Normalized defining polynomial
\( x^{12} - x^{11} + 87 x^{10} - 221 x^{9} + 7751 x^{8} + 27358 x^{7} + 649836 x^{6} + 1330904 x^{5} + \cdots + 5308416 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(39548330211803192814453125\) \(\medspace = 5^{9}\cdot 7^{8}\cdot 37^{8}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(135.86\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{3/4}7^{2/3}37^{2/3}\approx 135.86075153822173$ | ||
Ramified primes: | \(5\), \(7\), \(37\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(1295=5\cdot 7\cdot 37\) | ||
Dirichlet character group: | $\lbrace$$\chi_{1295}(1,·)$, $\chi_{1295}(676,·)$, $\chi_{1295}(359,·)$, $\chi_{1295}(618,·)$, $\chi_{1295}(519,·)$, $\chi_{1295}(1037,·)$, $\chi_{1295}(877,·)$, $\chi_{1295}(1136,·)$, $\chi_{1295}(417,·)$, $\chi_{1295}(1194,·)$, $\chi_{1295}(778,·)$, $\chi_{1295}(158,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | \(\Q(\zeta_{5})\)$^{2}$, 12.0.39548330211803192814453125.1$^{30}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{6}a^{5}+\frac{1}{6}a^{4}+\frac{1}{6}a^{3}+\frac{1}{6}a^{2}+\frac{1}{6}a$, $\frac{1}{12}a^{6}-\frac{1}{12}a^{5}-\frac{1}{12}a^{4}-\frac{1}{12}a^{3}-\frac{1}{12}a^{2}-\frac{1}{6}a$, $\frac{1}{24}a^{7}-\frac{1}{24}a^{6}-\frac{1}{24}a^{5}+\frac{11}{24}a^{4}-\frac{1}{24}a^{3}-\frac{1}{12}a^{2}-\frac{1}{2}a$, $\frac{1}{48}a^{8}-\frac{1}{48}a^{7}-\frac{1}{48}a^{6}+\frac{1}{16}a^{5}-\frac{3}{16}a^{4}+\frac{7}{24}a^{3}-\frac{5}{12}a^{2}+\frac{1}{3}a$, $\frac{1}{10063500369024}a^{9}-\frac{11463106107}{3354500123008}a^{8}-\frac{49054366947}{3354500123008}a^{7}-\frac{98147727519}{3354500123008}a^{6}-\frac{215798613779}{3354500123008}a^{5}+\frac{2162139328879}{5031750184512}a^{4}-\frac{43283118819}{838625030752}a^{3}+\frac{155133101577}{419312515376}a^{2}+\frac{66216372311}{209656257688}a-\frac{551042508}{26207032211}$, $\frac{1}{241524008856576}a^{10}-\frac{1}{241524008856576}a^{9}+\frac{588017814749}{80508002952192}a^{8}+\frac{4287874190179}{241524008856576}a^{7}+\frac{6531716848775}{241524008856576}a^{6}-\frac{2886722667505}{120762004428288}a^{5}+\frac{1101420038675}{6709000246016}a^{4}+\frac{8018758954267}{30190501107072}a^{3}-\frac{769943812691}{15095250553536}a^{2}-\frac{253967973517}{628968773064}a+\frac{1470787444}{26207032211}$, $\frac{1}{57\!\cdots\!24}a^{11}-\frac{1}{57\!\cdots\!24}a^{10}+\frac{29}{19\!\cdots\!08}a^{9}-\frac{17720222796509}{57\!\cdots\!24}a^{8}-\frac{98709841360825}{57\!\cdots\!24}a^{7}+\frac{91692203357807}{28\!\cdots\!12}a^{6}-\frac{2585882947325}{161016005904384}a^{5}+\frac{160037805055003}{724572026569728}a^{4}+\frac{70876502832445}{362286013284864}a^{3}-\frac{3148122353813}{15095250553536}a^{2}-\frac{122923678075}{628968773064}a-\frac{12155112948}{26207032211}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{1443}$, which has order $1443$ (assuming GRH)
Relative class number: $481$ (assuming GRH)
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( \frac{338597}{483048017713152} a^{11} - \frac{9819313}{161016005904384} a^{10} + \frac{74829937}{483048017713152} a^{9} - \frac{2624465347}{483048017713152} a^{8} + \frac{1162288961}{53672001968128} a^{7} - \frac{6112014447}{13418000492032} a^{6} - \frac{56330012711}{60381002214144} a^{5} - \frac{1126719778961}{30190501107072} a^{4} - \frac{26473883639}{1257937546128} a^{3} - \frac{47647220049443}{15095250553536} a^{2} - \frac{174716052}{26207032211} a - \frac{97515936}{26207032211} \) (order $10$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{622066337}{57\!\cdots\!24}a^{11}-\frac{969266153}{57\!\cdots\!24}a^{10}+\frac{18155657045}{19\!\cdots\!08}a^{9}-\frac{167578949749}{57\!\cdots\!24}a^{8}+\frac{4898367337423}{57\!\cdots\!24}a^{7}+\frac{7163672536915}{28\!\cdots\!12}a^{6}+\frac{32895200633717}{483048017713152}a^{5}+\frac{75285954568559}{724572026569728}a^{4}+\frac{20\!\cdots\!73}{362286013284864}a^{3}+\frac{41504844671}{1257937546128}a^{2}+\frac{969266153}{52414064422}a+\frac{26380632119}{26207032211}$, $\frac{21171697}{241524008856576}a^{11}-\frac{941793841}{80508002952192}a^{10}+\frac{7203688817}{241524008856576}a^{9}-\frac{252650642627}{241524008856576}a^{8}+\frac{335988883651}{80508002952192}a^{7}-\frac{910216514245}{10063500369024}a^{6}-\frac{5350300231351}{30190501107072}a^{5}-\frac{108466464051601}{15095250553536}a^{4}-\frac{2548573834999}{628968773064}a^{3}-\frac{45\!\cdots\!35}{7547625276768}a^{2}+\frac{43790163193399}{209656257688}a-\frac{5044086947750}{26207032211}$, $\frac{4440978847}{28\!\cdots\!12}a^{11}-\frac{2948193883}{28\!\cdots\!12}a^{10}+\frac{128308852919}{966096035426304}a^{9}-\frac{859258476167}{28\!\cdots\!12}a^{8}+\frac{34132057041413}{28\!\cdots\!12}a^{7}+\frac{66242947136111}{14\!\cdots\!56}a^{6}+\frac{27106039899313}{26836000984064}a^{5}+\frac{859009512857155}{362286013284864}a^{4}+\frac{14\!\cdots\!45}{181143006642432}a^{3}+\frac{11\!\cdots\!97}{15095250553536}a^{2}+\frac{8204636658385}{314484386532}a+\frac{4774501032}{26207032211}$, $\frac{109660237}{19\!\cdots\!08}a^{11}+\frac{18184537}{644064023617536}a^{10}+\frac{8293114067}{19\!\cdots\!08}a^{9}-\frac{9104156561}{19\!\cdots\!08}a^{8}+\frac{91976908811}{214688007872512}a^{7}+\frac{629690331229}{322032011808768}a^{6}+\frac{17812231707379}{483048017713152}a^{5}+\frac{32680104087235}{241524008856576}a^{4}+\frac{118579256054335}{40254001476096}a^{3}+\frac{16868968635635}{3773812638384}a^{2}+\frac{396350970581}{157242193266}a+\frac{13789344321}{26207032211}$, $\frac{2533313}{13418000492032}a^{11}-\frac{1200820687}{40254001476096}a^{10}+\frac{1020522087}{13418000492032}a^{9}-\frac{35792156997}{13418000492032}a^{8}+\frac{428526299117}{40254001476096}a^{7}-\frac{4683429685895}{20127000738048}a^{6}-\frac{17347301423}{38410306752}a^{5}-\frac{15366074947911}{838625030752}a^{4}-\frac{1083143354067}{104828128844}a^{3}-\frac{19\!\cdots\!19}{1257937546128}a^{2}+\frac{434466322207873}{628968773064}a-\frac{12862487208612}{26207032211}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 135561.594855 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 135561.594855 \cdot 1443}{10\cdot\sqrt{39548330211803192814453125}}\cr\approx \mathstrut & 0.191389511957 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 3.3.67081.1, \(\Q(\zeta_{5})\), 6.6.562482570125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.4.0.1}{4} }^{3}$ | ${\href{/padicField/3.4.0.1}{4} }^{3}$ | R | R | ${\href{/padicField/11.3.0.1}{3} }^{4}$ | ${\href{/padicField/13.12.0.1}{12} }$ | ${\href{/padicField/17.12.0.1}{12} }$ | ${\href{/padicField/19.6.0.1}{6} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.2.0.1}{2} }^{6}$ | ${\href{/padicField/31.3.0.1}{3} }^{4}$ | R | ${\href{/padicField/41.3.0.1}{3} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}$ | ${\href{/padicField/47.12.0.1}{12} }$ | ${\href{/padicField/53.12.0.1}{12} }$ | ${\href{/padicField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\) | 5.12.9.2 | $x^{12} + 12 x^{10} + 12 x^{9} + 69 x^{8} + 108 x^{7} + 42 x^{6} - 396 x^{5} + 840 x^{4} + 252 x^{3} + 1476 x^{2} + 684 x + 1601$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
\(7\) | 7.12.8.2 | $x^{12} - 70 x^{9} + 1519 x^{6} - 4802 x^{3} + 21609$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
\(37\) | 37.12.8.3 | $x^{12} - 444 x^{9} + 54760 x^{6} + 27960456 x^{3} + 7496644$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |