Properties

Label 12.12.198...000.2
Degree $12$
Signature $[12, 0]$
Discriminant $1.985\times 10^{24}$
Root discriminant \(105.88\)
Ramified primes $2,3,5,7$
Class number $3$ (GRH)
Class group [3] (GRH)
Galois group $C_{12}$ (as 12T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 99*x^10 - 140*x^9 + 3366*x^8 + 8820*x^7 - 40049*x^6 - 160020*x^5 + 39531*x^4 + 826140*x^3 + 1229700*x^2 + 647850*x + 91405)
 
gp: K = bnfinit(y^12 - 99*y^10 - 140*y^9 + 3366*y^8 + 8820*y^7 - 40049*y^6 - 160020*y^5 + 39531*y^4 + 826140*y^3 + 1229700*y^2 + 647850*y + 91405, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 99*x^10 - 140*x^9 + 3366*x^8 + 8820*x^7 - 40049*x^6 - 160020*x^5 + 39531*x^4 + 826140*x^3 + 1229700*x^2 + 647850*x + 91405);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 99*x^10 - 140*x^9 + 3366*x^8 + 8820*x^7 - 40049*x^6 - 160020*x^5 + 39531*x^4 + 826140*x^3 + 1229700*x^2 + 647850*x + 91405)
 

\( x^{12} - 99 x^{10} - 140 x^{9} + 3366 x^{8} + 8820 x^{7} - 40049 x^{6} - 160020 x^{5} + 39531 x^{4} + \cdots + 91405 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[12, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(1985246242140168000000000\) \(\medspace = 2^{12}\cdot 3^{16}\cdot 5^{9}\cdot 7^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(105.88\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 3^{4/3}5^{3/4}7^{2/3}\approx 105.88095876054969$
Ramified primes:   \(2\), \(3\), \(5\), \(7\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\card{ \Gal(K/\Q) }$:  $12$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1260=2^{2}\cdot 3^{2}\cdot 5\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{1260}(1,·)$, $\chi_{1260}(67,·)$, $\chi_{1260}(709,·)$, $\chi_{1260}(961,·)$, $\chi_{1260}(583,·)$, $\chi_{1260}(1009,·)$, $\chi_{1260}(1201,·)$, $\chi_{1260}(883,·)$, $\chi_{1260}(949,·)$, $\chi_{1260}(823,·)$, $\chi_{1260}(127,·)$, $\chi_{1260}(1087,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{44230159}a^{10}+\frac{2287418}{44230159}a^{9}-\frac{21018866}{44230159}a^{8}+\frac{6133293}{44230159}a^{7}+\frac{21070967}{44230159}a^{6}-\frac{18937369}{44230159}a^{5}-\frac{14633798}{44230159}a^{4}+\frac{14964032}{44230159}a^{3}-\frac{594802}{44230159}a^{2}+\frac{4302793}{44230159}a-\frac{7875186}{44230159}$, $\frac{1}{19\!\cdots\!79}a^{11}+\frac{27293812}{19\!\cdots\!79}a^{10}-\frac{11\!\cdots\!87}{19\!\cdots\!79}a^{9}-\frac{90\!\cdots\!98}{19\!\cdots\!79}a^{8}+\frac{63\!\cdots\!76}{19\!\cdots\!79}a^{7}-\frac{719241744546782}{19\!\cdots\!79}a^{6}-\frac{91\!\cdots\!67}{19\!\cdots\!79}a^{5}-\frac{45\!\cdots\!57}{19\!\cdots\!79}a^{4}-\frac{50\!\cdots\!32}{19\!\cdots\!79}a^{3}+\frac{80\!\cdots\!39}{19\!\cdots\!79}a^{2}-\frac{61\!\cdots\!10}{19\!\cdots\!79}a+\frac{14\!\cdots\!82}{19\!\cdots\!79}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{3780}{44230159}a^{11}-\frac{1416}{44230159}a^{10}-\frac{384300}{44230159}a^{9}-\frac{329745}{44230159}a^{8}+\frac{13652100}{44230159}a^{7}+\frac{25237142}{44230159}a^{6}-\frac{184258410}{44230159}a^{5}-\frac{491661375}{44230159}a^{4}+\frac{625505650}{44230159}a^{3}+\frac{2792973969}{44230159}a^{2}+\frac{2334175830}{44230159}a+\frac{412134598}{44230159}$, $\frac{2070310267032}{19\!\cdots\!79}a^{11}-\frac{5755061670654}{19\!\cdots\!79}a^{10}-\frac{184858437048075}{19\!\cdots\!79}a^{9}+\frac{204816973731675}{19\!\cdots\!79}a^{8}+\frac{60\!\cdots\!68}{19\!\cdots\!79}a^{7}+\frac{23\!\cdots\!23}{19\!\cdots\!79}a^{6}-\frac{80\!\cdots\!57}{19\!\cdots\!79}a^{5}-\frac{12\!\cdots\!70}{19\!\cdots\!79}a^{4}+\frac{30\!\cdots\!29}{19\!\cdots\!79}a^{3}+\frac{85\!\cdots\!56}{19\!\cdots\!79}a^{2}+\frac{61\!\cdots\!98}{19\!\cdots\!79}a+\frac{10\!\cdots\!17}{19\!\cdots\!79}$, $\frac{2287049839560}{19\!\cdots\!79}a^{11}-\frac{1507783464906}{19\!\cdots\!79}a^{10}-\frac{228633749407340}{19\!\cdots\!79}a^{9}-\frac{153019107662145}{19\!\cdots\!79}a^{8}+\frac{80\!\cdots\!20}{19\!\cdots\!79}a^{7}+\frac{13\!\cdots\!52}{19\!\cdots\!79}a^{6}-\frac{10\!\cdots\!64}{19\!\cdots\!79}a^{5}-\frac{28\!\cdots\!50}{19\!\cdots\!79}a^{4}+\frac{36\!\cdots\!20}{19\!\cdots\!79}a^{3}+\frac{16\!\cdots\!14}{19\!\cdots\!79}a^{2}+\frac{13\!\cdots\!39}{19\!\cdots\!79}a+\frac{28\!\cdots\!82}{19\!\cdots\!79}$, $\frac{660526495380}{19\!\cdots\!79}a^{11}-\frac{898482656610}{19\!\cdots\!79}a^{10}-\frac{63270542749040}{19\!\cdots\!79}a^{9}-\frac{11130763713300}{19\!\cdots\!79}a^{8}+\frac{21\!\cdots\!20}{19\!\cdots\!79}a^{7}+\frac{31\!\cdots\!50}{19\!\cdots\!79}a^{6}-\frac{28\!\cdots\!54}{19\!\cdots\!79}a^{5}-\frac{69\!\cdots\!75}{19\!\cdots\!79}a^{4}+\frac{98\!\cdots\!70}{19\!\cdots\!79}a^{3}+\frac{40\!\cdots\!25}{19\!\cdots\!79}a^{2}+\frac{31\!\cdots\!30}{19\!\cdots\!79}a+\frac{53\!\cdots\!07}{19\!\cdots\!79}$, $\frac{4744541648160}{19\!\cdots\!79}a^{11}-\frac{6649426708676}{19\!\cdots\!79}a^{10}-\frac{454590183436180}{19\!\cdots\!79}a^{9}-\frac{61609446514725}{19\!\cdots\!79}a^{8}+\frac{15\!\cdots\!40}{19\!\cdots\!79}a^{7}+\frac{21\!\cdots\!70}{19\!\cdots\!79}a^{6}-\frac{20\!\cdots\!68}{19\!\cdots\!79}a^{5}-\frac{49\!\cdots\!05}{19\!\cdots\!79}a^{4}+\frac{74\!\cdots\!40}{19\!\cdots\!79}a^{3}+\frac{29\!\cdots\!00}{19\!\cdots\!79}a^{2}+\frac{23\!\cdots\!60}{19\!\cdots\!79}a+\frac{23\!\cdots\!41}{19\!\cdots\!79}$, $\frac{18654139582236}{19\!\cdots\!79}a^{11}-\frac{6156065569832}{19\!\cdots\!79}a^{10}-\frac{18\!\cdots\!90}{19\!\cdots\!79}a^{9}-\frac{18\!\cdots\!97}{19\!\cdots\!79}a^{8}+\frac{66\!\cdots\!62}{19\!\cdots\!79}a^{7}+\frac{13\!\cdots\!19}{19\!\cdots\!79}a^{6}-\frac{88\!\cdots\!80}{19\!\cdots\!79}a^{5}-\frac{25\!\cdots\!62}{19\!\cdots\!79}a^{4}+\frac{27\!\cdots\!30}{19\!\cdots\!79}a^{3}+\frac{14\!\cdots\!55}{19\!\cdots\!79}a^{2}+\frac{12\!\cdots\!50}{19\!\cdots\!79}a+\frac{21\!\cdots\!62}{19\!\cdots\!79}$, $\frac{17300284444140}{19\!\cdots\!79}a^{11}-\frac{21827582622343}{19\!\cdots\!79}a^{10}-\frac{16\!\cdots\!90}{19\!\cdots\!79}a^{9}-\frac{293164999697984}{19\!\cdots\!79}a^{8}+\frac{58\!\cdots\!90}{19\!\cdots\!79}a^{7}+\frac{78\!\cdots\!16}{19\!\cdots\!79}a^{6}-\frac{78\!\cdots\!50}{19\!\cdots\!79}a^{5}-\frac{17\!\cdots\!59}{19\!\cdots\!79}a^{4}+\frac{28\!\cdots\!40}{19\!\cdots\!79}a^{3}+\frac{10\!\cdots\!36}{19\!\cdots\!79}a^{2}+\frac{78\!\cdots\!70}{19\!\cdots\!79}a+\frac{12\!\cdots\!17}{19\!\cdots\!79}$, $\frac{17028182593636}{19\!\cdots\!79}a^{11}-\frac{56924767798053}{19\!\cdots\!79}a^{10}-\frac{14\!\cdots\!93}{19\!\cdots\!79}a^{9}+\frac{22\!\cdots\!66}{19\!\cdots\!79}a^{8}+\frac{46\!\cdots\!86}{19\!\cdots\!79}a^{7}+\frac{60\!\cdots\!70}{19\!\cdots\!79}a^{6}-\frac{60\!\cdots\!40}{19\!\cdots\!79}a^{5}-\frac{85\!\cdots\!55}{19\!\cdots\!79}a^{4}+\frac{22\!\cdots\!94}{19\!\cdots\!79}a^{3}+\frac{64\!\cdots\!51}{19\!\cdots\!79}a^{2}+\frac{50\!\cdots\!27}{19\!\cdots\!79}a+\frac{11\!\cdots\!17}{19\!\cdots\!79}$, $\frac{3354848502495}{19\!\cdots\!79}a^{11}-\frac{21906128641523}{19\!\cdots\!79}a^{10}-\frac{247847019307716}{19\!\cdots\!79}a^{9}+\frac{13\!\cdots\!06}{19\!\cdots\!79}a^{8}+\frac{72\!\cdots\!61}{19\!\cdots\!79}a^{7}-\frac{27\!\cdots\!87}{19\!\cdots\!79}a^{6}-\frac{98\!\cdots\!95}{19\!\cdots\!79}a^{5}+\frac{18\!\cdots\!51}{19\!\cdots\!79}a^{4}+\frac{54\!\cdots\!18}{19\!\cdots\!79}a^{3}-\frac{31\!\cdots\!34}{19\!\cdots\!79}a^{2}-\frac{38\!\cdots\!30}{19\!\cdots\!79}a-\frac{80\!\cdots\!79}{19\!\cdots\!79}$, $\frac{25962783726079}{19\!\cdots\!79}a^{11}-\frac{74409633649635}{19\!\cdots\!79}a^{10}-\frac{23\!\cdots\!08}{19\!\cdots\!79}a^{9}+\frac{27\!\cdots\!31}{19\!\cdots\!79}a^{8}+\frac{75\!\cdots\!74}{19\!\cdots\!79}a^{7}+\frac{27\!\cdots\!29}{19\!\cdots\!79}a^{6}-\frac{99\!\cdots\!98}{19\!\cdots\!79}a^{5}-\frac{15\!\cdots\!87}{19\!\cdots\!79}a^{4}+\frac{37\!\cdots\!01}{19\!\cdots\!79}a^{3}+\frac{10\!\cdots\!59}{19\!\cdots\!79}a^{2}+\frac{80\!\cdots\!15}{19\!\cdots\!79}a+\frac{12\!\cdots\!49}{19\!\cdots\!79}$, $\frac{8456486598536}{19\!\cdots\!79}a^{11}-\frac{33063567950087}{19\!\cdots\!79}a^{10}-\frac{703582960938740}{19\!\cdots\!79}a^{9}+\frac{15\!\cdots\!58}{19\!\cdots\!79}a^{8}+\frac{22\!\cdots\!06}{19\!\cdots\!79}a^{7}-\frac{11\!\cdots\!15}{19\!\cdots\!79}a^{6}-\frac{28\!\cdots\!66}{19\!\cdots\!79}a^{5}-\frac{23\!\cdots\!30}{19\!\cdots\!79}a^{4}+\frac{11\!\cdots\!41}{19\!\cdots\!79}a^{3}+\frac{23\!\cdots\!96}{19\!\cdots\!79}a^{2}+\frac{14\!\cdots\!95}{19\!\cdots\!79}a+\frac{22\!\cdots\!29}{19\!\cdots\!79}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 58663402.6391 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 58663402.6391 \cdot 3}{2\cdot\sqrt{1985246242140168000000000}}\cr\approx \mathstrut & 0.255806317248 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 99*x^10 - 140*x^9 + 3366*x^8 + 8820*x^7 - 40049*x^6 - 160020*x^5 + 39531*x^4 + 826140*x^3 + 1229700*x^2 + 647850*x + 91405)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 99*x^10 - 140*x^9 + 3366*x^8 + 8820*x^7 - 40049*x^6 - 160020*x^5 + 39531*x^4 + 826140*x^3 + 1229700*x^2 + 647850*x + 91405, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 99*x^10 - 140*x^9 + 3366*x^8 + 8820*x^7 - 40049*x^6 - 160020*x^5 + 39531*x^4 + 826140*x^3 + 1229700*x^2 + 647850*x + 91405);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 99*x^10 - 140*x^9 + 3366*x^8 + 8820*x^7 - 40049*x^6 - 160020*x^5 + 39531*x^4 + 826140*x^3 + 1229700*x^2 + 647850*x + 91405);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{12}$ (as 12T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 12
The 12 conjugacy class representatives for $C_{12}$
Character table for $C_{12}$

Intermediate fields

\(\Q(\sqrt{5}) \), 3.3.3969.2, \(\Q(\zeta_{20})^+\), 6.6.1969120125.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R R ${\href{/padicField/11.2.0.1}{2} }^{6}$ ${\href{/padicField/13.12.0.1}{12} }$ ${\href{/padicField/17.12.0.1}{12} }$ ${\href{/padicField/19.3.0.1}{3} }^{4}$ ${\href{/padicField/23.4.0.1}{4} }^{3}$ ${\href{/padicField/29.6.0.1}{6} }^{2}$ ${\href{/padicField/31.6.0.1}{6} }^{2}$ ${\href{/padicField/37.12.0.1}{12} }$ ${\href{/padicField/41.3.0.1}{3} }^{4}$ ${\href{/padicField/43.12.0.1}{12} }$ ${\href{/padicField/47.12.0.1}{12} }$ ${\href{/padicField/53.12.0.1}{12} }$ ${\href{/padicField/59.3.0.1}{3} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.12.12.25$x^{12} + 12 x^{11} + 60 x^{10} + 160 x^{9} + 308 x^{8} + 736 x^{7} + 2272 x^{6} + 5632 x^{5} + 10608 x^{4} + 15040 x^{3} + 12224 x^{2} + 3584 x + 704$$2$$6$$12$$C_{12}$$[2]^{6}$
\(3\) Copy content Toggle raw display 3.12.16.25$x^{12} + 24 x^{11} + 216 x^{10} + 804 x^{9} + 216 x^{8} - 6480 x^{7} - 11610 x^{6} + 16200 x^{5} + 48600 x^{4} + 33156 x^{3} + 198936 x^{2} + 190593$$3$$4$$16$$C_{12}$$[2]^{4}$
\(5\) Copy content Toggle raw display 5.4.3.2$x^{4} + 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.2$x^{4} + 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.2$x^{4} + 5$$4$$1$$3$$C_4$$[\ ]_{4}$
\(7\) Copy content Toggle raw display 7.12.8.2$x^{12} - 70 x^{9} + 1519 x^{6} - 4802 x^{3} + 21609$$3$$4$$8$$C_{12}$$[\ ]_{3}^{4}$