + 0.144884i
\(263\) 8.97517 + 15.5455i 0.553433 + 0.958574i 0.998024 + 0.0628399i \(0.0200157\pi\)
−0.444591 + 0.895734i \(0.646651\pi\)
\(264\) 0 0
\(265\) 5.37553 9.31068i 0.330216 0.571951i
\(266\) 0.0752843 + 0.716283i 0.00461598 + 0.0439181i
\(267\) 0 0
\(268\) −14.2709 + 3.03336i −0.871731 + 0.185292i
\(269\) 19.5359 + 14.1937i 1.19113 + 0.865404i 0.993383 0.114850i \(-0.0366388\pi\)
0.197743 + 0.980254i \(0.436639\pi\)
\(270\) 0 0
\(271\) −4.49596 + 13.8371i −0.273110 + 0.840547i 0.716603 + 0.697481i \(0.245696\pi\)
−0.989713 + 0.143065i \(0.954304\pi\)
\(272\) −0.230376 + 0.255858i −0.0139686 + 0.0155137i
\(273\) 0 0
\(274\) −5.21360 + 9.03022i −0.314965 + 0.545535i
\(275\) −8.58789 + 5.84335i −0.517869 + 0.352367i
\(276\) 0 0
\(277\) 22.0271 + 9.80708i 1.32348 + 0.589250i 0.942151 0.335190i \(-0.108800\pi\)
0.381327 + 0.924440i \(0.375467\pi\)
\(278\) −3.39437 10.4468i −0.203581 0.626558i
\(279\) 0 0
\(280\) −1.47497 1.07163i −0.0881465 0.0640422i
\(281\) 0.124170 1.18140i 0.00740739 0.0704766i −0.990194 0.139701i \(-0.955386\pi\)
0.997601 + 0.0692245i \(0.0220525\pi\)
\(282\) 0 0
\(283\) −15.0167 3.19190i −0.892652 0.189739i −0.261320 0.965252i \(-0.584158\pi\)
−0.631331 + 0.775513i \(0.717491\pi\)
\(284\) −0.480254 4.56932i −0.0284979 0.271139i
\(285\) 0 0
\(286\) −4.17690 + 6.74507i −0.246985 + 0.398844i
\(287\) −4.03412 −0.238126
\(288\) 0 0
\(289\) −5.24172 16.1324i −0.308336 0.948962i
\(290\) 3.51067 0.746216i 0.206154 0.0438193i
\(291\) 0 0
\(292\) −0.622058 + 0.276958i −0.0364032 + 0.0162077i
\(293\) 21.4775 + 23.8532i 1.25473 + 1.39352i 0.885802 + 0.464063i \(0.153609\pi\)
0.368929 + 0.929458i \(0.379725\pi\)
\(294\) 0 0
\(295\) 8.99584 + 4.00521i 0.523758 + 0.233192i
\(296\) 23.3321 1.35615
\(297\) 0 0
\(298\) 3.96959 0.229952
\(299\) 1.11512 + 0.496484i 0.0644891 + 0.0287124i
\(300\) 0 0
\(301\) −2.67971 2.97612i −0.154456 0.171540i
\(302\) −9.33454 + 4.15600i −0.537142 + 0.239151i
\(303\) 0 0
\(304\) 3.38657 0.719837i 0.194233 0.0412855i
\(305\) 3.64807 + 11.2276i 0.208888 + 0.642890i
\(306\) 0 0
\(307\) 33.1199 1.89025 0.945126 0.326707i \(-0.105939\pi\)
0.945126 + 0.326707i \(0.105939\pi\)
\(308\) −2.02000 2.38764i −0.115100 0.136049i
\(309\) 0 0
\(310\) −0.506847 4.82232i −0.0287870 0.273890i
\(311\) −33.2398 7.06534i −1.88486 0.400639i −0.886756 0.462237i \(-0.847047\pi\)
−0.998101 + 0.0615985i \(0.980380\pi\)
\(312\) 0 0
\(313\) −0.492672 + 4.68746i −0.0278475 + 0.264951i 0.971735 + 0.236072i \(0.0758603\pi\)
−0.999583 + 0.0288785i \(0.990806\pi\)
\(314\) −8.68034 6.30664i −0.489860 0.355904i
\(315\) 0 0
\(316\) 2.03457 + 6.26176i 0.114454 + 0.352252i
\(317\) −15.9113 7.08418i −0.893669 0.397887i −0.0920723 0.995752i \(-0.529349\pi\)
−0.801597 + 0.597865i \(0.796016\pi\)
\(318\) 0 0
\(319\) 13.8284 + 0.426835i 0.774243 + 0.0238982i
\(320\) 0.00178142 0.00308550i 9.95842e−5 0.000172485i
\(321\) 0 0
\(322\) 0.0795618 0.0883623i 0.00443381 0.00492424i
\(323\) 0.116344 0.358069i 0.00647353 0.0199235i
\(324\) 0 0
\(325\) 9.62806 + 6.99519i 0.534068 + 0.388023i
\(326\) 11.4367 2.43095i 0.633421 0.134638i
\(327\) 0 0
\(328\) −1.62691 15.4790i −0.0898309 0.854684i
\(329\) 1.49581 2.59082i 0.0824667 0.142837i
\(330\) 0 0
\(331\) −6.48845 11.2383i −0.356637 0.617714i 0.630759 0.775978i \(-0.282743\pi\)
−0.987397 + 0.158264i \(0.949410\pi\)
\(332\) −9.65303 + 7.01334i −0.529779 + 0.384907i
\(333\) 0 0
\(334\) 1.84157 5.66778i 0.100766 0.310127i
\(335\) −1.29973 + 12.3661i −0.0710117 + 0.675631i
\(336\) 0 0
\(337\) −6.92122 7.68679i −0.377023 0.418726i 0.524532 0.851391i \(-0.324240\pi\)
−0.901555 + 0.432664i \(0.857574\pi\)
\(338\) 0.886264 + 0.188381i 0.0482064 + 0.0102466i
\(339\) 0 0
\(340\) 0.212062 + 0.367303i 0.0115007 + 0.0199198i
\(341\) 2.52632 18.5196i 0.136808 1.00289i
\(342\) 0 0
\(343\) −6.49530 + 4.71911i −0.350713 + 0.254808i
\(344\) 10.3387 11.4823i 0.557427 0.619085i
\(345\) 0 0
\(346\) 10.3331 4.60061i 0.555513 0.247331i
\(347\) −5.61255 + 2.49887i −0.301297 + 0.134146i −0.551817 0.833965i \(-0.686065\pi\)
0.250520 + 0.968112i \(0.419399\pi\)
\(348\) 0 0
\(349\) 13.6357 15.1439i 0.729900 0.810636i −0.257932 0.966163i \(-0.583041\pi\)
0.987832 + 0.155527i \(0.0497076\pi\)
\(350\) 0.937866 0.681399i 0.0501310 0.0364223i
\(351\) 0 0
\(352\) 12.9791 13.5497i 0.691790 0.722200i
\(353\) −5.99407 10.3820i −0.319032 0.552580i 0.661254 0.750162i \(-0.270024\pi\)
−0.980286 + 0.197582i \(0.936691\pi\)
\(354\) 0 0
\(355\) −3.83013 0.814119i −0.203282 0.0432090i
\(356\) −3.63689 4.03917i −0.192755 0.214076i
\(357\) 0 0
\(358\) −1.74097 + 16.5643i −0.0920134 + 0.875449i
\(359\) −5.52583 + 17.0067i −0.291642 + 0.897582i 0.692687 + 0.721239i \(0.256427\pi\)
−0.984329 + 0.176343i \(0.943573\pi\)
\(360\) 0 0
\(361\) 12.3083 8.94252i 0.647806 0.470659i
\(362\) −0.276659 0.479187i −0.0145409 0.0251855i
\(363\) 0 0
\(364\) −1.79161 + 3.10317i −0.0939061 + 0.162650i
\(365\) 0.0606607 + 0.577148i 0.00317512 + 0.0302093i
\(366\) 0 0
\(367\) −27.0158 + 5.74239i −1.41021 + 0.299750i −0.849207 0.528060i \(-0.822919\pi\)
−0.561008 + 0.827811i \(0.689586\pi\)
\(368\) −0.462420 0.335968i −0.0241053 0.0175135i
\(369\) 0 0
\(370\) 2.73455 8.41609i 0.142163 0.437532i
\(371\) −3.09481 + 3.43714i −0.160675 + 0.178447i
\(372\) 0 0
\(373\) −6.19435 + 10.7289i −0.320731 + 0.555523i −0.980639 0.195824i \(-0.937262\pi\)
0.659908 + 0.751347i \(0.270595\pi\)
\(374\) −0.112925 0.387880i −0.00583920 0.0200568i
\(375\) 0 0
\(376\) 10.5443 + 4.69461i 0.543779 + 0.242106i
\(377\) −4.89822 15.0752i −0.252271 0.776411i
\(378\) 0 0
\(379\) −13.6170 9.89335i −0.699459 0.508187i 0.180297 0.983612i \(-0.442294\pi\)
−0.879756 + 0.475425i \(0.842294\pi\)
\(380\) 0.445818 4.24168i 0.0228700 0.217593i
\(381\) 0 0
\(382\) −9.55739 2.03149i −0.488999 0.103940i
\(383\) −1.30127 12.3808i −0.0664920 0.632629i −0.976124 0.217214i \(-0.930303\pi\)
0.909632 0.415415i \(-0.136364\pi\)
\(384\) 0 0
\(385\) −2.46729 + 1.00849i −0.125745 + 0.0513976i
\(386\) −6.09024 −0.309985
\(387\) 0 0
\(388\) −3.20351 9.85939i −0.162634 0.500534i
\(389\) 1.20194 0.255479i 0.0609406 0.0129533i −0.177341 0.984150i \(-0.556749\pi\)
0.238281 + 0.971196i \(0.423416\pi\)
\(390\) 0 0
\(391\) −0.0567825 + 0.0252812i −0.00287161 + 0.00127852i
\(392\) −10.1010 11.2183i −0.510177 0.566609i
\(393\) 0 0
\(394\) −14.9731 6.66648i −0.754336 0.335852i
\(395\) 5.61129 0.282335
\(396\) 0 0
\(397\) 20.5917 1.03347 0.516734 0.856146i \(-0.327148\pi\)
0.516734 + 0.856146i \(0.327148\pi\)
\(398\) 11.7627 + 5.23709i 0.589611 + 0.262512i
\(399\) 0 0
\(400\) −3.72889 4.14135i −0.186444 0.207067i
\(401\) −6.15612 + 2.74088i −0.307422 + 0.136873i −0.554649 0.832085i \(-0.687147\pi\)
0.247227 + 0.968958i \(0.420481\pi\)
\(402\) 0 0
\(403\) −20.9468 + 4.45237i −1.04343 + 0.221789i
\(404\) 9.16687 + 28.2127i 0.456069 + 1.40364i
\(405\) 0 0
\(406\) −1.54404 −0.0766294
\(407\) 17.9589 29.0010i 0.890191 1.43752i
\(408\) 0 0
\(409\) −3.04915 29.0107i −0.150771 1.43449i −0.764323 0.644833i \(-0.776927\pi\)
0.613552 0.789654i \(-0.289740\pi\)
\(410\) −5.77407 1.22732i −0.285161 0.0606128i
\(411\) 0 0
\(412\) 0.542579 5.16230i 0.0267310 0.254328i
\(413\) −3.42722 2.49002i −0.168642 0.122526i
\(414\) 0 0
\(415\) 3.14239 + 9.67129i 0.154254 + 0.474745i
\(416\) −19.6386 8.74366i −0.962860 0.428693i
\(417\) 0 0
\(418\) −1.37399 + 3.82310i −0.0672038 + 0.186994i
\(419\) 18.9851 32.8832i 0.927483 1.60645i 0.139965 0.990156i \(-0.455301\pi\)
0.787518 0.616292i \(-0.211366\pi\)
\(420\) 0 0
\(421\) −5.42549 + 6.02561i −0.264422 + 0.293671i −0.860705 0.509104i \(-0.829977\pi\)
0.596283 + 0.802774i \(0.296644\pi\)
\(422\) 3.09629 9.52940i 0.150725 0.463884i
\(423\) 0 0
\(424\) −14.4365 10.4887i −0.701098 0.509377i
\(425\) −0.592758 + 0.125995i −0.0287530 + 0.00611164i
\(426\) 0 0
\(427\) −0.530870 5.05089i −0.0256906 0.244430i
\(428\) 13.5273 23.4301i 0.653869 1.13253i
\(429\) 0 0
\(430\) −2.93006 5.07500i −0.141300 0.244738i
\(431\) −24.6339 + 17.8976i −1.18657 + 0.862095i −0.992898 0.118971i \(-0.962041\pi\)
−0.193674 + 0.981066i \(0.562041\pi\)
\(432\) 0 0
\(433\) 7.44285 22.9067i 0.357681 1.10083i −0.596758 0.802421i \(-0.703545\pi\)
0.954439 0.298407i \(-0.0964551\pi\)
\(434\) −0.218047 + 2.07457i −0.0104666 + 0.0995828i
\(435\) 0 0
\(436\) −9.55855 10.6158i −0.457772 0.508407i
\(437\) 0.611389 + 0.129955i 0.0292467 + 0.00621658i
\(438\) 0 0
\(439\) −17.1588 29.7199i −0.818943 1.41845i −0.906461 0.422289i \(-0.861227\pi\)
0.0875179 0.996163i \(-0.472106\pi\)
\(440\) −4.86464 9.06035i −0.231913 0.431935i
\(441\) 0 0
\(442\) −0.374454 + 0.272057i −0.0178110 + 0.0129404i
\(443\) 5.71451 6.34661i 0.271505 0.301536i −0.591938 0.805983i \(-0.701637\pi\)
0.863443 + 0.504447i \(0.168304\pi\)
\(444\) 0 0
\(445\) −4.23176 + 1.88410i −0.200605 + 0.0893150i
\(446\) −1.43864 + 0.640524i −0.0681216 + 0.0303297i
\(447\) 0 0
\(448\) −0.00102560 + 0.00113905i −4.84552e−5 + 5.38149e-5i
\(449\) −29.8272 + 21.6707i −1.40763 + 1.02271i −0.413972 + 0.910290i \(0.635859\pi\)
−0.993661 + 0.112416i \(0.964141\pi\)
\(450\) 0 0
\(451\) −20.4920 9.89211i −0.964933 0.465801i
\(452\) 2.31372 + 4.00748i 0.108828 + 0.188496i
\(453\) 0 0
\(454\) 9.92211 + 2.10901i 0.465667 + 0.0989807i
\(455\) 2.04342 + 2.26945i 0.0957970 + 0.106393i
\(456\) 0 0
\(457\) −2.47566 + 23.5543i −0.115806 + 1.10182i 0.770088 + 0.637938i \(0.220212\pi\)
−0.885894 + 0.463887i \(0.846454\pi\)
\(458\) −0.642868 + 1.97854i −0.0300392 + 0.0924513i
\(459\) 0 0
\(460\) −0.569645 + 0.413871i −0.0265598 + 0.0192969i
\(461\) 14.3431 + 24.8430i 0.668024 + 1.15705i 0.978456 + 0.206456i \(0.0661931\pi\)
−0.310432 + 0.950596i \(0.600474\pi\)
\(462\) 0 0
\(463\) −5.43156 + 9.40774i −0.252426 + 0.437215i −0.964193 0.265201i \(-0.914562\pi\)
0.711767 + 0.702416i \(0.247895\pi\)
\(464\) 0.775851 + 7.38173i 0.0360180 + 0.342688i
\(465\) 0 0
\(466\) 2.65505 0.564347i 0.122993 0.0261429i
\(467\) 23.8560 + 17.3324i 1.10392 + 0.802046i 0.981696 0.190456i \(-0.0609966\pi\)
0.122226 + 0.992502i \(0.460997\pi\)
\(468\) 0 0
\(469\) 1.65300 5.08741i 0.0763285 0.234915i
\(470\) 2.92919 3.25319i 0.135113 0.150058i
\(471\) 0 0
\(472\) 8.17211 14.1545i 0.376152 0.651514i
\(473\) −6.31430 21.6887i −0.290332 0.997247i
\(474\) 0 0
\(475\) 5.56715 + 2.47865i 0.255438 + 0.113728i
\(476\) −0.0563831 0.173529i −0.00258431 0.00795370i
\(477\) 0 0
\(478\) −7.65970 5.56510i −0.350346 0.254542i
\(479\) −2.23242 + 21.2400i −0.102002 + 0.970482i 0.817109 + 0.576483i \(0.195575\pi\)
−0.919111 + 0.393999i \(0.871091\pi\)
\(480\) 0 0
\(481\) −38.2278 8.12557i −1.74304 0.370494i
\(482\) 0.906150 + 8.62145i 0.0412740 + 0.392696i
\(483\) 0 0
\(484\) −4.40622 17.0818i −0.200283 0.776444i
\(485\) −8.83519 −0.401185
\(486\) 0 0
\(487\) −0.703448 2.16499i −0.0318763 0.0981051i 0.933853 0.357658i \(-0.116425\pi\)
−0.965729 + 0.259553i \(0.916425\pi\)
\(488\) 19.1663 4.07392i 0.867616 0.184418i
\(489\) 0 0
\(490\) −5.23037 + 2.32871i −0.236284 + 0.105200i
\(491\) −6.37392 7.07895i −0.287651 0.319469i 0.581949 0.813225i \(-0.302290\pi\)
−0.869600 + 0.493756i \(0.835623\pi\)
\(492\) 0 0
\(493\) 0.737358 + 0.328293i 0.0332089 + 0.0147856i
\(494\) 4.65447 0.209415
\(495\) 0 0
\(496\) 10.0277 0.450256
\(497\) 1.53891 + 0.685165i 0.0690294 + 0.0307338i
\(498\) 0 0
\(499\) −8.51351 9.45521i −0.381117 0.423274i 0.521814 0.853060i \(-0.325256\pi\)
−0.902931 + 0.429786i \(0.858589\pi\)
\(500\) −16.2836 + 7.24992i −0.728225 + 0.324226i
\(501\) 0 0
\(502\) 17.0204 3.61780i 0.759658 0.161470i
\(503\) −1.78686 5.49939i −0.0796722 0.245206i 0.903285 0.429041i \(-0.141149\pi\)
−0.982957 + 0.183836i \(0.941149\pi\)
\(504\) 0 0
\(505\) 25.2820 1.12503
\(506\) 0.620823 0.253758i 0.0275990 0.0112809i
\(507\) 0 0
\(508\) −0.215317 2.04861i −0.00955317 0.0908923i
\(509\) 9.04564 + 1.92271i 0.400941 + 0.0852226i 0.403969 0.914773i \(-0.367630\pi\)
−0.00302783 + 0.999995i \(0.500964\pi\)
\(510\) 0 0
\(511\) 0.0260964 0.248290i 0.00115444 0.0109837i
\(512\) 14.6751 + 10.6621i 0.648553 + 0.471201i
\(513\) 0 0
\(514\) 2.13643 + 6.57525i 0.0942338 + 0.290022i
\(515\) −4.04139 1.79934i −0.178085 0.0792886i
\(516\) 0 0
\(517\) 13.9512 9.49266i 0.613575 0.417487i
\(518\) −1.90347 + 3.29691i −0.0836338 + 0.144858i
\(519\) 0 0
\(520\) −7.88383 + 8.75588i −0.345729 + 0.383971i
\(521\) 7.83400 24.1106i 0.343214 1.05630i −0.619320 0.785139i \(-0.712591\pi\)
0.962533 0.271164i \(-0.0874085\pi\)
\(522\) 0 0
\(523\) −16.9781 12.3353i −0.742398 0.539384i 0.151063 0.988524i \(-0.451730\pi\)
−0.893461 + 0.449140i \(0.851730\pi\)
\(524\) −9.94222 + 2.11328i −0.434328 + 0.0923192i
\(525\) 0 0
\(526\) −1.18116 11.2380i −0.0515011 0.490000i
\(527\) 0.545224 0.944356i 0.0237503 0.0411368i
\(528\) 0 0
\(529\) 11.4484 + 19.8292i 0.497757 + 0.862140i
\(530\) −5.47534 + 3.97806i −0.237833 + 0.172796i
\(531\) 0 0
\(532\) −0.566994 + 1.74503i −0.0245823 + 0.0756565i
\(533\) −2.72510 + 25.9276i −0.118037 + 1.12305i
\(534\) 0 0
\(535\) −15.4286 17.1352i −0.667035 0.740818i
\(536\) 20.1871 + 4.29091i 0.871952 + 0.185339i
\(537\) 0 0
\(538\) −7.60061 13.1646i −0.327686 0.567568i
\(539\) −21.7187 + 3.92035i −0.935491 + 0.168862i
\(540\) 0 0
\(541\) 9.02363 6.55605i 0.387956 0.281867i −0.376661 0.926351i \(-0.622928\pi\)
0.764617 + 0.644484i \(0.222928\pi\)
\(542\) 6.12849 6.80637i 0.263241 0.292359i
\(543\) 0 0
\(544\) 1.00000 0.445231i 0.0428749 0.0190891i
\(545\) −11.1220 + 4.95184i −0.476415 + 0.212114i
\(546\) 0 0
\(547\) 4.07927 4.53049i 0.174417 0.193710i −0.649598 0.760278i \(-0.725063\pi\)
0.824015 + 0.566568i \(0.191729\pi\)
\(548\) −21.4907 + 15.6139i −0.918038 + 0.666994i
\(549\) 0 0
\(550\) 6.43493 1.16154i 0.274386 0.0495283i
\(551\) −4.05833 7.02924i −0.172891 0.299456i
\(552\) 0 0
\(553\) −2.36124 0.501897i −0.100410 0.0213428i
\(554\) −10.1564 11.2798i −0.431504 0.479234i
\(555\) 0 0
\(556\) 2.92508 27.8303i 0.124051 1.18027i
\(557\) −3.05982 + 9.41715i −0.129649 + 0.399018i −0.994719 0.102632i \(-0.967273\pi\)
0.865071 + 0.501650i \(0.167273\pi\)
\(558\) 0 0
\(559\) −20.9380 + 15.2123i −0.885581 + 0.643412i
\(560\) −0.714997 1.23841i −0.0302141 0.0523324i
\(561\) 0 0
\(562\) −0.373900 + 0.647614i −0.0157720 + 0.0273180i
\(563\) −0.0576534 0.548535i −0.00242980 0.0231180i 0.993240 0.116080i \(-0.0370330\pi\)
−0.995670 + 0.0929624i \(0.970366\pi\)
\(564\) 0 0
\(565\) 3.85760 0.819959i 0.162291 0.0344959i
\(566\) 7.81863 + 5.68057i 0.328642 + 0.238772i
\(567\) 0 0
\(568\) −2.00837 + 6.18113i −0.0842694 + 0.259355i
\(569\) 12.8799 14.3046i 0.539952 0.599678i −0.409995 0.912088i \(-0.634470\pi\)
0.949947 + 0.312410i \(0.101136\pi\)
\(570\) 0 0
\(571\) −13.7061 + 23.7396i −0.573582 + 0.993473i 0.422612 + 0.906311i \(0.361113\pi\)
−0.996194 + 0.0871624i \(0.972220\pi\)
\(572\) −16.7101 + 11.3699i −0.698686 + 0.475398i
\(573\) 0 0
\(574\) 2.31996 + 1.03291i 0.0968333 + 0.0431130i
\(575\) −0.310891 0.956825i −0.0129651 0.0399024i
\(576\) 0 0
\(577\) 24.2732 + 17.6355i 1.01050 + 0.734175i 0.964315 0.264758i \(-0.0852921\pi\)
0.0461898 + 0.998933i \(0.485292\pi\)
\(578\) −1.11616 + 10.6196i −0.0464263 + 0.441717i
\(579\) 0 0
\(580\) 8.94367 + 1.90103i 0.371366 + 0.0789362i
\(581\) −0.457284 4.35076i −0.0189713 0.180500i
\(582\) 0 0
\(583\) −24.1489 + 9.87076i −1.00015 + 0.408805i
\(584\) 0.963220 0.0398583
\(585\) 0 0
\(586\) −6.24393 19.2169i −0.257935 0.793841i
\(587\) 5.71432 1.21462i 0.235855 0.0501325i −0.0884676 0.996079i \(-0.528197\pi\)
0.324323 + 0.945947i \(0.394864\pi\)
\(588\) 0 0
\(589\) −10.0176 + 4.46013i −0.412769 + 0.183777i
\(590\) −4.14787 4.60667i −0.170765 0.189654i
\(591\) 0 0
\(592\) 16.7183 + 7.44347i 0.687118 + 0.305925i
\(593\) 35.2941 1.44936 0.724678 0.689088i \(-0.241989\pi\)
0.724678 + 0.689088i \(0.241989\pi\)
\(594\) 0 0
\(595\) −0.155503 −0.00637500
\(596\) 9.23850 + 4.11324i 0.378424 + 0.168485i
\(597\) 0 0
\(598\) −0.514168 0.571041i −0.0210259 0.0233516i
\(599\) 20.8608 9.28782i 0.852349 0.379490i 0.0664086 0.997793i \(-0.478846\pi\)
0.785940 + 0.618302i \(0.212179\pi\)
\(600\) 0 0
\(601\) −11.2320 + 2.38744i −0.458163 + 0.0973856i −0.431211 0.902251i \(-0.641914\pi\)
−0.0269523 + 0.999637i \(0.508580\pi\)
\(602\) 0.779042 + 2.39765i 0.0317514 + 0.0977207i
\(603\) 0 0
\(604\) −26.0309 −1.05918
\(605\) −15.0060 0.927250i −0.610081 0.0376981i
\(606\) 0 0
\(607\) −1.35058 12.8499i −0.0548183 0.521561i −0.987132 0.159910i \(-0.948880\pi\)
0.932313 0.361652i \(-0.117787\pi\)
\(608\) −10.7673 2.28865i −0.436671 0.0928172i
\(609\) 0 0
\(610\) 0.776814 7.39089i 0.0314523 0.299249i
\(611\) −15.6410 11.3639i −0.632767 0.459732i
\(612\) 0 0
\(613\) 7.44676 + 22.9188i 0.300772 + 0.925680i 0.981221 + 0.192885i \(0.0617845\pi\)
−0.680450 + 0.732795i \(0.738216\pi\)
\(614\) −19.0468 8.48016i −0.768665 0.342232i
\(615\) 0 0
\(616\) 1.23665 + 4.24772i 0.0498262 + 0.171145i
\(617\) −11.3955 + 19.7377i −0.458767 + 0.794608i −0.998896 0.0469742i \(-0.985042\pi\)
0.540129 + 0.841582i \(0.318375\pi\)
\(618\) 0 0
\(619\) −13.5950 + 15.0988i −0.546428 + 0.606870i −0.951588 0.307376i \(-0.900549\pi\)
0.405160 + 0.914246i \(0.367216\pi\)
\(620\) 3.81725 11.7483i 0.153304 0.471822i
\(621\) 0 0
\(622\) 17.3067 + 12.5740i 0.693935 + 0.504173i
\(623\) 1.94925 0.414327i 0.0780952 0.0165997i
\(624\) 0 0
\(625\) −0.0489485 0.465714i −0.00195794 0.0186286i
\(626\) 1.48353 2.56954i 0.0592937 0.102700i
\(627\) 0 0
\(628\) −13.6671 23.6720i −0.545375 0.944617i
\(629\) 1.61000 1.16973i 0.0641947 0.0466402i
\(630\) 0 0
\(631\) 4.74547 14.6051i 0.188914 0.581418i −0.811080 0.584936i \(-0.801120\pi\)
0.999994 + 0.00351764i \(0.00111970\pi\)
\(632\) 0.973532 9.26253i 0.0387250 0.368444i
\(633\) 0 0
\(634\) 7.33651 + 8.14801i 0.291370 + 0.323599i
\(635\) −1.71720 0.365002i −0.0681451 0.0144847i
\(636\) 0 0
\(637\) 12.6428 + 21.8980i 0.500926 + 0.867629i
\(638\) −7.84323 3.78616i −0.310517 0.149895i
\(639\) 0 0
\(640\) 12.5093 9.08850i 0.494472 0.359255i
\(641\) 9.05528 10.0569i 0.357662 0.397224i −0.537282 0.843403i \(-0.680549\pi\)
0.894944 + 0.446179i \(0.147216\pi\)
\(642\) 0 0
\(643\) 11.5552 5.14469i 0.455691 0.202887i −0.166038 0.986119i \(-0.553097\pi\)
0.621729 + 0.783233i \(0.286431\pi\)
\(644\) 0.276726 0.123206i 0.0109045 0.00485501i
\(645\) 0 0
\(646\) −0.158589 + 0.176131i −0.00623961 + 0.00692979i
\(647\) 1.31179 0.953069i 0.0515717 0.0374690i −0.561701 0.827340i \(-0.689853\pi\)
0.613272 + 0.789871i \(0.289853\pi\)
\(648\) 0 0
\(649\) −11.3034 21.0525i −0.443697 0.826381i
\(650\) −3.74587 6.48804i −0.146925 0.254482i
\(651\) 0 0
\(652\) 29.1358 + 6.19301i 1.14105 + 0.242537i
\(653\) 22.1173 + 24.5638i 0.865518 + 0.961255i 0.999558 0.0297211i \(-0.00946191\pi\)
−0.134041 + 0.990976i \(0.542795\pi\)
\(654\) 0 0
\(655\) −0.905494 + 8.61520i −0.0353806 + 0.336624i
\(656\) 3.77240 11.6103i 0.147288 0.453305i
\(657\) 0 0
\(658\) −1.52358 + 1.10695i −0.0593955 + 0.0431534i
\(659\) 23.9506 + 41.4836i 0.932983 + 1.61597i 0.778192 + 0.628026i \(0.216137\pi\)
0.154790 + 0.987947i \(0.450530\pi\)
\(660\) 0 0
\(661\) 9.25259 16.0260i 0.359884 0.623337i −0.628057 0.778167i \(-0.716150\pi\)
0.987941 + 0.154830i \(0.0494830\pi\)
\(662\) 0.853901 + 8.12433i 0.0331878 + 0.315761i
\(663\) 0 0
\(664\) 16.5096 3.50921i 0.640695 0.136184i
\(665\) 1.26510 + 0.919151i 0.0490586 + 0.0356431i
\(666\) 0 0
\(667\) −0.414080 + 1.27441i −0.0160332 + 0.0493452i
\(668\) 10.1588 11.2825i 0.393056 0.436533i
\(669\) 0 0
\(670\) 3.91372 6.77876i 0.151200 0.261887i
\(671\) 9.68869 26.9587i 0.374028 1.04073i
\(672\) 0 0
\(673\) 35.7517 + 15.9177i 1.37813 + 0.613581i 0.956110 0.293007i \(-0.0946560\pi\)
0.422016 + 0.906588i \(0.361323\pi\)
\(674\) 2.01213 + 6.19270i 0.0775044 + 0.238534i
\(675\) 0 0
\(676\) 1.86742 + 1.35676i 0.0718239 + 0.0521831i
\(677\) 1.30488 12.4151i 0.0501507 0.477152i −0.940407 0.340052i \(-0.889555\pi\)
0.990557 0.137100i \(-0.0437781\pi\)
\(678\) 0 0
\(679\) 3.71786 + 0.790255i 0.142678 + 0.0303272i
\(680\) −0.0627124 0.596668i −0.00240491 0.0228812i
\(681\) 0 0
\(682\) −6.19470 + 10.0035i −0.237207 + 0.383054i
\(683\) 17.3888 0.665363 0.332681 0.943039i \(-0.392047\pi\)
0.332681 + 0.943039i \(0.392047\pi\)
\(684\) 0 0
\(685\) 6.99597 + 21.5314i 0.267302 + 0.822672i
\(686\) 4.94365 1.05081i 0.188750 0.0401199i
\(687\) 0 0
\(688\) 11.0712 4.92921i 0.422085 0.187924i
\(689\) 20.0002 + 22.2125i 0.761948 + 0.846229i
\(690\) 0 0
\(691\) 3.33887 + 1.48656i 0.127017 + 0.0565514i 0.469261 0.883060i \(-0.344520\pi\)
−0.342244 + 0.939611i \(0.611187\pi\)
\(692\) 28.8156 1.09541
\(693\) 0 0
\(694\) 3.86751 0.146809
\(695\) −21.7874 9.70037i −0.826443 0.367956i
\(696\) 0 0
\(697\) −0.888284 0.986539i −0.0336461 0.0373678i
\(698\) −11.7192 + 5.21772i −0.443578 + 0.197494i
\(699\) 0 0
\(700\) 2.88877 0.614027i 0.109185 0.0232080i
\(701\) 1.72623 + 5.31280i 0.0651989 + 0.200662i 0.978349 0.206962i \(-0.0663576\pi\)
−0.913150 + 0.407624i \(0.866358\pi\)
\(702\) 0 0
\(703\) −20.0123 −0.754777
\(704\) −0.00800281 + 0.00327111i −0.000301617 + 0.000123285i
\(705\) 0 0
\(706\) 0.788839 + 7.50530i 0.0296884 + 0.282466i
\(707\) −10.6387 2.26132i −0.400109 0.0850458i
\(708\) 0 0
\(709\) −1.44846 + 13.7812i −0.0543980 + 0.517563i 0.933065 + 0.359709i \(0.117124\pi\)
−0.987463 + 0.157853i \(0.949543\pi\)
\(710\) 1.99420 + 1.44887i 0.0748410 + 0.0543752i
\(711\) 0 0
\(712\) 2.37589 + 7.31224i 0.0890403 + 0.274038i
\(713\) 1.65382 + 0.736328i 0.0619360 + 0.0275757i
\(714\) 0 0
\(715\) 4.81499 + 16.5388i 0.180070 + 0.618515i
\(716\) −21.2155 + 36.7464i −0.792861 + 1.37328i
\(717\) 0 0
\(718\) 7.53231 8.36548i 0.281103 0.312197i
\(719\) 8.24222 25.3669i 0.307383 0.946027i −0.671394 0.741100i \(-0.734304\pi\)
0.978777 0.204927i \(-0.0656957\pi\)
\(720\) 0 0
\(721\) 1.53968 + 1.11865i 0.0573408 + 0.0416605i
\(722\) −9.36802 + 1.99123i −0.348642 + 0.0741061i
\(723\) 0 0
\(724\) −0.147345 1.40189i −0.00547602 0.0521009i
\(725\) −6.53222 + 11.3141i −0.242600 + 0.420196i
\(726\) 0 0
\(727\) 11.3198 + 19.6065i 0.419830 + 0.727166i 0.995922 0.0902184i \(-0.0287565\pi\)
−0.576092 + 0.817385i \(0.695423\pi\)
\(728\) 4.10069 2.97933i 0.151982 0.110421i
\(729\) 0 0
\(730\) 0.112890 0.347441i 0.00417826 0.0128594i
\(731\) 0.137754 1.31064i 0.00509501 0.0484757i
\(732\) 0 0
\(733\) 14.7453 + 16.3763i 0.544628 + 0.604871i 0.951134 0.308777i \(-0.0999196\pi\)
−0.406506 + 0.913648i \(0.633253\pi\)
\(734\) 17.0067 + 3.61489i 0.627729 + 0.133428i
\(735\) 0 0
\(736\) 0.908646 + 1.57382i 0.0334932 + 0.0580118i
\(737\) 20.8716 21.7891i 0.768816 0.802612i
\(738\) 0 0
\(739\) −39.3226 + 28.5696i −1.44651 + 1.05095i −0.459875 + 0.887984i \(0.652106\pi\)
−0.986632 + 0.162965i \(0.947894\pi\)
\(740\) 15.0848 16.7534i 0.554530 0.615868i
\(741\) 0 0
\(742\) 2.65984 1.18424i 0.0976459 0.0434748i
\(743\) 5.02834 2.23876i 0.184472 0.0821321i −0.312422 0.949943i \(-0.601140\pi\)
0.496894 + 0.867811i \(0.334474\pi\)
\(744\) 0 0
\(745\) 5.76706 6.40497i 0.211289 0.234660i
\(746\) 6.30937 4.58402i 0.231002 0.167833i
\(747\) 0 0
\(748\) 0.139105 1.01973i 0.00508618 0.0372851i
\(749\) 4.95973 + 8.59050i 0.181224 + 0.313890i
\(750\) 0 0
\(751\) 3.63935 + 0.773568i 0.132802 + 0.0282279i 0.273833 0.961777i \(-0.411708\pi\)
−0.141031 + 0.990005i \(0.545042\pi\)
\(752\) 6.05766 + 6.72772i 0.220900 + 0.245335i
\(753\) 0 0
\(754\) −1.04302 + 9.92368i −0.0379846 + 0.361399i
\(755\) −6.85556 + 21.0993i −0.249499 + 0.767880i
\(756\) 0 0
\(757\) 24.6209 17.8881i 0.894862 0.650155i −0.0422792 0.999106i \(-0.513462\pi\)
0.937141 + 0.348951i \(0.113462\pi\)
\(758\) 5.29781 + 9.17608i 0.192425 + 0.333290i
\(759\) 0 0
\(760\) −3.01660 + 5.22491i −0.109424 + 0.189527i
\(761\) 2.34771 + 22.3370i 0.0851044 + 0.809715i 0.950938 + 0.309382i \(0.100122\pi\)
−0.865833 + 0.500332i \(0.833211\pi\)
\(762\) 0 0
\(763\) 5.12307 1.08894i 0.185468 0.0394224i
\(764\) −20.1381 14.6312i −0.728571 0.529338i
\(765\) 0 0
\(766\) −2.42169 + 7.45320i −0.0874992 + 0.269295i
\(767\) −18.3187 + 20.3450i −0.661451 + 0.734616i
\(768\) 0 0
\(769\) −19.4798 + 33.7399i −0.702458 + 1.21669i 0.265143 + 0.964209i \(0.414581\pi\)
−0.967601 + 0.252484i \(0.918752\pi\)
\(770\) 1.67712 + 0.0517669i 0.0604393 + 0.00186555i
\(771\) 0 0
\(772\) −14.1739 6.31064i −0.510131 0.227125i
\(773\) −16.4951 50.7667i −0.593287 1.82595i −0.563074 0.826407i \(-0.690381\pi\)
−0.0302135 0.999543i \(-0.509619\pi\)
\(774\) 0 0
\(775\) 14.2792 + 10.3745i 0.512925 + 0.372662i
\(776\) −1.53286 + 14.5842i −0.0550265 + 0.523543i
\(777\) 0 0
\(778\) −0.756630 0.160827i −0.0271265 0.00576592i
\(779\) 1.39542 + 13.2765i 0.0499961 + 0.475681i
\(780\) 0 0
\(781\) 6.13706 + 7.25399i 0.219601 + 0.259568i
\(782\) 0.0391279 0.00139921
\(783\) 0 0
\(784\) −3.65884 11.2607i −0.130673 0.402169i
\(785\) −22.7867 + 4.84346i −0.813292 + 0.172871i
\(786\) 0 0
\(787\) 26.3397 11.7272i 0.938909 0.418029i 0.120531 0.992710i \(-0.461540\pi\)
0.818378 + 0.574680i \(0.194874\pi\)
\(788\) −27.9396 31.0300i −0.995306 1.10540i
\(789\) 0 0
\(790\) −3.22697 1.43674i −0.114810 0.0511169i
\(791\) −1.69662 −0.0603250
\(792\) 0 0
\(793\) −32.8211 −1.16551
\(794\) −11.8420 5.27240i −0.420257 0.187110i
\(795\) 0 0
\(796\) 21.9489 + 24.3768i 0.777959 + 0.864012i
\(797\) 30.3048 13.4926i 1.07345 0.477931i 0.207589 0.978216i \(-0.433438\pi\)
0.865861 + 0.500285i \(0.166772\pi\)
\(798\) 0 0
\(799\) 0.962949 0.204681i 0.0340667 0.00724110i
\(800\) 5.47516 + 16.8508i 0.193576 + 0.595766i
\(801\) 0 0
\(802\) 4.24208 0.149793
\(803\) 0.741397 1.19725i 0.0261633 0.0422499i
\(804\) 0 0
\(805\) −0.0269852 0.256747i −0.000951105 0.00904916i
\(806\) 13.1862 + 2.80281i 0.464464 + 0.0987248i
\(807\) 0 0
\(808\) 4.38630 41.7329i 0.154310 1.46816i
\(809\) −19.8771 14.4416i −0.698842 0.507739i 0.180713 0.983536i \(-0.442160\pi\)
−0.879555 + 0.475797i \(0.842160\pi\)
\(810\) 0 0
\(811\) 11.5446 + 35.5307i 0.405387 + 1.24765i 0.920572 + 0.390573i \(0.127723\pi\)
−0.515185 + 0.857079i \(0.672277\pi\)
\(812\) −3.59347 1.59992i −0.126106 0.0561461i
\(813\) 0 0
\(814\) −17.7535 + 12.0798i −0.622258 + 0.423395i
\(815\) 12.6930 21.9850i 0.444617 0.770099i
\(816\) 0 0
\(817\) −8.86766 + 9.84854i −0.310240 + 0.344557i
\(818\) −5.67451 + 17.4644i −0.198405 + 0.610627i
\(819\) 0 0
\(820\) −12.1664 8.83939i −0.424868 0.308685i
\(821\) −11.9345 + 2.53676i −0.416517 + 0.0885334i −0.411403 0.911454i \(-0.634961\pi\)
−0.00511389 + 0.999987i \(0.501628\pi\)
\(822\) 0 0
\(823\) 5.17192 + 49.2075i 0.180282 + 1.71527i 0.593667 + 0.804711i \(0.297680\pi\)
−0.413385 + 0.910556i \(0.635654\pi\)
\(824\) −3.67133 + 6.35893i −0.127897 + 0.221524i
\(825\) 0 0
\(826\) 1.33339 + 2.30950i 0.0463945 + 0.0803576i
\(827\) −2.45628 + 1.78459i −0.0854134 + 0.0620564i −0.629672 0.776861i \(-0.716811\pi\)
0.544259 + 0.838917i \(0.316811\pi\)
\(828\) 0 0
\(829\) −14.8814 + 45.8003i −0.516853 + 1.59071i 0.263032 + 0.964787i \(0.415278\pi\)
−0.779885 + 0.625923i \(0.784722\pi\)
\(830\) 0.669137 6.36641i 0.0232261 0.220981i
\(831\) 0 0
\(832\) 0.00662795 + 0.00736109i 0.000229783 + 0.000255200i
\(833\) −1.25942 0.267698i −0.0436362 0.00927517i
\(834\) 0 0
\(835\) −6.46955 11.2056i −0.223888 0.387786i
\(836\) −7.15915 + 7.47386i −0.247605 + 0.258489i
\(837\) 0 0
\(838\) −19.3376 + 14.0496i −0.668007 + 0.485335i
\(839\) −26.0547 + 28.9367i −0.899509 + 0.999006i 0.100482 + 0.994939i \(0.467961\pi\)
−0.999992 + 0.00406761i \(0.998705\pi\)
\(840\) 0 0
\(841\) −10.5965 + 4.71787i −0.365397 + 0.162685i
\(842\) 4.66294 2.07608i 0.160696 0.0715463i
\(843\) 0 0
\(844\) 17.0803 18.9696i 0.587929 0.652961i
\(845\) 1.59153 1.15631i 0.0547503 0.0397784i
\(846\) 0 0
\(847\) 6.23162 + 1.73239i 0.214121 + 0.0595255i
\(848\) −6.99812 12.1211i −0.240316 0.416240i
\(849\) 0 0
\(850\) 0.373147 + 0.0793148i 0.0127988 + 0.00272048i
\(851\) 2.21071 + 2.45524i 0.0757820 + 0.0841645i
\(852\) 0 0
\(853\) 3.86864 36.8076i 0.132460 1.26027i −0.703188 0.711004i \(-0.748241\pi\)
0.835648 0.549265i \(-0.185092\pi\)
\(854\) −0.987956 + 3.04062i −0.0338072 + 0.104048i
\(855\) 0 0
\(856\) −30.9617 + 22.4950i −1.05825 + 0.768864i
\(857\) −14.2713 24.7186i −0.487499 0.844372i 0.512398 0.858748i \(-0.328757\pi\)
−0.999897 + 0.0143758i \(0.995424\pi\)
\(858\) 0 0
\(859\) −19.1707 + 33.2046i −0.654094 + 1.13292i 0.328025 + 0.944669i \(0.393617\pi\)
−0.982120 + 0.188256i \(0.939717\pi\)
\(860\) −1.56051 14.8472i −0.0532129 0.506287i
\(861\) 0 0
\(862\) 18.7492 3.98526i 0.638599 0.135738i
\(863\) −22.6247 16.4378i −0.770153 0.559549i 0.131855 0.991269i \(-0.457907\pi\)
−0.902008 + 0.431720i \(0.857907\pi\)
\(864\) 0 0
\(865\) 7.58897 23.3565i 0.258033 0.794143i
\(866\) −10.1454 + 11.2676i −0.344755 + 0.382890i
\(867\) 0 0
\(868\) −2.65712 + 4.60226i −0.0901884 + 0.156211i
\(869\) −10.7636 8.33950i −0.365132 0.282898i
\(870\) 0 0
\(871\) −31.5806 14.0606i −1.07007 0.476426i
\(872\) 6.24437 + 19.2182i 0.211461 + 0.650810i
\(873\) 0 0
\(874\) −0.318327 0.231278i −0.0107676 0.00782309i
\(875\) 0.683124 6.49949i 0.0230938 0.219723i
\(876\) 0 0
\(877\) 20.5799 + 4.37439i 0.694934 + 0.147713i 0.541818 0.840496i \(-0.317736\pi\)
0.153115 + 0.988208i \(0.451069\pi\)
\(878\) 2.25815 + 21.4849i 0.0762089 + 0.725079i
\(879\) 0 0
\(880\) −0.595237 8.04399i −0.0200654 0.271163i
\(881\) 17.0076 0.573000 0.286500 0.958080i \(-0.407508\pi\)
0.286500 + 0.958080i \(0.407508\pi\)
\(882\) 0 0
\(883\) 2.08724 + 6.42388i 0.0702414 + 0.216181i 0.980015 0.198924i \(-0.0637448\pi\)
−0.909773 + 0.415105i \(0.863745\pi\)
\(884\) −1.15338 + 0.245158i −0.0387923 + 0.00824555i
\(885\) 0 0
\(886\) −4.91135 + 2.18667i −0.165000 + 0.0734627i
\(887\) 22.6495 + 25.1548i 0.760496 + 0.844617i 0.991738 0.128280i \(-0.0409455\pi\)
−0.231242 + 0.972896i \(0.574279\pi\)
\(888\) 0 0
\(889\) 0.689954 + 0.307187i 0.0231403 + 0.0103027i
\(890\) 2.91604 0.0977459
\(891\) 0 0
\(892\) −4.01188 −0.134328
\(893\) −9.04396 4.02663i −0.302645 0.134746i
\(894\) 0 0
\(895\) 24.1973 + 26.8738i 0.808826 + 0.898293i
\(896\) −6.07682 + 2.70558i −0.203012 + 0.0903870i
\(897\) 0 0
\(898\) 22.7019 4.82543i 0.757571 0.161027i
\(899\) −7.26448 22.3578i −0.242284 0.745674i
\(900\) 0 0
\(901\) −1.52201 −0.0507054
\(902\) 9.25186 + 10.9357i 0.308053 + 0.364118i
\(903\) 0 0
\(904\) −0.684227 6.50999i −0.0227571 0.216519i
\(905\) −1.17511 0.249776i −0.0390618 0.00830285i
\(906\) 0 0
\(907\) −2.94213 + 27.9925i −0.0976918 + 0.929475i 0.830411 + 0.557151i \(0.188106\pi\)
−0.928103 + 0.372324i \(0.878561\pi\)
\(908\) 20.9066 + 15.1895i 0.693809 + 0.504082i
\(909\) 0 0
\(910\) −0.594061 1.82833i −0.0196929 0.0606086i
\(911\) 7.47517 + 3.32816i 0.247663 + 0.110267i 0.526814 0.849980i \(-0.323386\pi\)
−0.279151 + 0.960247i \(0.590053\pi\)
\(912\) 0 0
\(913\) 8.34570 23.2218i 0.276202 0.768530i
\(914\) 7.45467 12.9119i 0.246579 0.427087i
\(915\) 0 0
\(916\) −3.54630 + 3.93857i −0.117173 + 0.130134i
\(917\) 1.15161 3.54430i 0.0380296 0.117043i
\(918\) 0 0
\(919\) −9.43023 6.85146i −0.311075 0.226009i 0.421283 0.906929i \(-0.361580\pi\)
−0.732357 + 0.680920i \(0.761580\pi\)
\(920\) 0.974263 0.207086i 0.0321205 0.00682742i
\(921\) 0 0
\(922\) −1.88760 17.9593i −0.0621647 0.591458i
\(923\) 5.44317 9.42785i 0.179164 0.310322i
\(924\) 0 0
\(925\) 16.1057 + 27.8959i 0.529552 + 0.917211i
\(926\) 5.53241 4.01953i 0.181806 0.132090i
\(927\) 0 0
\(928\) 7.29242 22.4438i 0.239385 0.736753i
\(929\) −3.32120 + 31.5991i −0.108965 + 1.03673i 0.794264 + 0.607573i \(0.207857\pi\)
−0.903229 + 0.429159i \(0.858810\pi\)
\(930\) 0 0
\(931\) 8.66375 + 9.62206i 0.283943 + 0.315350i
\(932\) 6.76391 + 1.43771i 0.221559 + 0.0470939i
\(933\) 0 0
\(934\) −9.28136 16.0758i −0.303695 0.526016i
\(935\) −0.789907 0.381311i −0.0258327 0.0124702i
\(936\) 0 0
\(937\) 34.9908 25.4223i 1.14310 0.830510i 0.155551 0.987828i \(-0.450285\pi\)
0.987548 + 0.157318i \(0.0502847\pi\)
\(938\) −2.25322 + 2.50245i −0.0735702 + 0.0817080i
\(939\) 0 0
\(940\) 10.1881 4.53602i 0.332298 0.147949i
\(941\) −11.1472 + 4.96303i −0.363387 + 0.161790i −0.580304 0.814400i \(-0.697066\pi\)
0.216918 + 0.976190i \(0.430400\pi\)
\(942\) 0 0
\(943\) 1.47470 1.63782i 0.0480229 0.0533349i
\(944\) 10.3712 7.53513i 0.337554 0.245248i
\(945\) 0 0
\(946\) −1.92201 + 14.0896i −0.0624898 + 0.458092i
\(947\) −15.5930 27.0079i −0.506706 0.877640i −0.999970 0.00776032i \(-0.997530\pi\)
0.493264 0.869879i \(-0.335804\pi\)
\(948\) 0 0
\(949\) −1.57816 0.335448i −0.0512291 0.0108891i
\(950\) −2.56694 2.85088i −0.0832825 0.0924946i
\(951\) 0 0
\(952\) −0.0269790 + 0.256688i −0.000874395 + 0.00831931i
\(953\) −5.66371 + 17.4311i −0.183466 + 0.564649i −0.999919 0.0127629i \(-0.995937\pi\)
0.816453 + 0.577412i \(0.195937\pi\)
\(954\) 0 0
\(955\) −17.1629 + 12.4696i −0.555378 + 0.403506i
\(956\) −12.0601 20.8887i −0.390050 0.675587i
\(957\) 0 0
\(958\) 6.72223 11.6432i 0.217185 0.376176i
\(959\) −1.01806 9.68618i −0.0328748 0.312783i
\(960\) 0 0
\(961\) −0.743284 + 0.157990i −0.0239769 + 0.00509645i
\(962\) 19.9037 + 14.4609i 0.641723 + 0.466239i
\(963\) 0 0
\(964\) −6.82455 + 21.0038i −0.219804 + 0.676487i
\(965\) −8.84796 + 9.82666i −0.284826 + 0.316331i
\(966\) 0 0
\(967\) −10.4254 + 18.0573i −0.335258 + 0.580683i −0.983534 0.180722i \(-0.942157\pi\)
0.648277 + 0.761405i \(0.275490\pi\)
\(968\) −4.13408 + 24.6095i −0.132874 + 0.790979i
\(969\) 0 0
\(970\) 5.08099 + 2.26220i 0.163141 + 0.0726349i
\(971\) −8.79427 27.0660i −0.282222 0.868589i −0.987218 0.159378i \(-0.949051\pi\)
0.704996 0.709211i \(-0.250949\pi\)
\(972\) 0 0
\(973\) 8.30053 + 6.03069i 0.266103 + 0.193335i
\(974\) −0.149791 + 1.42517i −0.00479962 + 0.0456653i
\(975\) 0 0
\(976\) 15.0330 + 3.19536i 0.481194 + 0.102281i
\(977\) 2.32671 + 22.1371i 0.0744380 + 0.708230i 0.966561 + 0.256437i \(0.0825487\pi\)
−0.892123 + 0.451793i \(0.850785\pi\)
\(978\) 0 0
\(979\) 10.9176 + 2.67514i 0.348927 + 0.0854979i
\(980\) −14.5857 −0.465924
\(981\) 0 0
\(982\) 1.85302 + 5.70301i 0.0591322 + 0.181990i
\(983\) 22.5888 4.80140i 0.720471 0.153141i 0.166937 0.985968i \(-0.446612\pi\)
0.553534 + 0.832827i \(0.313279\pi\)
\(984\) 0 0
\(985\) −32.5096 + 14.4742i −1.03584 + 0.461186i
\(986\) −0.339986 0.377593i −0.0108274 0.0120250i
\(987\) 0 0
\(988\) 10.8324 + 4.82291i 0.344626 + 0.153437i
\(989\) 2.18787 0.0695703
\(990\) 0 0
\(991\) −6.16408 −0.195809 −0.0979043 0.995196i \(-0.531214\pi\)
−0.0979043 + 0.995196i \(0.531214\pi\)
\(992\) −29.1257 12.9676i −0.924741 0.411721i
\(993\) 0 0
\(994\) −0.709570 0.788057i −0.0225062 0.0249956i
\(995\) 25.5391 11.3707i 0.809643 0.360476i
\(996\) 0 0
\(997\) −24.8248 + 5.27667i −0.786209 + 0.167114i −0.583487 0.812122i \(-0.698312\pi\)
−0.202722 + 0.979236i \(0.564979\pi\)
\(998\) 2.47504 + 7.61739i 0.0783461 + 0.241124i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.n.l.190.6 96
3.2 odd 2 inner 891.2.n.l.190.7 96
9.2 odd 6 inner 891.2.n.l.784.6 96
9.4 even 3 891.2.f.g.487.7 yes 48
9.5 odd 6 891.2.f.g.487.6 48
9.7 even 3 inner 891.2.n.l.784.7 96
11.4 even 5 inner 891.2.n.l.433.7 96
33.26 odd 10 inner 891.2.n.l.433.6 96
99.4 even 15 891.2.f.g.730.7 yes 48
99.13 odd 30 9801.2.a.cq.1.15 24
99.31 even 15 9801.2.a.cr.1.10 24
99.59 odd 30 891.2.f.g.730.6 yes 48
99.68 even 30 9801.2.a.cq.1.10 24
99.70 even 15 inner 891.2.n.l.136.6 96
99.86 odd 30 9801.2.a.cr.1.15 24
99.92 odd 30 inner 891.2.n.l.136.7 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
891.2.f.g.487.6 48 9.5 odd 6
891.2.f.g.487.7 yes 48 9.4 even 3
891.2.f.g.730.6 yes 48 99.59 odd 30
891.2.f.g.730.7 yes 48 99.4 even 15
891.2.n.l.136.6 96 99.70 even 15 inner
891.2.n.l.136.7 96 99.92 odd 30 inner
891.2.n.l.190.6 96 1.1 even 1 trivial
891.2.n.l.190.7 96 3.2 odd 2 inner
891.2.n.l.433.6 96 33.26 odd 10 inner
891.2.n.l.433.7 96 11.4 even 5 inner
891.2.n.l.784.6 96 9.2 odd 6 inner
891.2.n.l.784.7 96 9.7 even 3 inner
9801.2.a.cq.1.10 24 99.68 even 30
9801.2.a.cq.1.15 24 99.13 odd 30
9801.2.a.cr.1.10 24 99.31 even 15
9801.2.a.cr.1.15 24 99.86 odd 30