Properties

Label 891.2.n.l.433.6
Level $891$
Weight $2$
Character 891.433
Analytic conductor $7.115$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(136,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([20, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.136");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(12\) over \(\Q(\zeta_{15})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 433.6
Character \(\chi\) \(=\) 891.433
Dual form 891.2.n.l.784.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0658016 + 0.626061i) q^{2} +(1.56867 + 0.333432i) q^{4} +(-0.142868 - 1.35930i) q^{5} +(-0.393445 + 0.436965i) q^{7} +(-0.701028 + 2.15754i) q^{8} +0.860404 q^{10} +(0.927090 - 3.18442i) q^{11} +(3.47139 - 1.54556i) q^{13} +(-0.247677 - 0.275073i) q^{14} +(1.62551 + 0.723726i) q^{16} +(-0.156539 + 0.113732i) q^{17} +(-0.601281 + 1.85055i) q^{19} +(0.229120 - 2.17993i) q^{20} +(1.93263 + 0.789954i) q^{22} +(0.160616 - 0.278195i) q^{23} +(3.06346 - 0.651158i) q^{25} +(0.739193 + 2.27500i) q^{26} +(-0.762884 + 0.554268i) q^{28} +(2.79122 - 3.09996i) q^{29} +(5.14837 - 2.29220i) q^{31} +(-2.82863 + 4.89933i) q^{32} +(-0.0609029 - 0.105487i) q^{34} +(0.650176 + 0.472381i) q^{35} +(3.17822 + 9.78156i) q^{37} +(-1.11899 - 0.498208i) q^{38} +(3.03290 + 0.644662i) q^{40} +(-4.59078 - 5.09857i) q^{41} +(-3.40544 - 5.89840i) q^{43} +(2.51609 - 4.68619i) q^{44} +(0.163598 + 0.118861i) q^{46} +(4.97666 - 1.05782i) q^{47} +(0.695560 + 6.61781i) q^{49} +(0.206084 + 1.96076i) q^{50} +(5.96082 - 1.26701i) q^{52} +(6.36368 + 4.62348i) q^{53} +(-4.46102 - 0.805240i) q^{55} +(-0.666954 - 1.15520i) q^{56} +(1.75710 + 1.95146i) q^{58} +(-7.04719 - 1.49793i) q^{59} +(-7.89061 - 3.51312i) q^{61} +(1.09629 + 3.37402i) q^{62} +(-0.00210888 - 0.00153219i) q^{64} +(-2.59683 - 4.49784i) q^{65} +(4.54870 - 7.87858i) q^{67} +(-0.283481 + 0.126214i) q^{68} +(-0.338522 + 0.375966i) q^{70} +(-2.31775 + 1.68394i) q^{71} +(0.131206 + 0.403812i) q^{73} +(-6.33298 + 1.34612i) q^{74} +(-1.56025 + 2.70242i) q^{76} +(1.02672 + 1.65800i) q^{77} +(0.429138 - 4.08298i) q^{79} +(0.751525 - 2.31296i) q^{80} +(3.49410 - 2.53861i) q^{82} +(6.79686 + 3.02616i) q^{83} +(0.176961 + 0.196535i) q^{85} +(3.91684 - 1.74389i) q^{86} +(6.22060 + 4.23260i) q^{88} -3.38915 q^{89} +(-0.690444 + 2.12497i) q^{91} +(0.344713 - 0.382842i) q^{92} +(0.334788 + 3.18530i) q^{94} +(2.60135 + 0.552935i) q^{95} +(-0.675694 + 6.42880i) q^{97} -4.18892 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 8 q^{4} + 14 q^{7} + 64 q^{10} + 14 q^{13} + 4 q^{16} - 16 q^{19} - 16 q^{22} + 20 q^{25} - 36 q^{28} + 4 q^{31} - 84 q^{34} - 24 q^{37} + 106 q^{40} - 84 q^{43} - 76 q^{46} + 54 q^{49} - 52 q^{52}+ \cdots + 66 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0658016 + 0.626061i −0.0465288 + 0.442692i 0.946313 + 0.323253i \(0.104776\pi\)
−0.992842 + 0.119439i \(0.961890\pi\)
\(3\) 0 0
\(4\) 1.56867 + 0.333432i 0.784336 + 0.166716i
\(5\) −0.142868 1.35930i −0.0638925 0.607896i −0.978883 0.204421i \(-0.934469\pi\)
0.914991 0.403475i \(-0.132198\pi\)
\(6\) 0 0
\(7\) −0.393445 + 0.436965i −0.148708 + 0.165157i −0.812897 0.582408i \(-0.802111\pi\)
0.664188 + 0.747565i \(0.268777\pi\)
\(8\) −0.701028 + 2.15754i −0.247851 + 0.762806i
\(9\) 0 0
\(10\) 0.860404 0.272084
\(11\) 0.927090 3.18442i 0.279528 0.960138i
\(12\) 0 0
\(13\) 3.47139 1.54556i 0.962791 0.428662i 0.135712 0.990748i \(-0.456668\pi\)
0.827079 + 0.562086i \(0.190001\pi\)
\(14\) −0.247677 0.275073i −0.0661945 0.0735165i
\(15\) 0 0
\(16\) 1.62551 + 0.723726i 0.406379 + 0.180931i
\(17\) −0.156539 + 0.113732i −0.0379663 + 0.0275842i −0.606607 0.795002i \(-0.707470\pi\)
0.568640 + 0.822586i \(0.307470\pi\)
\(18\) 0 0
\(19\) −0.601281 + 1.85055i −0.137943 + 0.424546i −0.996036 0.0889487i \(-0.971649\pi\)
0.858093 + 0.513494i \(0.171649\pi\)
\(20\) 0.229120 2.17993i 0.0512328 0.487447i
\(21\) 0 0
\(22\) 1.93263 + 0.789954i 0.412039 + 0.168419i
\(23\) 0.160616 0.278195i 0.0334907 0.0580076i −0.848794 0.528723i \(-0.822671\pi\)
0.882285 + 0.470716i \(0.156004\pi\)
\(24\) 0 0
\(25\) 3.06346 0.651158i 0.612692 0.130232i
\(26\) 0.739193 + 2.27500i 0.144968 + 0.446165i
\(27\) 0 0
\(28\) −0.762884 + 0.554268i −0.144172 + 0.104747i
\(29\) 2.79122 3.09996i 0.518316 0.575649i −0.425985 0.904730i \(-0.640072\pi\)
0.944301 + 0.329082i \(0.106739\pi\)
\(30\) 0 0
\(31\) 5.14837 2.29220i 0.924674 0.411692i 0.111535 0.993761i \(-0.464423\pi\)
0.813139 + 0.582069i \(0.197757\pi\)
\(32\) −2.82863 + 4.89933i −0.500036 + 0.866088i
\(33\) 0 0
\(34\) −0.0609029 0.105487i −0.0104448 0.0180908i
\(35\) 0.650176 + 0.472381i 0.109900 + 0.0798469i
\(36\) 0 0
\(37\) 3.17822 + 9.78156i 0.522496 + 1.60808i 0.769214 + 0.638991i \(0.220648\pi\)
−0.246718 + 0.969087i \(0.579352\pi\)
\(38\) −1.11899 0.498208i −0.181525 0.0808199i
\(39\) 0 0
\(40\) 3.03290 + 0.644662i 0.479543 + 0.101930i
\(41\) −4.59078 5.09857i −0.716959 0.796263i 0.269020 0.963135i \(-0.413300\pi\)
−0.985979 + 0.166871i \(0.946634\pi\)
\(42\) 0 0
\(43\) −3.40544 5.89840i −0.519325 0.899497i −0.999748 0.0224601i \(-0.992850\pi\)
0.480423 0.877037i \(-0.340483\pi\)
\(44\) 2.51609 4.68619i 0.379314 0.706469i
\(45\) 0 0
\(46\) 0.163598 + 0.118861i 0.0241212 + 0.0175251i
\(47\) 4.97666 1.05782i 0.725920 0.154299i 0.169892 0.985463i \(-0.445658\pi\)
0.556028 + 0.831163i \(0.312325\pi\)
\(48\) 0 0
\(49\) 0.695560 + 6.61781i 0.0993657 + 0.945401i
\(50\) 0.206084 + 1.96076i 0.0291447 + 0.277293i
\(51\) 0 0
\(52\) 5.96082 1.26701i 0.826616 0.175703i
\(53\) 6.36368 + 4.62348i 0.874119 + 0.635084i 0.931689 0.363257i \(-0.118335\pi\)
−0.0575702 + 0.998341i \(0.518335\pi\)
\(54\) 0 0
\(55\) −4.46102 0.805240i −0.601524 0.108579i
\(56\) −0.666954 1.15520i −0.0891255 0.154370i
\(57\) 0 0
\(58\) 1.75710 + 1.95146i 0.230718 + 0.256239i
\(59\) −7.04719 1.49793i −0.917465 0.195013i −0.275103 0.961415i \(-0.588712\pi\)
−0.642362 + 0.766401i \(0.722045\pi\)
\(60\) 0 0
\(61\) −7.89061 3.51312i −1.01029 0.449809i −0.166245 0.986084i \(-0.553164\pi\)
−0.844043 + 0.536275i \(0.819831\pi\)
\(62\) 1.09629 + 3.37402i 0.139229 + 0.428501i
\(63\) 0 0
\(64\) −0.00210888 0.00153219i −0.000263611 0.000191524i
\(65\) −2.59683 4.49784i −0.322097 0.557889i
\(66\) 0 0
\(67\) 4.54870 7.87858i 0.555712 0.962522i −0.442135 0.896948i \(-0.645779\pi\)
0.997848 0.0655738i \(-0.0208878\pi\)
\(68\) −0.283481 + 0.126214i −0.0343771 + 0.0153057i
\(69\) 0 0
\(70\) −0.338522 + 0.375966i −0.0404611 + 0.0449366i
\(71\) −2.31775 + 1.68394i −0.275066 + 0.199847i −0.716763 0.697317i \(-0.754377\pi\)
0.441696 + 0.897165i \(0.354377\pi\)
\(72\) 0 0
\(73\) 0.131206 + 0.403812i 0.0153565 + 0.0472626i 0.958441 0.285290i \(-0.0920900\pi\)
−0.943085 + 0.332553i \(0.892090\pi\)
\(74\) −6.33298 + 1.34612i −0.736194 + 0.156483i
\(75\) 0 0
\(76\) −1.56025 + 2.70242i −0.178972 + 0.309989i
\(77\) 1.02672 + 1.65800i 0.117005 + 0.188946i
\(78\) 0 0
\(79\) 0.429138 4.08298i 0.0482818 0.459371i −0.943495 0.331388i \(-0.892483\pi\)
0.991776 0.127983i \(-0.0408502\pi\)
\(80\) 0.751525 2.31296i 0.0840230 0.258596i
\(81\) 0 0
\(82\) 3.49410 2.53861i 0.385859 0.280343i
\(83\) 6.79686 + 3.02616i 0.746052 + 0.332164i 0.744310 0.667835i \(-0.232779\pi\)
0.00174242 + 0.999998i \(0.499445\pi\)
\(84\) 0 0
\(85\) 0.176961 + 0.196535i 0.0191941 + 0.0213172i
\(86\) 3.91684 1.74389i 0.422364 0.188048i
\(87\) 0 0
\(88\) 6.22060 + 4.23260i 0.663118 + 0.451197i
\(89\) −3.38915 −0.359249 −0.179625 0.983735i \(-0.557488\pi\)
−0.179625 + 0.983735i \(0.557488\pi\)
\(90\) 0 0
\(91\) −0.690444 + 2.12497i −0.0723782 + 0.222757i
\(92\) 0.344713 0.382842i 0.0359388 0.0399141i
\(93\) 0 0
\(94\) 0.334788 + 3.18530i 0.0345308 + 0.328538i
\(95\) 2.60135 + 0.552935i 0.266893 + 0.0567299i
\(96\) 0 0
\(97\) −0.675694 + 6.42880i −0.0686063 + 0.652746i 0.905141 + 0.425112i \(0.139765\pi\)
−0.973747 + 0.227633i \(0.926901\pi\)
\(98\) −4.18892 −0.423145
\(99\) 0 0
\(100\) 5.02268 0.502268
\(101\) −1.93351 + 18.3961i −0.192391 + 1.83048i 0.292921 + 0.956137i \(0.405373\pi\)
−0.485312 + 0.874341i \(0.661294\pi\)
\(102\) 0 0
\(103\) −3.16596 0.672945i −0.311951 0.0663072i 0.0492758 0.998785i \(-0.484309\pi\)
−0.361227 + 0.932478i \(0.617642\pi\)
\(104\) 0.901075 + 8.57316i 0.0883577 + 0.840667i
\(105\) 0 0
\(106\) −3.31332 + 3.67982i −0.321818 + 0.357416i
\(107\) −5.21311 + 16.0443i −0.503970 + 1.55106i 0.298524 + 0.954402i \(0.403506\pi\)
−0.802495 + 0.596659i \(0.796494\pi\)
\(108\) 0 0
\(109\) 8.90745 0.853179 0.426589 0.904445i \(-0.359715\pi\)
0.426589 + 0.904445i \(0.359715\pi\)
\(110\) 0.797672 2.73988i 0.0760550 0.261238i
\(111\) 0 0
\(112\) −0.955793 + 0.425547i −0.0903140 + 0.0402104i
\(113\) −1.93074 2.14430i −0.181629 0.201719i 0.645454 0.763799i \(-0.276668\pi\)
−0.827083 + 0.562080i \(0.810001\pi\)
\(114\) 0 0
\(115\) −0.401097 0.178580i −0.0374024 0.0166526i
\(116\) 5.41213 3.93215i 0.502504 0.365091i
\(117\) 0 0
\(118\) 1.40151 4.31340i 0.129019 0.397081i
\(119\) 0.0118925 0.113150i 0.00109018 0.0103724i
\(120\) 0 0
\(121\) −9.28101 5.90448i −0.843728 0.536771i
\(122\) 2.71864 4.70883i 0.246134 0.426317i
\(123\) 0 0
\(124\) 8.84040 1.87908i 0.793891 0.168747i
\(125\) −3.43459 10.5706i −0.307199 0.945461i
\(126\) 0 0
\(127\) 1.03914 0.754980i 0.0922088 0.0669936i −0.540726 0.841199i \(-0.681850\pi\)
0.632934 + 0.774205i \(0.281850\pi\)
\(128\) −7.56980 + 8.40711i −0.669082 + 0.743091i
\(129\) 0 0
\(130\) 2.98680 1.32981i 0.261960 0.116632i
\(131\) −3.16899 + 5.48885i −0.276876 + 0.479563i −0.970607 0.240671i \(-0.922632\pi\)
0.693731 + 0.720234i \(0.255966\pi\)
\(132\) 0 0
\(133\) −0.572055 0.990829i −0.0496035 0.0859157i
\(134\) 4.63316 + 3.36619i 0.400244 + 0.290794i
\(135\) 0 0
\(136\) −0.135644 0.417470i −0.0116314 0.0357977i
\(137\) 15.1320 + 6.73719i 1.29281 + 0.575597i 0.933820 0.357744i \(-0.116454\pi\)
0.358992 + 0.933341i \(0.383121\pi\)
\(138\) 0 0
\(139\) −17.0679 3.62789i −1.44768 0.307713i −0.583998 0.811755i \(-0.698513\pi\)
−0.863679 + 0.504041i \(0.831846\pi\)
\(140\) 0.862407 + 0.957800i 0.0728867 + 0.0809489i
\(141\) 0 0
\(142\) −0.901739 1.56186i −0.0756723 0.131068i
\(143\) −1.70342 12.4872i −0.142447 1.04423i
\(144\) 0 0
\(145\) −4.61255 3.35121i −0.383051 0.278303i
\(146\) −0.261444 + 0.0555717i −0.0216373 + 0.00459915i
\(147\) 0 0
\(148\) 1.72411 + 16.4038i 0.141721 + 1.34838i
\(149\) −0.659140 6.27130i −0.0539989 0.513765i −0.987773 0.155901i \(-0.950172\pi\)
0.933774 0.357864i \(-0.116495\pi\)
\(150\) 0 0
\(151\) −15.8769 + 3.37473i −1.29204 + 0.274632i −0.802135 0.597143i \(-0.796302\pi\)
−0.489907 + 0.871775i \(0.662969\pi\)
\(152\) −3.57113 2.59458i −0.289657 0.210448i
\(153\) 0 0
\(154\) −1.10557 + 0.533690i −0.0890892 + 0.0430059i
\(155\) −3.85132 6.67068i −0.309346 0.535802i
\(156\) 0 0
\(157\) −11.4048 12.6663i −0.910202 1.01088i −0.999889 0.0149120i \(-0.995253\pi\)
0.0896865 0.995970i \(-0.471413\pi\)
\(158\) 2.52795 + 0.537333i 0.201113 + 0.0427479i
\(159\) 0 0
\(160\) 7.06378 + 3.14500i 0.558440 + 0.248634i
\(161\) 0.0583679 + 0.179638i 0.00460003 + 0.0141574i
\(162\) 0 0
\(163\) −15.0263 10.9173i −1.17695 0.855105i −0.185127 0.982715i \(-0.559270\pi\)
−0.991824 + 0.127609i \(0.959270\pi\)
\(164\) −5.50140 9.52870i −0.429587 0.744067i
\(165\) 0 0
\(166\) −2.34180 + 4.05612i −0.181759 + 0.314816i
\(167\) 8.64837 3.85050i 0.669231 0.297961i −0.0438545 0.999038i \(-0.513964\pi\)
0.713085 + 0.701077i \(0.247297\pi\)
\(168\) 0 0
\(169\) 0.963092 1.06962i 0.0740840 0.0822786i
\(170\) −0.134687 + 0.0978558i −0.0103300 + 0.00750520i
\(171\) 0 0
\(172\) −3.37531 10.3881i −0.257365 0.792088i
\(173\) −17.5754 + 3.73576i −1.33623 + 0.284025i −0.819970 0.572406i \(-0.806010\pi\)
−0.516261 + 0.856431i \(0.672677\pi\)
\(174\) 0 0
\(175\) −0.920769 + 1.59482i −0.0696036 + 0.120557i
\(176\) 3.81164 4.50536i 0.287313 0.339604i
\(177\) 0 0
\(178\) 0.223012 2.12182i 0.0167154 0.159037i
\(179\) 8.17595 25.1630i 0.611099 1.88077i 0.163474 0.986548i \(-0.447730\pi\)
0.447625 0.894221i \(-0.352270\pi\)
\(180\) 0 0
\(181\) 0.711098 0.516643i 0.0528555 0.0384018i −0.561044 0.827786i \(-0.689600\pi\)
0.613899 + 0.789384i \(0.289600\pi\)
\(182\) −1.28493 0.572087i −0.0952452 0.0424059i
\(183\) 0 0
\(184\) 0.487621 + 0.541558i 0.0359479 + 0.0399242i
\(185\) 12.8420 5.71762i 0.944161 0.420368i
\(186\) 0 0
\(187\) 0.217045 + 0.603926i 0.0158719 + 0.0441635i
\(188\) 8.15946 0.595090
\(189\) 0 0
\(190\) −0.517344 + 1.59222i −0.0375321 + 0.115512i
\(191\) 10.3859 11.5347i 0.751496 0.834621i −0.239163 0.970979i \(-0.576873\pi\)
0.990660 + 0.136358i \(0.0435398\pi\)
\(192\) 0 0
\(193\) −1.01127 9.62158i −0.0727927 0.692577i −0.968683 0.248301i \(-0.920128\pi\)
0.895890 0.444276i \(-0.146539\pi\)
\(194\) −3.98036 0.846051i −0.285773 0.0607429i
\(195\) 0 0
\(196\) −1.11548 + 10.6131i −0.0796773 + 0.758079i
\(197\) −26.0364 −1.85502 −0.927508 0.373803i \(-0.878053\pi\)
−0.927508 + 0.373803i \(0.878053\pi\)
\(198\) 0 0
\(199\) −20.4538 −1.44993 −0.724967 0.688784i \(-0.758145\pi\)
−0.724967 + 0.688784i \(0.758145\pi\)
\(200\) −0.742669 + 7.06602i −0.0525146 + 0.499643i
\(201\) 0 0
\(202\) −11.3898 2.42098i −0.801386 0.170340i
\(203\) 0.256384 + 2.43933i 0.0179946 + 0.171207i
\(204\) 0 0
\(205\) −6.27461 + 6.96866i −0.438237 + 0.486712i
\(206\) 0.629630 1.93780i 0.0438684 0.135013i
\(207\) 0 0
\(208\) 6.76136 0.468816
\(209\) 5.33548 + 3.63035i 0.369063 + 0.251117i
\(210\) 0 0
\(211\) −14.5408 + 6.47396i −1.00103 + 0.445686i −0.840772 0.541389i \(-0.817898\pi\)
−0.160255 + 0.987076i \(0.551232\pi\)
\(212\) 8.44092 + 9.37459i 0.579725 + 0.643849i
\(213\) 0 0
\(214\) −9.70168 4.31947i −0.663193 0.295273i
\(215\) −7.53115 + 5.47170i −0.513620 + 0.373167i
\(216\) 0 0
\(217\) −1.02399 + 3.15151i −0.0695128 + 0.213939i
\(218\) −0.586125 + 5.57660i −0.0396974 + 0.377695i
\(219\) 0 0
\(220\) −6.72939 2.75060i −0.453695 0.185446i
\(221\) −0.367628 + 0.636751i −0.0247294 + 0.0428325i
\(222\) 0 0
\(223\) −2.44695 + 0.520115i −0.163860 + 0.0348294i −0.289111 0.957296i \(-0.593360\pi\)
0.125251 + 0.992125i \(0.460026\pi\)
\(224\) −1.02793 3.16363i −0.0686812 0.211379i
\(225\) 0 0
\(226\) 1.46951 1.06766i 0.0977504 0.0710198i
\(227\) −10.7822 + 11.9749i −0.715641 + 0.794800i −0.985783 0.168021i \(-0.946263\pi\)
0.270143 + 0.962820i \(0.412929\pi\)
\(228\) 0 0
\(229\) 3.01903 1.34416i 0.199503 0.0888245i −0.304553 0.952495i \(-0.598507\pi\)
0.504056 + 0.863671i \(0.331840\pi\)
\(230\) 0.138195 0.239360i 0.00911228 0.0157829i
\(231\) 0 0
\(232\) 4.73158 + 8.19533i 0.310643 + 0.538050i
\(233\) 3.48837 + 2.53445i 0.228531 + 0.166037i 0.696158 0.717888i \(-0.254891\pi\)
−0.467627 + 0.883926i \(0.654891\pi\)
\(234\) 0 0
\(235\) −2.14890 6.61363i −0.140179 0.431426i
\(236\) −10.5553 4.69951i −0.687090 0.305912i
\(237\) 0 0
\(238\) 0.0700560 + 0.0148909i 0.00454105 + 0.000965231i
\(239\) 10.0638 + 11.1770i 0.650974 + 0.722980i 0.974786 0.223141i \(-0.0716312\pi\)
−0.323812 + 0.946121i \(0.604965\pi\)
\(240\) 0 0
\(241\) −6.88547 11.9260i −0.443532 0.768220i 0.554417 0.832239i \(-0.312941\pi\)
−0.997949 + 0.0640192i \(0.979608\pi\)
\(242\) 4.30727 5.42195i 0.276882 0.348536i
\(243\) 0 0
\(244\) −11.2064 8.14192i −0.717416 0.521233i
\(245\) 8.89620 1.89095i 0.568357 0.120808i
\(246\) 0 0
\(247\) 0.772863 + 7.35330i 0.0491761 + 0.467880i
\(248\) 1.33637 + 12.7147i 0.0848596 + 0.807386i
\(249\) 0 0
\(250\) 6.84382 1.45470i 0.432841 0.0920033i
\(251\) 22.3625 + 16.2473i 1.41151 + 1.02552i 0.993101 + 0.117264i \(0.0374123\pi\)
0.418409 + 0.908259i \(0.362588\pi\)
\(252\) 0 0
\(253\) −0.736983 0.769379i −0.0463337 0.0483705i
\(254\) 0.404286 + 0.700244i 0.0253672 + 0.0439372i
\(255\) 0 0
\(256\) −4.76875 5.29623i −0.298047 0.331014i
\(257\) −10.7426 2.28340i −0.670103 0.142435i −0.139718 0.990191i \(-0.544619\pi\)
−0.530385 + 0.847757i \(0.677953\pi\)
\(258\) 0 0
\(259\) −5.52465 2.45973i −0.343285 0.152840i
\(260\) −2.57385 7.92151i −0.159624 0.491271i
\(261\) 0 0
\(262\) −3.22783 2.34516i −0.199416 0.144884i
\(263\) −8.97517 15.5455i −0.553433 0.958574i −0.998024 0.0628399i \(-0.979984\pi\)
0.444591 0.895734i \(-0.353349\pi\)
\(264\) 0 0
\(265\) 5.37553 9.31068i 0.330216 0.571951i
\(266\) 0.657961 0.292943i 0.0403422 0.0179615i
\(267\) 0 0
\(268\) 9.76239 10.8422i 0.596333 0.662295i
\(269\) −19.5359 + 14.1937i −1.19113 + 0.865404i −0.993383 0.114850i \(-0.963361\pi\)
−0.197743 + 0.980254i \(0.563361\pi\)
\(270\) 0 0
\(271\) −4.49596 13.8371i −0.273110 0.840547i −0.989713 0.143065i \(-0.954304\pi\)
0.716603 0.697481i \(-0.245696\pi\)
\(272\) −0.336768 + 0.0715822i −0.0204195 + 0.00434031i
\(273\) 0 0
\(274\) −5.21360 + 9.03022i −0.314965 + 0.545535i
\(275\) 0.766543 10.3590i 0.0462243 0.624672i
\(276\) 0 0
\(277\) −2.52035 + 23.9795i −0.151433 + 1.44079i 0.609925 + 0.792459i \(0.291200\pi\)
−0.761358 + 0.648332i \(0.775467\pi\)
\(278\) 3.39437 10.4468i 0.203581 0.626558i
\(279\) 0 0
\(280\) −1.47497 + 1.07163i −0.0881465 + 0.0640422i
\(281\) 1.08521 + 0.483167i 0.0647382 + 0.0288233i 0.438850 0.898560i \(-0.355386\pi\)
−0.374112 + 0.927383i \(0.622052\pi\)
\(282\) 0 0
\(283\) 10.2726 + 11.4089i 0.610645 + 0.678190i 0.966593 0.256316i \(-0.0825088\pi\)
−0.355948 + 0.934506i \(0.615842\pi\)
\(284\) −4.19727 + 1.86875i −0.249062 + 0.110890i
\(285\) 0 0
\(286\) 7.92985 0.244767i 0.468902 0.0144734i
\(287\) 4.03412 0.238126
\(288\) 0 0
\(289\) −5.24172 + 16.1324i −0.308336 + 0.948962i
\(290\) 2.40158 2.66722i 0.141025 0.156625i
\(291\) 0 0
\(292\) 0.0711762 + 0.677197i 0.00416527 + 0.0396299i
\(293\) 31.3963 + 6.67348i 1.83419 + 0.389869i 0.989398 0.145227i \(-0.0463912\pi\)
0.844791 + 0.535096i \(0.179725\pi\)
\(294\) 0 0
\(295\) −1.02931 + 9.79323i −0.0599287 + 0.570184i
\(296\) −23.3321 −1.35615
\(297\) 0 0
\(298\) 3.96959 0.229952
\(299\) 0.127593 1.21396i 0.00737889 0.0702054i
\(300\) 0 0
\(301\) 3.91725 + 0.832636i 0.225786 + 0.0479924i
\(302\) −1.06806 10.1619i −0.0614602 0.584754i
\(303\) 0 0
\(304\) −2.31668 + 2.57294i −0.132871 + 0.147568i
\(305\) −3.64807 + 11.2276i −0.208888 + 0.642890i
\(306\) 0 0
\(307\) 33.1199 1.89025 0.945126 0.326707i \(-0.105939\pi\)
0.945126 + 0.326707i \(0.105939\pi\)
\(308\) 1.05776 + 2.94320i 0.0602713 + 0.167704i
\(309\) 0 0
\(310\) 4.42968 1.97222i 0.251589 0.112015i
\(311\) −22.7387 25.2539i −1.28939 1.43201i −0.843687 0.536835i \(-0.819620\pi\)
−0.445705 0.895180i \(-0.647047\pi\)
\(312\) 0 0
\(313\) 4.30580 + 1.91706i 0.243378 + 0.108359i 0.524801 0.851225i \(-0.324140\pi\)
−0.281423 + 0.959584i \(0.590806\pi\)
\(314\) 8.68034 6.30664i 0.489860 0.355904i
\(315\) 0 0
\(316\) 2.03457 6.26176i 0.114454 0.352252i
\(317\) −1.82058 + 17.3217i −0.102254 + 0.972883i 0.816311 + 0.577613i \(0.196016\pi\)
−0.918565 + 0.395270i \(0.870651\pi\)
\(318\) 0 0
\(319\) −7.28386 11.7623i −0.407818 0.658565i
\(320\) −0.00178142 + 0.00308550i −9.95842e−5 + 0.000172485i
\(321\) 0 0
\(322\) −0.116305 + 0.0247214i −0.00648142 + 0.00137767i
\(323\) −0.116344 0.358069i −0.00647353 0.0199235i
\(324\) 0 0
\(325\) 9.62806 6.99519i 0.534068 0.388023i
\(326\) 7.82362 8.68901i 0.433310 0.481240i
\(327\) 0 0
\(328\) 14.2187 6.33055i 0.785094 0.349546i
\(329\) −1.49581 + 2.59082i −0.0824667 + 0.142837i
\(330\) 0 0
\(331\) −6.48845 11.2383i −0.356637 0.617714i 0.630759 0.775978i \(-0.282743\pi\)
−0.987397 + 0.158264i \(0.949410\pi\)
\(332\) 9.65303 + 7.01334i 0.529779 + 0.384907i
\(333\) 0 0
\(334\) 1.84157 + 5.66778i 0.100766 + 0.310127i
\(335\) −11.3592 5.05744i −0.620620 0.276318i
\(336\) 0 0
\(337\) 10.1176 + 2.15056i 0.551139 + 0.117148i 0.475060 0.879954i \(-0.342426\pi\)
0.0760793 + 0.997102i \(0.475760\pi\)
\(338\) 0.606275 + 0.673337i 0.0329770 + 0.0366247i
\(339\) 0 0
\(340\) 0.212062 + 0.367303i 0.0115007 + 0.0199198i
\(341\) −2.52632 18.5196i −0.136808 1.00289i
\(342\) 0 0
\(343\) −6.49530 4.71911i −0.350713 0.254808i
\(344\) 15.1134 3.21244i 0.814857 0.173203i
\(345\) 0 0
\(346\) −1.18233 11.2491i −0.0635622 0.604754i
\(347\) −0.642191 6.11004i −0.0344746 0.328004i −0.998144 0.0609047i \(-0.980601\pi\)
0.963669 0.267099i \(-0.0860652\pi\)
\(348\) 0 0
\(349\) −19.9329 + 4.23686i −1.06698 + 0.226794i −0.707756 0.706457i \(-0.750292\pi\)
−0.359225 + 0.933251i \(0.616959\pi\)
\(350\) −0.937866 0.681399i −0.0501310 0.0364223i
\(351\) 0 0
\(352\) 12.9791 + 13.5497i 0.691790 + 0.722200i
\(353\) 5.99407 + 10.3820i 0.319032 + 0.552580i 0.980286 0.197582i \(-0.0633089\pi\)
−0.661254 + 0.750162i \(0.729976\pi\)
\(354\) 0 0
\(355\) 2.62011 + 2.90993i 0.139061 + 0.154443i
\(356\) −5.31647 1.13005i −0.281772 0.0598926i
\(357\) 0 0
\(358\) 15.2156 + 6.77441i 0.804167 + 0.358038i
\(359\) 5.52583 + 17.0067i 0.291642 + 0.897582i 0.984329 + 0.176343i \(0.0564269\pi\)
−0.692687 + 0.721239i \(0.743573\pi\)
\(360\) 0 0
\(361\) 12.3083 + 8.94252i 0.647806 + 0.470659i
\(362\) 0.276659 + 0.479187i 0.0145409 + 0.0251855i
\(363\) 0 0
\(364\) −1.79161 + 3.10317i −0.0939061 + 0.162650i
\(365\) 0.530155 0.236040i 0.0277496 0.0123549i
\(366\) 0 0
\(367\) 18.4810 20.5252i 0.964699 1.07141i −0.0327103 0.999465i \(-0.510414\pi\)
0.997409 0.0719415i \(-0.0229195\pi\)
\(368\) 0.462420 0.335968i 0.0241053 0.0175135i
\(369\) 0 0
\(370\) 2.73455 + 8.41609i 0.142163 + 0.437532i
\(371\) −4.52406 + 0.961618i −0.234877 + 0.0499247i
\(372\) 0 0
\(373\) −6.19435 + 10.7289i −0.320731 + 0.555523i −0.980639 0.195824i \(-0.937262\pi\)
0.659908 + 0.751347i \(0.270595\pi\)
\(374\) −0.392376 + 0.0961443i −0.0202893 + 0.00497150i
\(375\) 0 0
\(376\) −1.20648 + 11.4789i −0.0622196 + 0.591980i
\(377\) 4.89822 15.0752i 0.252271 0.776411i
\(378\) 0 0
\(379\) −13.6170 + 9.89335i −0.699459 + 0.508187i −0.879756 0.475425i \(-0.842294\pi\)
0.180297 + 0.983612i \(0.442294\pi\)
\(380\) 3.89631 + 1.73475i 0.199876 + 0.0889907i
\(381\) 0 0
\(382\) 6.53801 + 7.26120i 0.334514 + 0.371515i
\(383\) −11.3727 + 5.06346i −0.581119 + 0.258731i −0.676175 0.736741i \(-0.736364\pi\)
0.0950561 + 0.995472i \(0.469697\pi\)
\(384\) 0 0
\(385\) 2.10703 1.63249i 0.107384 0.0831995i
\(386\) 6.09024 0.309985
\(387\) 0 0
\(388\) −3.20351 + 9.85939i −0.162634 + 0.500534i
\(389\) 0.822220 0.913167i 0.0416882 0.0462994i −0.721940 0.691956i \(-0.756749\pi\)
0.763628 + 0.645656i \(0.223416\pi\)
\(390\) 0 0
\(391\) 0.00649708 + 0.0618156i 0.000328572 + 0.00312615i
\(392\) −14.7658 3.13857i −0.745786 0.158522i
\(393\) 0 0
\(394\) 1.71324 16.3004i 0.0863117 0.821201i
\(395\) −5.61129 −0.282335
\(396\) 0 0
\(397\) 20.5917 1.03347 0.516734 0.856146i \(-0.327148\pi\)
0.516734 + 0.856146i \(0.327148\pi\)
\(398\) 1.34590 12.8053i 0.0674637 0.641874i
\(399\) 0 0
\(400\) 5.45096 + 1.15864i 0.272548 + 0.0579318i
\(401\) −0.704387 6.70180i −0.0351754 0.334672i −0.997931 0.0642977i \(-0.979519\pi\)
0.962755 0.270374i \(-0.0871474\pi\)
\(402\) 0 0
\(403\) 14.3293 15.9143i 0.713791 0.792745i
\(404\) −9.16687 + 28.2127i −0.456069 + 1.40364i
\(405\) 0 0
\(406\) −1.54404 −0.0766294
\(407\) 34.0950 1.05239i 1.69003 0.0521653i
\(408\) 0 0
\(409\) 26.6486 11.8647i 1.31769 0.586672i 0.377084 0.926179i \(-0.376927\pi\)
0.940604 + 0.339507i \(0.110260\pi\)
\(410\) −3.94992 4.38683i −0.195073 0.216650i
\(411\) 0 0
\(412\) −4.74197 2.11126i −0.233620 0.104014i
\(413\) 3.42722 2.49002i 0.168642 0.122526i
\(414\) 0 0
\(415\) 3.14239 9.67129i 0.154254 0.474745i
\(416\) −2.24706 + 21.3793i −0.110171 + 1.04821i
\(417\) 0 0
\(418\) −2.62391 + 3.10145i −0.128339 + 0.151697i
\(419\) −18.9851 + 32.8832i −0.927483 + 1.60645i −0.139965 + 0.990156i \(0.544699\pi\)
−0.787518 + 0.616292i \(0.788634\pi\)
\(420\) 0 0
\(421\) 7.93108 1.68580i 0.386537 0.0821610i −0.0105442 0.999944i \(-0.503356\pi\)
0.397081 + 0.917783i \(0.370023\pi\)
\(422\) −3.09629 9.52940i −0.150725 0.463884i
\(423\) 0 0
\(424\) −14.4365 + 10.4887i −0.701098 + 0.509377i
\(425\) −0.405494 + 0.450346i −0.0196693 + 0.0218450i
\(426\) 0 0
\(427\) 4.63963 2.06570i 0.224527 0.0999661i
\(428\) −13.5273 + 23.4301i −0.653869 + 1.13253i
\(429\) 0 0
\(430\) −2.93006 5.07500i −0.141300 0.244738i
\(431\) 24.6339 + 17.8976i 1.18657 + 0.862095i 0.992898 0.118971i \(-0.0379595\pi\)
0.193674 + 0.981066i \(0.437959\pi\)
\(432\) 0 0
\(433\) 7.44285 + 22.9067i 0.357681 + 1.10083i 0.954439 + 0.298407i \(0.0964551\pi\)
−0.596758 + 0.802421i \(0.703545\pi\)
\(434\) −1.90566 0.848454i −0.0914745 0.0407271i
\(435\) 0 0
\(436\) 13.9729 + 2.97003i 0.669179 + 0.142238i
\(437\) 0.418239 + 0.464501i 0.0200071 + 0.0222201i
\(438\) 0 0
\(439\) −17.1588 29.7199i −0.818943 1.41845i −0.906461 0.422289i \(-0.861227\pi\)
0.0875179 0.996163i \(-0.472106\pi\)
\(440\) 4.86464 9.06035i 0.231913 0.431935i
\(441\) 0 0
\(442\) −0.374454 0.272057i −0.0178110 0.0129404i
\(443\) 8.35358 1.77561i 0.396890 0.0843617i −0.00514270 0.999987i \(-0.501637\pi\)
0.402033 + 0.915625i \(0.368304\pi\)
\(444\) 0 0
\(445\) 0.484201 + 4.60687i 0.0229533 + 0.218386i
\(446\) −0.164610 1.56616i −0.00779452 0.0741599i
\(447\) 0 0
\(448\) 0.00149924 0.000318674i 7.08327e−5 1.50559e-5i
\(449\) 29.8272 + 21.6707i 1.40763 + 1.02271i 0.993661 + 0.112416i \(0.0358589\pi\)
0.413972 + 0.910290i \(0.364141\pi\)
\(450\) 0 0
\(451\) −20.4920 + 9.89211i −0.964933 + 0.465801i
\(452\) −2.31372 4.00748i −0.108828 0.188496i
\(453\) 0 0
\(454\) −6.78751 7.53829i −0.318554 0.353790i
\(455\) 2.98711 + 0.634930i 0.140038 + 0.0297660i
\(456\) 0 0
\(457\) 21.6365 + 9.63318i 1.01211 + 0.450621i 0.844685 0.535264i \(-0.179788\pi\)
0.167426 + 0.985885i \(0.446454\pi\)
\(458\) 0.642868 + 1.97854i 0.0300392 + 0.0924513i
\(459\) 0 0
\(460\) −0.569645 0.413871i −0.0265598 0.0192969i
\(461\) −14.3431 24.8430i −0.668024 1.15705i −0.978456 0.206456i \(-0.933807\pi\)
0.310432 0.950596i \(-0.399526\pi\)
\(462\) 0 0
\(463\) −5.43156 + 9.40774i −0.252426 + 0.437215i −0.964193 0.265201i \(-0.914562\pi\)
0.711767 + 0.702416i \(0.247895\pi\)
\(464\) 6.78069 3.01896i 0.314786 0.140152i
\(465\) 0 0
\(466\) −1.81626 + 2.01716i −0.0841367 + 0.0934433i
\(467\) −23.8560 + 17.3324i −1.10392 + 0.802046i −0.981696 0.190456i \(-0.939003\pi\)
−0.122226 + 0.992502i \(0.539003\pi\)
\(468\) 0 0
\(469\) 1.65300 + 5.08741i 0.0763285 + 0.234915i
\(470\) 4.28194 0.910154i 0.197511 0.0419823i
\(471\) 0 0
\(472\) 8.17211 14.1545i 0.376152 0.651514i
\(473\) −21.9401 + 5.37600i −1.00881 + 0.247189i
\(474\) 0 0
\(475\) −0.636997 + 6.06062i −0.0292274 + 0.278080i
\(476\) 0.0563831 0.173529i 0.00258431 0.00795370i
\(477\) 0 0
\(478\) −7.65970 + 5.56510i −0.350346 + 0.254542i
\(479\) −19.5106 8.68669i −0.891463 0.396905i −0.0906944 0.995879i \(-0.528909\pi\)
−0.800769 + 0.598974i \(0.795575\pi\)
\(480\) 0 0
\(481\) 26.1509 + 29.0435i 1.19238 + 1.32427i
\(482\) 7.91947 3.52597i 0.360722 0.160604i
\(483\) 0 0
\(484\) −12.5901 12.3568i −0.572278 0.561672i
\(485\) 8.83519 0.401185
\(486\) 0 0
\(487\) −0.703448 + 2.16499i −0.0318763 + 0.0981051i −0.965729 0.259553i \(-0.916425\pi\)
0.933853 + 0.357658i \(0.116425\pi\)
\(488\) 13.1112 14.5615i 0.593518 0.659169i
\(489\) 0 0
\(490\) 0.598463 + 5.69399i 0.0270358 + 0.257228i
\(491\) −9.31751 1.98050i −0.420493 0.0893786i −0.00719464 0.999974i \(-0.502290\pi\)
−0.413299 + 0.910595i \(0.635623\pi\)
\(492\) 0 0
\(493\) −0.0843690 + 0.802718i −0.00379979 + 0.0361526i
\(494\) −4.65447 −0.209415
\(495\) 0 0
\(496\) 10.0277 0.450256
\(497\) 0.176083 1.67531i 0.00789838 0.0751481i
\(498\) 0 0
\(499\) 12.4452 + 2.64531i 0.557124 + 0.118420i 0.477864 0.878434i \(-0.341411\pi\)
0.0792598 + 0.996854i \(0.474744\pi\)
\(500\) −1.86318 17.7270i −0.0833239 0.792774i
\(501\) 0 0
\(502\) −11.6433 + 12.9312i −0.519666 + 0.577148i
\(503\) 1.78686 5.49939i 0.0796722 0.245206i −0.903285 0.429041i \(-0.858851\pi\)
0.982957 + 0.183836i \(0.0588514\pi\)
\(504\) 0 0
\(505\) 25.2820 1.12503
\(506\) 0.530173 0.410770i 0.0235691 0.0182609i
\(507\) 0 0
\(508\) 1.88181 0.837834i 0.0834916 0.0371729i
\(509\) 6.18794 + 6.87240i 0.274275 + 0.304614i 0.864508 0.502620i \(-0.167630\pi\)
−0.590232 + 0.807234i \(0.700964\pi\)
\(510\) 0 0
\(511\) −0.228074 0.101545i −0.0100894 0.00449209i
\(512\) −14.6751 + 10.6621i −0.648553 + 0.471201i
\(513\) 0 0
\(514\) 2.13643 6.57525i 0.0942338 0.290022i
\(515\) −0.462419 + 4.39962i −0.0203766 + 0.193870i
\(516\) 0 0
\(517\) 1.24527 16.8285i 0.0547667 0.740114i
\(518\) 1.90347 3.29691i 0.0836338 0.144858i
\(519\) 0 0
\(520\) 11.5247 2.44966i 0.505393 0.107425i
\(521\) −7.83400 24.1106i −0.343214 1.05630i −0.962533 0.271164i \(-0.912591\pi\)
0.619320 0.785139i \(-0.287409\pi\)
\(522\) 0 0
\(523\) −16.9781 + 12.3353i −0.742398 + 0.539384i −0.893461 0.449140i \(-0.851730\pi\)
0.151063 + 0.988524i \(0.451730\pi\)
\(524\) −6.80127 + 7.55357i −0.297115 + 0.329979i
\(525\) 0 0
\(526\) 10.3230 4.59609i 0.450103 0.200399i
\(527\) −0.545224 + 0.944356i −0.0237503 + 0.0411368i
\(528\) 0 0
\(529\) 11.4484 + 19.8292i 0.497757 + 0.862140i
\(530\) 5.47534 + 3.97806i 0.237833 + 0.172796i
\(531\) 0 0
\(532\) −0.566994 1.74503i −0.0245823 0.0756565i
\(533\) −23.8165 10.6038i −1.03161 0.459302i
\(534\) 0 0
\(535\) 22.5538 + 4.79395i 0.975085 + 0.207261i
\(536\) 13.8096 + 15.3371i 0.596484 + 0.662463i
\(537\) 0 0
\(538\) −7.60061 13.1646i −0.327686 0.567568i
\(539\) 21.7187 + 3.92035i 0.935491 + 0.168862i
\(540\) 0 0
\(541\) 9.02363 + 6.55605i 0.387956 + 0.281867i 0.764617 0.644484i \(-0.222928\pi\)
−0.376661 + 0.926351i \(0.622928\pi\)
\(542\) 8.95874 1.90424i 0.384811 0.0817940i
\(543\) 0 0
\(544\) −0.114421 1.08865i −0.00490577 0.0466753i
\(545\) −1.27259 12.1079i −0.0545117 0.518644i
\(546\) 0 0
\(547\) −5.96315 + 1.26751i −0.254966 + 0.0541947i −0.333621 0.942707i \(-0.608271\pi\)
0.0786553 + 0.996902i \(0.474937\pi\)
\(548\) 21.4907 + 15.6139i 0.918038 + 0.666994i
\(549\) 0 0
\(550\) 6.43493 + 1.16154i 0.274386 + 0.0495283i
\(551\) 4.05833 + 7.02924i 0.172891 + 0.299456i
\(552\) 0 0
\(553\) 1.61527 + 1.79394i 0.0686885 + 0.0762863i
\(554\) −14.8468 3.15579i −0.630780 0.134077i
\(555\) 0 0
\(556\) −25.5643 11.3819i −1.08417 0.482702i
\(557\) 3.05982 + 9.41715i 0.129649 + 0.399018i 0.994719 0.102632i \(-0.0327265\pi\)
−0.865071 + 0.501650i \(0.832727\pi\)
\(558\) 0 0
\(559\) −20.9380 15.2123i −0.885581 0.643412i
\(560\) 0.714997 + 1.23841i 0.0302141 + 0.0523324i
\(561\) 0 0
\(562\) −0.373900 + 0.647614i −0.0157720 + 0.0273180i
\(563\) −0.503872 + 0.224338i −0.0212357 + 0.00945473i −0.417327 0.908756i \(-0.637033\pi\)
0.396091 + 0.918211i \(0.370366\pi\)
\(564\) 0 0
\(565\) −2.63891 + 2.93080i −0.111020 + 0.123300i
\(566\) −7.81863 + 5.68057i −0.328642 + 0.238772i
\(567\) 0 0
\(568\) −2.00837 6.18113i −0.0842694 0.259355i
\(569\) 18.8280 4.00202i 0.789313 0.167774i 0.204419 0.978884i \(-0.434470\pi\)
0.584894 + 0.811110i \(0.301136\pi\)
\(570\) 0 0
\(571\) −13.7061 + 23.7396i −0.573582 + 0.993473i 0.422612 + 0.906311i \(0.361113\pi\)
−0.996194 + 0.0871624i \(0.972220\pi\)
\(572\) 1.49152 20.1563i 0.0623637 0.842779i
\(573\) 0 0
\(574\) −0.265451 + 2.52560i −0.0110797 + 0.105417i
\(575\) 0.310891 0.956825i 0.0129651 0.0399024i
\(576\) 0 0
\(577\) 24.2732 17.6355i 1.01050 0.734175i 0.0461898 0.998933i \(-0.485292\pi\)
0.964315 + 0.264758i \(0.0852921\pi\)
\(578\) −9.75492 4.34317i −0.405751 0.180652i
\(579\) 0 0
\(580\) −6.11818 6.79492i −0.254043 0.282144i
\(581\) −3.99651 + 1.77936i −0.165803 + 0.0738204i
\(582\) 0 0
\(583\) 20.6228 15.9782i 0.854109 0.661750i
\(584\) −0.963220 −0.0398583
\(585\) 0 0
\(586\) −6.24393 + 19.2169i −0.257935 + 0.793841i
\(587\) 3.90905 4.34143i 0.161344 0.179190i −0.657052 0.753845i \(-0.728197\pi\)
0.818396 + 0.574655i \(0.194864\pi\)
\(588\) 0 0
\(589\) 1.14622 + 10.9056i 0.0472293 + 0.449357i
\(590\) −6.06343 1.28882i −0.249627 0.0530599i
\(591\) 0 0
\(592\) −1.91292 + 18.2002i −0.0786205 + 0.748025i
\(593\) −35.2941 −1.44936 −0.724678 0.689088i \(-0.758011\pi\)
−0.724678 + 0.689088i \(0.758011\pi\)
\(594\) 0 0
\(595\) −0.155503 −0.00637500
\(596\) 1.05707 10.0574i 0.0432995 0.411967i
\(597\) 0 0
\(598\) 0.751620 + 0.159762i 0.0307360 + 0.00653315i
\(599\) 2.38691 + 22.7099i 0.0975263 + 0.927901i 0.928436 + 0.371493i \(0.121154\pi\)
−0.830909 + 0.556408i \(0.812179\pi\)
\(600\) 0 0
\(601\) 7.68359 8.53349i 0.313420 0.348088i −0.565767 0.824565i \(-0.691420\pi\)
0.879187 + 0.476477i \(0.158086\pi\)
\(602\) −0.779042 + 2.39765i −0.0317514 + 0.0977207i
\(603\) 0 0
\(604\) −26.0309 −1.05918
\(605\) −6.69999 + 13.4592i −0.272393 + 0.547195i
\(606\) 0 0
\(607\) 11.8036 5.25531i 0.479095 0.213307i −0.152957 0.988233i \(-0.548880\pi\)
0.632052 + 0.774926i \(0.282213\pi\)
\(608\) −7.36567 8.18040i −0.298717 0.331759i
\(609\) 0 0
\(610\) −6.78911 3.02271i −0.274883 0.122386i
\(611\) 15.6410 11.3639i 0.632767 0.459732i
\(612\) 0 0
\(613\) 7.44676 22.9188i 0.300772 0.925680i −0.680450 0.732795i \(-0.738216\pi\)
0.981221 0.192885i \(-0.0617845\pi\)
\(614\) −2.17934 + 20.7351i −0.0879511 + 0.836799i
\(615\) 0 0
\(616\) −4.29696 + 1.05289i −0.173129 + 0.0424220i
\(617\) 11.3955 19.7377i 0.458767 0.794608i −0.540129 0.841582i \(-0.681625\pi\)
0.998896 + 0.0469742i \(0.0149578\pi\)
\(618\) 0 0
\(619\) 19.8734 4.22422i 0.798779 0.169786i 0.209599 0.977787i \(-0.432784\pi\)
0.589180 + 0.808002i \(0.299451\pi\)
\(620\) −3.81725 11.7483i −0.153304 0.471822i
\(621\) 0 0
\(622\) 17.3067 12.5740i 0.693935 0.504173i
\(623\) 1.33344 1.48094i 0.0534233 0.0593326i
\(624\) 0 0
\(625\) 0.427795 0.190466i 0.0171118 0.00761866i
\(626\) −1.48353 + 2.56954i −0.0592937 + 0.102700i
\(627\) 0 0
\(628\) −13.6671 23.6720i −0.545375 0.944617i
\(629\) −1.61000 1.16973i −0.0641947 0.0466402i
\(630\) 0 0
\(631\) 4.74547 + 14.6051i 0.188914 + 0.581418i 0.999994 0.00351764i \(-0.00111970\pi\)
−0.811080 + 0.584936i \(0.801120\pi\)
\(632\) 8.50836 + 3.78816i 0.338444 + 0.150685i
\(633\) 0 0
\(634\) −10.7246 2.27959i −0.425930 0.0905342i
\(635\) −1.17470 1.30464i −0.0466166 0.0517730i
\(636\) 0 0
\(637\) 12.6428 + 21.8980i 0.500926 + 0.867629i
\(638\) 7.84323 3.78616i 0.310517 0.149895i
\(639\) 0 0
\(640\) 12.5093 + 9.08850i 0.494472 + 0.359255i
\(641\) 13.2372 2.81365i 0.522837 0.111132i 0.0610695 0.998134i \(-0.480549\pi\)
0.461767 + 0.887001i \(0.347216\pi\)
\(642\) 0 0
\(643\) −1.32215 12.5794i −0.0521405 0.496083i −0.989164 0.146816i \(-0.953097\pi\)
0.937023 0.349267i \(-0.113569\pi\)
\(644\) 0.0316631 + 0.301255i 0.00124770 + 0.0118711i
\(645\) 0 0
\(646\) 0.231829 0.0492767i 0.00912117 0.00193877i
\(647\) −1.31179 0.953069i −0.0515717 0.0374690i 0.561701 0.827340i \(-0.310147\pi\)
−0.613272 + 0.789871i \(0.710147\pi\)
\(648\) 0 0
\(649\) −11.3034 + 21.0525i −0.443697 + 0.826381i
\(650\) 3.74587 + 6.48804i 0.146925 + 0.254482i
\(651\) 0 0
\(652\) −19.9312 22.1358i −0.780566 0.866907i
\(653\) 32.3315 + 6.87228i 1.26523 + 0.268933i 0.791190 0.611570i \(-0.209462\pi\)
0.474040 + 0.880503i \(0.342795\pi\)
\(654\) 0 0
\(655\) 7.91373 + 3.52342i 0.309215 + 0.137671i
\(656\) −3.77240 11.6103i −0.147288 0.453305i
\(657\) 0 0
\(658\) −1.52358 1.10695i −0.0593955 0.0431534i
\(659\) −23.9506 41.4836i −0.932983 1.61597i −0.778192 0.628026i \(-0.783863\pi\)
−0.154790 0.987947i \(-0.549470\pi\)
\(660\) 0 0
\(661\) 9.25259 16.0260i 0.359884 0.623337i −0.628057 0.778167i \(-0.716150\pi\)
0.987941 + 0.154830i \(0.0494830\pi\)
\(662\) 7.46282 3.32266i 0.290051 0.129139i
\(663\) 0 0
\(664\) −11.2938 + 12.5431i −0.438286 + 0.486766i
\(665\) −1.26510 + 0.919151i −0.0490586 + 0.0356431i
\(666\) 0 0
\(667\) −0.414080 1.27441i −0.0160332 0.0493452i
\(668\) 14.8503 3.15654i 0.574577 0.122130i
\(669\) 0 0
\(670\) 3.91372 6.77876i 0.151200 0.261887i
\(671\) −18.5025 + 21.8700i −0.714283 + 0.844282i
\(672\) 0 0
\(673\) −4.09073 + 38.9207i −0.157686 + 1.50028i 0.574121 + 0.818771i \(0.305344\pi\)
−0.731807 + 0.681512i \(0.761323\pi\)
\(674\) −2.01213 + 6.19270i −0.0775044 + 0.238534i
\(675\) 0 0
\(676\) 1.86742 1.35676i 0.0718239 0.0521831i
\(677\) 11.4043 + 5.07750i 0.438301 + 0.195144i 0.614010 0.789298i \(-0.289555\pi\)
−0.175709 + 0.984442i \(0.556222\pi\)
\(678\) 0 0
\(679\) −2.54331 2.82463i −0.0976033 0.108399i
\(680\) −0.548086 + 0.244024i −0.0210181 + 0.00935788i
\(681\) 0 0
\(682\) 11.7606 0.363010i 0.450338 0.0139004i
\(683\) −17.3888 −0.665363 −0.332681 0.943039i \(-0.607953\pi\)
−0.332681 + 0.943039i \(0.607953\pi\)
\(684\) 0 0
\(685\) 6.99597 21.5314i 0.267302 0.822672i
\(686\) 3.38185 3.75593i 0.129120 0.143402i
\(687\) 0 0
\(688\) −1.26677 12.0525i −0.0482952 0.459499i
\(689\) 29.2367 + 6.21445i 1.11383 + 0.236752i
\(690\) 0 0
\(691\) −0.382036 + 3.63483i −0.0145333 + 0.138275i −0.999382 0.0351379i \(-0.988813\pi\)
0.984849 + 0.173413i \(0.0554796\pi\)
\(692\) −28.8156 −1.09541
\(693\) 0 0
\(694\) 3.86751 0.146809
\(695\) −2.49293 + 23.7186i −0.0945621 + 0.899699i
\(696\) 0 0
\(697\) 1.29851 + 0.276007i 0.0491846 + 0.0104545i
\(698\) −1.34092 12.7580i −0.0507545 0.482896i
\(699\) 0 0
\(700\) −1.97615 + 2.19474i −0.0746914 + 0.0829532i
\(701\) −1.72623 + 5.31280i −0.0651989 + 0.200662i −0.978349 0.206962i \(-0.933642\pi\)
0.913150 + 0.407624i \(0.133642\pi\)
\(702\) 0 0
\(703\) −20.0123 −0.754777
\(704\) −0.00683427 + 0.00529508i −0.000257576 + 0.000199566i
\(705\) 0 0
\(706\) −6.89420 + 3.06950i −0.259467 + 0.115522i
\(707\) −7.27771 8.08272i −0.273706 0.303982i
\(708\) 0 0
\(709\) 12.6591 + 5.63618i 0.475421 + 0.211671i 0.630436 0.776241i \(-0.282876\pi\)
−0.155015 + 0.987912i \(0.549543\pi\)
\(710\) −1.99420 + 1.44887i −0.0748410 + 0.0543752i
\(711\) 0 0
\(712\) 2.37589 7.31224i 0.0890403 0.274038i
\(713\) 0.189231 1.80041i 0.00708676 0.0674260i
\(714\) 0 0
\(715\) −16.7305 + 4.09948i −0.625685 + 0.153312i
\(716\) 21.2155 36.7464i 0.792861 1.37328i
\(717\) 0 0
\(718\) −11.0109 + 2.34043i −0.410922 + 0.0873442i
\(719\) −8.24222 25.3669i −0.307383 0.946027i −0.978777 0.204927i \(-0.934304\pi\)
0.671394 0.741100i \(-0.265696\pi\)
\(720\) 0 0
\(721\) 1.53968 1.11865i 0.0573408 0.0416605i
\(722\) −6.40847 + 7.11733i −0.238499 + 0.264879i
\(723\) 0 0
\(724\) 1.28775 0.573342i 0.0478587 0.0213081i
\(725\) 6.53222 11.3141i 0.242600 0.420196i
\(726\) 0 0
\(727\) 11.3198 + 19.6065i 0.419830 + 0.727166i 0.995922 0.0902184i \(-0.0287565\pi\)
−0.576092 + 0.817385i \(0.695423\pi\)
\(728\) −4.10069 2.97933i −0.151982 0.110421i
\(729\) 0 0
\(730\) 0.112890 + 0.347441i 0.00417826 + 0.0128594i
\(731\) 1.20392 + 0.536021i 0.0445287 + 0.0198255i
\(732\) 0 0
\(733\) −21.5549 4.58163i −0.796148 0.169226i −0.208159 0.978095i \(-0.566747\pi\)
−0.587989 + 0.808869i \(0.700080\pi\)
\(734\) 11.6339 + 12.9208i 0.429417 + 0.476915i
\(735\) 0 0
\(736\) 0.908646 + 1.57382i 0.0334932 + 0.0580118i
\(737\) −20.8716 21.7891i −0.768816 0.802612i
\(738\) 0 0
\(739\) −39.3226 28.5696i −1.44651 1.05095i −0.986632 0.162965i \(-0.947894\pi\)
−0.459875 0.887984i \(-0.652106\pi\)
\(740\) 22.0513 4.68715i 0.810622 0.172303i
\(741\) 0 0
\(742\) −0.304341 2.89561i −0.0111727 0.106301i
\(743\) 0.575345 + 5.47405i 0.0211074 + 0.200823i 0.999994 0.00358270i \(-0.00114041\pi\)
−0.978886 + 0.204406i \(0.934474\pi\)
\(744\) 0 0
\(745\) −8.43039 + 1.79194i −0.308866 + 0.0656514i
\(746\) −6.30937 4.58402i −0.231002 0.167833i
\(747\) 0 0
\(748\) 0.139105 + 1.01973i 0.00508618 + 0.0372851i
\(749\) −4.95973 8.59050i −0.181224 0.313890i
\(750\) 0 0
\(751\) −2.48961 2.76499i −0.0908470 0.100896i 0.696007 0.718035i \(-0.254958\pi\)
−0.786854 + 0.617139i \(0.788292\pi\)
\(752\) 8.85521 + 1.88223i 0.322916 + 0.0686379i
\(753\) 0 0
\(754\) 9.11567 + 4.05856i 0.331973 + 0.147804i
\(755\) 6.85556 + 21.0993i 0.249499 + 0.767880i
\(756\) 0 0
\(757\) 24.6209 + 17.8881i 0.894862 + 0.650155i 0.937141 0.348951i \(-0.113462\pi\)
−0.0422792 + 0.999106i \(0.513462\pi\)
\(758\) −5.29781 9.17608i −0.192425 0.333290i
\(759\) 0 0
\(760\) −3.01660 + 5.22491i −0.109424 + 0.189527i
\(761\) 20.5182 9.13531i 0.743786 0.331155i 0.000383921 1.00000i \(-0.499878\pi\)
0.743402 + 0.668845i \(0.233211\pi\)
\(762\) 0 0
\(763\) −3.50459 + 3.89224i −0.126875 + 0.140909i
\(764\) 20.1381 14.6312i 0.728571 0.529338i
\(765\) 0 0
\(766\) −2.42169 7.45320i −0.0874992 0.269295i
\(767\) −26.7787 + 5.69198i −0.966922 + 0.205526i
\(768\) 0 0
\(769\) −19.4798 + 33.7399i −0.702458 + 1.21669i 0.265143 + 0.964209i \(0.414581\pi\)
−0.967601 + 0.252484i \(0.918752\pi\)
\(770\) 0.883393 + 1.42655i 0.0318353 + 0.0514092i
\(771\) 0 0
\(772\) 1.62179 15.4303i 0.0583695 0.555349i
\(773\) 16.4951 50.7667i 0.593287 1.82595i 0.0302135 0.999543i \(-0.490381\pi\)
0.563074 0.826407i \(-0.309619\pi\)
\(774\) 0 0
\(775\) 14.2792 10.3745i 0.512925 0.372662i
\(776\) −13.3967 5.96461i −0.480914 0.214117i
\(777\) 0 0
\(778\) 0.517595 + 0.574847i 0.0185567 + 0.0206093i
\(779\) 12.1955 5.42979i 0.436950 0.194543i
\(780\) 0 0
\(781\) 3.21361 + 8.94184i 0.114992 + 0.319964i
\(782\) −0.0391279 −0.00139921
\(783\) 0 0
\(784\) −3.65884 + 11.2607i −0.130673 + 0.402169i
\(785\) −15.5879 + 17.3121i −0.556357 + 0.617897i
\(786\) 0 0
\(787\) −3.01381 28.6745i −0.107431 1.02213i −0.906877 0.421396i \(-0.861540\pi\)
0.799446 0.600738i \(-0.205126\pi\)
\(788\) −40.8426 8.68136i −1.45496 0.309261i
\(789\) 0 0
\(790\) 0.369232 3.51301i 0.0131367 0.124987i
\(791\) 1.69662 0.0603250
\(792\) 0 0
\(793\) −32.8211 −1.16551
\(794\) −1.35497 + 12.8917i −0.0480860 + 0.457508i
\(795\) 0 0
\(796\) −32.0854 6.81996i −1.13724 0.241727i
\(797\) 3.46749 + 32.9910i 0.122825 + 1.16860i 0.866190 + 0.499715i \(0.166562\pi\)
−0.743365 + 0.668886i \(0.766772\pi\)
\(798\) 0 0
\(799\) −0.658734 + 0.731598i −0.0233043 + 0.0258821i
\(800\) −5.47516 + 16.8508i −0.193576 + 0.595766i
\(801\) 0 0
\(802\) 4.24208 0.149793
\(803\) 1.40754 0.0434460i 0.0496711 0.00153317i
\(804\) 0 0
\(805\) 0.235842 0.105004i 0.00831235 0.00370090i
\(806\) 9.02040 + 10.0182i 0.317730 + 0.352875i
\(807\) 0 0
\(808\) −38.3349 17.0678i −1.34862 0.600443i
\(809\) 19.8771 14.4416i 0.698842 0.507739i −0.180713 0.983536i \(-0.557840\pi\)
0.879555 + 0.475797i \(0.157840\pi\)
\(810\) 0 0
\(811\) 11.5446 35.5307i 0.405387 1.24765i −0.515185 0.857079i \(-0.672277\pi\)
0.920572 0.390573i \(-0.127723\pi\)
\(812\) −0.411167 + 3.91200i −0.0144291 + 0.137284i
\(813\) 0 0
\(814\) −1.58465 + 21.4148i −0.0555418 + 0.750589i
\(815\) −12.6930 + 21.9850i −0.444617 + 0.770099i
\(816\) 0 0
\(817\) 12.9629 2.75535i 0.453515 0.0963976i
\(818\) 5.67451 + 17.4644i 0.198405 + 0.610627i
\(819\) 0 0
\(820\) −12.1664 + 8.83939i −0.424868 + 0.308685i
\(821\) −8.16415 + 9.06720i −0.284931 + 0.316448i −0.868571 0.495565i \(-0.834961\pi\)
0.583640 + 0.812012i \(0.301628\pi\)
\(822\) 0 0
\(823\) −45.2009 + 20.1248i −1.57561 + 0.701505i −0.993733 0.111776i \(-0.964346\pi\)
−0.581872 + 0.813280i \(0.697680\pi\)
\(824\) 3.67133 6.35893i 0.127897 0.221524i
\(825\) 0 0
\(826\) 1.33339 + 2.30950i 0.0463945 + 0.0803576i
\(827\) 2.45628 + 1.78459i 0.0854134 + 0.0620564i 0.629672 0.776861i \(-0.283189\pi\)
−0.544259 + 0.838917i \(0.683189\pi\)
\(828\) 0 0
\(829\) −14.8814 45.8003i −0.516853 1.59071i −0.779885 0.625923i \(-0.784722\pi\)
0.263032 0.964787i \(-0.415278\pi\)
\(830\) 5.84804 + 2.60372i 0.202989 + 0.0903763i
\(831\) 0 0
\(832\) −0.00968886 0.00205943i −0.000335901 7.13979e-5i
\(833\) −0.861542 0.956839i −0.0298507 0.0331525i
\(834\) 0 0
\(835\) −6.46955 11.2056i −0.223888 0.387786i
\(836\) 7.15915 + 7.47386i 0.247605 + 0.258489i
\(837\) 0 0
\(838\) −19.3376 14.0496i −0.668007 0.485335i
\(839\) −38.0873 + 8.09571i −1.31492 + 0.279495i −0.811401 0.584490i \(-0.801295\pi\)
−0.503519 + 0.863984i \(0.667961\pi\)
\(840\) 0 0
\(841\) 1.21246 + 11.5358i 0.0418090 + 0.397786i
\(842\) 0.533537 + 5.07627i 0.0183869 + 0.174940i
\(843\) 0 0
\(844\) −24.9683 + 5.30718i −0.859445 + 0.182681i
\(845\) −1.59153 1.15631i −0.0547503 0.0397784i
\(846\) 0 0
\(847\) 6.23162 1.73239i 0.214121 0.0595255i
\(848\) 6.99812 + 12.1211i 0.240316 + 0.416240i
\(849\) 0 0
\(850\) −0.255262 0.283497i −0.00875542 0.00972388i
\(851\) 3.23165 + 0.686909i 0.110780 + 0.0235469i
\(852\) 0 0
\(853\) −33.8107 15.0535i −1.15765 0.515421i −0.264153 0.964481i \(-0.585092\pi\)
−0.893502 + 0.449060i \(0.851759\pi\)
\(854\) 0.987956 + 3.04062i 0.0338072 + 0.104048i
\(855\) 0 0
\(856\) −30.9617 22.4950i −1.05825 0.768864i
\(857\) 14.2713 + 24.7186i 0.487499 + 0.844372i 0.999897 0.0143758i \(-0.00457610\pi\)
−0.512398 + 0.858748i \(0.671243\pi\)
\(858\) 0 0
\(859\) −19.1707 + 33.2046i −0.654094 + 1.13292i 0.328025 + 0.944669i \(0.393617\pi\)
−0.982120 + 0.188256i \(0.939717\pi\)
\(860\) −13.6383 + 6.07218i −0.465064 + 0.207060i
\(861\) 0 0
\(862\) −12.8259 + 14.2446i −0.436852 + 0.485174i
\(863\) 22.6247 16.4378i 0.770153 0.559549i −0.131855 0.991269i \(-0.542093\pi\)
0.902008 + 0.431720i \(0.142093\pi\)
\(864\) 0 0
\(865\) 7.58897 + 23.3565i 0.258033 + 0.794143i
\(866\) −14.8308 + 3.15238i −0.503970 + 0.107122i
\(867\) 0 0
\(868\) −2.65712 + 4.60226i −0.0901884 + 0.156211i
\(869\) −12.6040 5.15184i −0.427563 0.174764i
\(870\) 0 0
\(871\) 3.61348 34.3799i 0.122438 1.16492i
\(872\) −6.24437 + 19.2182i −0.211461 + 0.650810i
\(873\) 0 0
\(874\) −0.318327 + 0.231278i −0.0107676 + 0.00782309i
\(875\) 5.97029 + 2.65814i 0.201833 + 0.0898617i
\(876\) 0 0
\(877\) −14.0783 15.6355i −0.475390 0.527974i 0.456981 0.889476i \(-0.348931\pi\)
−0.932371 + 0.361502i \(0.882264\pi\)
\(878\) 19.7355 8.78682i 0.666041 0.296541i
\(879\) 0 0
\(880\) −6.66868 4.53748i −0.224801 0.152959i
\(881\) −17.0076 −0.573000 −0.286500 0.958080i \(-0.592492\pi\)
−0.286500 + 0.958080i \(0.592492\pi\)
\(882\) 0 0
\(883\) 2.08724 6.42388i 0.0702414 0.216181i −0.909773 0.415105i \(-0.863745\pi\)
0.980015 + 0.198924i \(0.0637448\pi\)
\(884\) −0.789001 + 0.876275i −0.0265370 + 0.0294723i
\(885\) 0 0
\(886\) 0.561959 + 5.34669i 0.0188794 + 0.179625i
\(887\) 33.1095 + 7.03764i 1.11171 + 0.236301i 0.726932 0.686709i \(-0.240946\pi\)
0.384775 + 0.923010i \(0.374279\pi\)
\(888\) 0 0
\(889\) −0.0789449 + 0.751111i −0.00264773 + 0.0251915i
\(890\) −2.91604 −0.0977459
\(891\) 0 0
\(892\) −4.01188 −0.134328
\(893\) −1.03482 + 9.84561i −0.0346288 + 0.329471i
\(894\) 0 0
\(895\) −35.3721 7.51856i −1.18236 0.251318i
\(896\) −0.695314 6.61547i −0.0232288 0.221007i
\(897\) 0 0
\(898\) −15.5299 + 17.2477i −0.518239 + 0.575563i
\(899\) 7.26448 22.3578i 0.242284 0.745674i
\(900\) 0 0
\(901\) −1.52201 −0.0507054
\(902\) −4.84465 13.4802i −0.161309 0.448841i
\(903\) 0 0
\(904\) 5.97993 2.66244i 0.198889 0.0885513i
\(905\) −0.803865 0.892783i −0.0267214 0.0296771i
\(906\) 0 0
\(907\) 25.7133 + 11.4483i 0.853795 + 0.380134i 0.786493 0.617599i \(-0.211894\pi\)
0.0673015 + 0.997733i \(0.478561\pi\)
\(908\) −20.9066 + 15.1895i −0.693809 + 0.504082i
\(909\) 0 0
\(910\) −0.594061 + 1.82833i −0.0196929 + 0.0606086i
\(911\) 0.855313 8.13776i 0.0283378 0.269616i −0.971174 0.238372i \(-0.923386\pi\)
0.999512 0.0312443i \(-0.00994700\pi\)
\(912\) 0 0
\(913\) 15.9378 18.8385i 0.527465 0.623463i
\(914\) −7.45467 + 12.9119i −0.246579 + 0.427087i
\(915\) 0 0
\(916\) 5.18405 1.10190i 0.171286 0.0364080i
\(917\) −1.15161 3.54430i −0.0380296 0.117043i
\(918\) 0 0
\(919\) −9.43023 + 6.85146i −0.311075 + 0.226009i −0.732357 0.680920i \(-0.761580\pi\)
0.421283 + 0.906929i \(0.361580\pi\)
\(920\) 0.666473 0.740193i 0.0219730 0.0244035i
\(921\) 0 0
\(922\) 16.4970 7.34494i 0.543300 0.241893i
\(923\) −5.44317 + 9.42785i −0.179164 + 0.310322i
\(924\) 0 0
\(925\) 16.1057 + 27.8959i 0.529552 + 0.917211i
\(926\) −5.53241 4.01953i −0.181806 0.132090i
\(927\) 0 0
\(928\) 7.29242 + 22.4438i 0.239385 + 0.736753i
\(929\) −29.0262 12.9233i −0.952318 0.423999i −0.129041 0.991639i \(-0.541190\pi\)
−0.823277 + 0.567640i \(0.807857\pi\)
\(930\) 0 0
\(931\) −12.6648 2.69199i −0.415073 0.0882265i
\(932\) 4.62705 + 5.13886i 0.151564 + 0.168329i
\(933\) 0 0
\(934\) −9.28136 16.0758i −0.303695 0.526016i
\(935\) 0.789907 0.381311i 0.0258327 0.0124702i
\(936\) 0 0
\(937\) 34.9908 + 25.4223i 1.14310 + 0.830510i 0.987548 0.157318i \(-0.0502847\pi\)
0.155551 + 0.987828i \(0.450285\pi\)
\(938\) −3.29380 + 0.700119i −0.107546 + 0.0228597i
\(939\) 0 0
\(940\) −1.16573 11.0911i −0.0380218 0.361753i
\(941\) −1.27546 12.1352i −0.0415790 0.395597i −0.995443 0.0953585i \(-0.969600\pi\)
0.953864 0.300239i \(-0.0970664\pi\)
\(942\) 0 0
\(943\) −2.15575 + 0.458219i −0.0702008 + 0.0149216i
\(944\) −10.3712 7.53513i −0.337554 0.245248i
\(945\) 0 0
\(946\) −1.92201 14.0896i −0.0624898 0.458092i
\(947\) 15.5930 + 27.0079i 0.506706 + 0.877640i 0.999970 + 0.00776032i \(0.00247021\pi\)
−0.493264 + 0.869879i \(0.664196\pi\)
\(948\) 0 0
\(949\) 1.07958 + 1.19900i 0.0350448 + 0.0389212i
\(950\) −3.75240 0.797597i −0.121744 0.0258775i
\(951\) 0 0
\(952\) 0.235788 + 0.104980i 0.00764193 + 0.00340241i
\(953\) 5.66371 + 17.4311i 0.183466 + 0.564649i 0.999919 0.0127629i \(-0.00406266\pi\)
−0.816453 + 0.577412i \(0.804063\pi\)
\(954\) 0 0
\(955\) −17.1629 12.4696i −0.555378 0.403506i
\(956\) 12.0601 + 20.8887i 0.390050 + 0.675587i
\(957\) 0 0
\(958\) 6.72223 11.6432i 0.217185 0.376176i
\(959\) −8.89751 + 3.96143i −0.287316 + 0.127921i
\(960\) 0 0
\(961\) 0.508465 0.564708i 0.0164021 0.0182164i
\(962\) −19.9037 + 14.4609i −0.641723 + 0.466239i
\(963\) 0 0
\(964\) −6.82455 21.0038i −0.219804 0.676487i
\(965\) −12.9341 + 2.74923i −0.416364 + 0.0885009i
\(966\) 0 0
\(967\) −10.4254 + 18.0573i −0.335258 + 0.580683i −0.983534 0.180722i \(-0.942157\pi\)
0.648277 + 0.761405i \(0.275490\pi\)
\(968\) 19.2454 15.8850i 0.618571 0.510562i
\(969\) 0 0
\(970\) −0.581370 + 5.53137i −0.0186667 + 0.177601i
\(971\) 8.79427 27.0660i 0.282222 0.868589i −0.704996 0.709211i \(-0.749051\pi\)
0.987218 0.159378i \(-0.0509488\pi\)
\(972\) 0 0
\(973\) 8.30053 6.03069i 0.266103 0.193335i
\(974\) −1.30913 0.582861i −0.0419472 0.0186761i
\(975\) 0 0
\(976\) −10.2838 11.4213i −0.329175 0.365586i
\(977\) 20.3347 9.05359i 0.650564 0.289650i −0.0547974 0.998497i \(-0.517451\pi\)
0.705362 + 0.708848i \(0.250785\pi\)
\(978\) 0 0
\(979\) −3.14205 + 10.7925i −0.100420 + 0.344929i
\(980\) 14.5857 0.465924
\(981\) 0 0
\(982\) 1.85302 5.70301i 0.0591322 0.181990i
\(983\) 15.4525 17.1618i 0.492859 0.547375i −0.444482 0.895788i \(-0.646612\pi\)
0.937341 + 0.348412i \(0.113279\pi\)
\(984\) 0 0
\(985\) 3.71977 + 35.3912i 0.118522 + 1.12766i
\(986\) −0.496998 0.105640i −0.0158277 0.00336427i
\(987\) 0 0
\(988\) −1.23945 + 11.7926i −0.0394323 + 0.375173i
\(989\) −2.18787 −0.0695703
\(990\) 0 0
\(991\) −6.16408 −0.195809 −0.0979043 0.995196i \(-0.531214\pi\)
−0.0979043 + 0.995196i \(0.531214\pi\)
\(992\) −3.33258 + 31.7074i −0.105810 + 1.00671i
\(993\) 0 0
\(994\) 1.03726 + 0.220477i 0.0329000 + 0.00699310i
\(995\) 2.92220 + 27.8028i 0.0926399 + 0.881409i
\(996\) 0 0
\(997\) 16.9821 18.8606i 0.537830 0.597320i −0.411575 0.911376i \(-0.635021\pi\)
0.949405 + 0.314056i \(0.101688\pi\)
\(998\) −2.47504 + 7.61739i −0.0783461 + 0.241124i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.n.l.433.6 96
3.2 odd 2 inner 891.2.n.l.433.7 96
9.2 odd 6 inner 891.2.n.l.136.6 96
9.4 even 3 891.2.f.g.730.6 yes 48
9.5 odd 6 891.2.f.g.730.7 yes 48
9.7 even 3 inner 891.2.n.l.136.7 96
11.3 even 5 inner 891.2.n.l.190.7 96
33.14 odd 10 inner 891.2.n.l.190.6 96
99.5 odd 30 9801.2.a.cr.1.10 24
99.14 odd 30 891.2.f.g.487.7 yes 48
99.25 even 15 inner 891.2.n.l.784.6 96
99.47 odd 30 inner 891.2.n.l.784.7 96
99.49 even 15 9801.2.a.cr.1.15 24
99.50 even 30 9801.2.a.cq.1.15 24
99.58 even 15 891.2.f.g.487.6 48
99.94 odd 30 9801.2.a.cq.1.10 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
891.2.f.g.487.6 48 99.58 even 15
891.2.f.g.487.7 yes 48 99.14 odd 30
891.2.f.g.730.6 yes 48 9.4 even 3
891.2.f.g.730.7 yes 48 9.5 odd 6
891.2.n.l.136.6 96 9.2 odd 6 inner
891.2.n.l.136.7 96 9.7 even 3 inner
891.2.n.l.190.6 96 33.14 odd 10 inner
891.2.n.l.190.7 96 11.3 even 5 inner
891.2.n.l.433.6 96 1.1 even 1 trivial
891.2.n.l.433.7 96 3.2 odd 2 inner
891.2.n.l.784.6 96 99.25 even 15 inner
891.2.n.l.784.7 96 99.47 odd 30 inner
9801.2.a.cq.1.10 24 99.94 odd 30
9801.2.a.cq.1.15 24 99.50 even 30
9801.2.a.cr.1.10 24 99.5 odd 30
9801.2.a.cr.1.15 24 99.49 even 15