Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
1.2.ac |
$1$ |
$\F_{2}$ |
$2$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 - 2 x + 2 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$1$ |
$[1, 5, 13, 25, 41, 65, 113, 225, 481, 1025]$ |
$1$ |
$[1, 5, 13, 25, 41, 65, 113, 225, 481, 1025]$ |
$1$ |
$1$ |
$3$ |
$8$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
1.2.a |
$1$ |
$\F_{2}$ |
$2$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 2 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$3$ |
$[3, 9, 9, 9, 33, 81, 129, 225, 513, 1089]$ |
$3$ |
$[3, 9, 9, 9, 33, 81, 129, 225, 513, 1089]$ |
$1$ |
$1$ |
$3$ |
$8$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
1.2.c |
$1$ |
$\F_{2}$ |
$2$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 2 x + 2 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$5$ |
$[5, 5, 5, 25, 25, 65, 145, 225, 545, 1025]$ |
$5$ |
$[5, 5, 5, 25, 25, 65, 145, 225, 545, 1025]$ |
$1$ |
$1$ |
$3$ |
$8$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
1.3.ad |
$1$ |
$\F_{3}$ |
$3$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 - 3 x + 3 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$1$ |
$[1, 7, 28, 91, 271, 784, 2269, 6643, 19684, 58807]$ |
$1$ |
$[1, 7, 28, 91, 271, 784, 2269, 6643, 19684, 58807]$ |
$1$ |
$1$ |
$3$ |
$3$ |
$6$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.3.a |
$1$ |
$\F_{3}$ |
$3$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 3 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$4$ |
$[4, 16, 28, 64, 244, 784, 2188, 6400, 19684, 59536]$ |
$4$ |
$[4, 16, 28, 64, 244, 784, 2188, 6400, 19684, 59536]$ |
$2$ |
$2$ |
$3$ |
$6$ |
$2$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.3.d |
$1$ |
$\F_{3}$ |
$3$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 3 x + 3 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$7$ |
$[7, 7, 28, 91, 217, 784, 2107, 6643, 19684, 58807]$ |
$7$ |
$[7, 7, 28, 91, 217, 784, 2107, 6643, 19684, 58807]$ |
$1$ |
$1$ |
$3$ |
$6$ |
$6$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.4.ae |
$1$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$( 1 - 2 x )^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$1$ |
$[1, 9, 49, 225, 961, 3969, 16129, 65025, 261121, 1046529]$ |
$1$ |
$[1, 9, 49, 225, 961, 3969, 16129, 65025, 261121, 1046529]$ |
$1$ |
$1$ |
$5$ |
$6$ |
$1$ |
\(\Q\) |
Trivial |
simple |
1.4.ac |
$1$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 - 2 x + 4 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$3$ |
$[3, 21, 81, 273, 993, 3969, 16257, 65793, 263169, 1049601]$ |
$3$ |
$[3, 21, 81, 273, 993, 3969, 16257, 65793, 263169, 1049601]$ |
$2$ |
$2$ |
$5$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.4.a |
$1$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$1 + 4 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$5$ |
$[5, 25, 65, 225, 1025, 4225, 16385, 65025, 262145, 1050625]$ |
$5$ |
$[5, 25, 65, 225, 1025, 4225, 16385, 65025, 262145, 1050625]$ |
$1$ |
$1$ |
$5$ |
$12$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
1.4.c |
$1$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 2 x + 4 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$7$ |
$[7, 21, 49, 273, 1057, 3969, 16513, 65793, 261121, 1049601]$ |
$7$ |
$[7, 21, 49, 273, 1057, 3969, 16513, 65793, 261121, 1049601]$ |
$2$ |
$2$ |
$5$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.4.e |
$1$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$( 1 + 2 x )^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$9$ |
$[9, 9, 81, 225, 1089, 3969, 16641, 65025, 263169, 1046529]$ |
$9$ |
$[9, 9, 81, 225, 1089, 3969, 16641, 65025, 263169, 1046529]$ |
$1$ |
$1$ |
$5$ |
$6$ |
$1$ |
\(\Q\) |
Trivial |
simple |
1.5.a |
$1$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 5 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$6$ |
$[6, 36, 126, 576, 3126, 15876, 78126, 389376, 1953126, 9771876]$ |
$6$ |
$[6, 36, 126, 576, 3126, 15876, 78126, 389376, 1953126, 9771876]$ |
$2$ |
$2$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-5}) \) |
$C_2$ |
simple |
1.7.a |
$1$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 7 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$8$ |
$[8, 64, 344, 2304, 16808, 118336, 823544, 5760000, 40353608, 282508864]$ |
$8$ |
$[8, 64, 344, 2304, 16808, 118336, 823544, 5760000, 40353608, 282508864]$ |
$2$ |
$2$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
1.8.ae |
$1$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$1 - 4 x + 8 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$5$ |
$[5, 65, 545, 4225, 33025, 262145, 2095105, 16769025, 134201345, 1073741825]$ |
$5$ |
$[5, 65, 545, 4225, 33025, 262145, 2095105, 16769025, 134201345, 1073741825]$ |
$1$ |
$1$ |
$3$ |
$8$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
1.8.a |
$1$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$1 + 8 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$9$ |
$[9, 81, 513, 3969, 32769, 263169, 2097153, 16769025, 134217729, 1073807361]$ |
$9$ |
$[9, 81, 513, 3969, 32769, 263169, 2097153, 16769025, 134217729, 1073807361]$ |
$1$ |
$1$ |
$3$ |
$8$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
1.8.e |
$1$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$1 + 4 x + 8 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$13$ |
$[13, 65, 481, 4225, 32513, 262145, 2099201, 16769025, 134234113, 1073741825]$ |
$13$ |
$[13, 65, 481, 4225, 32513, 262145, 2099201, 16769025, 134234113, 1073741825]$ |
$1$ |
$1$ |
$3$ |
$8$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
1.9.ag |
$1$ |
$\F_{3^{2}}$ |
$3$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$( 1 - 3 x )^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$4$ |
$[4, 64, 676, 6400, 58564, 529984, 4778596, 43033600, 387381124, 3486666304]$ |
$4$ |
$[4, 64, 676, 6400, 58564, 529984, 4778596, 43033600, 387381124, 3486666304]$ |
$1$ |
$1$ |
$5$ |
$6$ |
$1$ |
\(\Q\) |
Trivial |
simple |
1.9.ad |
$1$ |
$\F_{3^{2}}$ |
$3$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$1 - 3 x + 9 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$7$ |
$[7, 91, 784, 6643, 58807, 529984, 4780783, 43053283, 387459856, 3486843451]$ |
$7$ |
$[7, 91, 784, 6643, 58807, 529984, 4780783, 43053283, 387459856, 3486843451]$ |
$1$ |
$1$ |
$5$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.9.a |
$1$ |
$\F_{3^{2}}$ |
$3$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 9 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$10$ |
$[10, 100, 730, 6400, 59050, 532900, 4782970, 43033600, 387420490, 3486902500]$ |
$10$ |
$[10, 100, 730, 6400, 59050, 532900, 4782970, 43033600, 387420490, 3486902500]$ |
$2$ |
$2$ |
$5$ |
$12$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
1.9.d |
$1$ |
$\F_{3^{2}}$ |
$3$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 3 x + 9 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$13$ |
$[13, 91, 676, 6643, 59293, 529984, 4785157, 43053283, 387381124, 3486843451]$ |
$13$ |
$[13, 91, 676, 6643, 59293, 529984, 4785157, 43053283, 387381124, 3486843451]$ |
$1$ |
$1$ |
$5$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.9.g |
$1$ |
$\F_{3^{2}}$ |
$3$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$( 1 + 3 x )^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$16$ |
$[16, 64, 784, 6400, 59536, 529984, 4787344, 43033600, 387459856, 3486666304]$ |
$16$ |
$[16, 64, 784, 6400, 59536, 529984, 4787344, 43033600, 387459856, 3486666304]$ |
$1$ |
$1$ |
$5$ |
$6$ |
$1$ |
\(\Q\) |
Trivial |
simple |
1.11.a |
$1$ |
$\F_{11}$ |
$11$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 11 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$12$ |
$[12, 144, 1332, 14400, 161052, 1774224, 19487172, 214329600, 2357947692, 25937746704]$ |
$12$ |
$[12, 144, 1332, 14400, 161052, 1774224, 19487172, 214329600, 2357947692, 25937746704]$ |
$4$ |
$4$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |
1.13.a |
$1$ |
$\F_{13}$ |
$13$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 13 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$14$ |
$[14, 196, 2198, 28224, 371294, 4831204, 62748518, 815673600, 10604499374, 137859234436]$ |
$14$ |
$[14, 196, 2198, 28224, 371294, 4831204, 62748518, 815673600, 10604499374, 137859234436]$ |
$2$ |
$2$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-13}) \) |
$C_2$ |
simple |
1.16.ai |
$1$ |
$\F_{2^{4}}$ |
$2$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$( 1 - 4 x )^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$9$ |
$[9, 225, 3969, 65025, 1046529, 16769025, 268402689, 4294836225, 68718952449, 1099509530625]$ |
$9$ |
$[9, 225, 3969, 65025, 1046529, 16769025, 268402689, 4294836225, 68718952449, 1099509530625]$ |
$1$ |
$1$ |
$5$ |
$6$ |
$1$ |
\(\Q\) |
Trivial |
simple |
1.16.ae |
$1$ |
$\F_{2^{4}}$ |
$2$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 - 4 x + 16 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$13$ |
$[13, 273, 4225, 65793, 1047553, 16769025, 268419073, 4295032833, 68720001025, 1099512676353]$ |
$13$ |
$[13, 273, 4225, 65793, 1047553, 16769025, 268419073, 4295032833, 68720001025, 1099512676353]$ |
$2$ |
$2$ |
$5$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.16.a |
$1$ |
$\F_{2^{4}}$ |
$2$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 16 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$17$ |
$[17, 289, 4097, 65025, 1048577, 16785409, 268435457, 4294836225, 68719476737, 1099513724929]$ |
$17$ |
$[17, 289, 4097, 65025, 1048577, 16785409, 268435457, 4294836225, 68719476737, 1099513724929]$ |
$1$ |
$1$ |
$5$ |
$12$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
1.16.e |
$1$ |
$\F_{2^{4}}$ |
$2$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$1 + 4 x + 16 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$21$ |
$[21, 273, 3969, 65793, 1049601, 16769025, 268451841, 4295032833, 68718952449, 1099512676353]$ |
$21$ |
$[21, 273, 3969, 65793, 1049601, 16769025, 268451841, 4295032833, 68718952449, 1099512676353]$ |
$2$ |
$2$ |
$5$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.16.i |
$1$ |
$\F_{2^{4}}$ |
$2$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$( 1 + 4 x )^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$25$ |
$[25, 225, 4225, 65025, 1050625, 16769025, 268468225, 4294836225, 68720001025, 1099509530625]$ |
$25$ |
$[25, 225, 4225, 65025, 1050625, 16769025, 268468225, 4294836225, 68720001025, 1099509530625]$ |
$1$ |
$1$ |
$5$ |
$6$ |
$1$ |
\(\Q\) |
Trivial |
simple |
1.17.a |
$1$ |
$\F_{17}$ |
$17$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 17 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$18$ |
$[18, 324, 4914, 82944, 1419858, 24147396, 410338674, 6975590400, 118587876498, 2015996740164]$ |
$18$ |
$[18, 324, 4914, 82944, 1419858, 24147396, 410338674, 6975590400, 118587876498, 2015996740164]$ |
$4$ |
$4$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-17}) \) |
$C_2$ |
simple |
1.19.a |
$1$ |
$\F_{19}$ |
$19$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 19 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$20$ |
$[20, 400, 6860, 129600, 2476100, 47059600, 893871740, 16983302400, 322687697780, 6131071210000]$ |
$20$ |
$[20, 400, 6860, 129600, 2476100, 47059600, 893871740, 16983302400, 322687697780, 6131071210000]$ |
$4$ |
$4$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |
1.23.a |
$1$ |
$\F_{23}$ |
$23$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 23 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$24$ |
$[24, 576, 12168, 278784, 6436344, 148060224, 3404825448, 78310425600, 1801152661464, 41426524086336]$ |
$24$ |
$[24, 576, 12168, 278784, 6436344, 148060224, 3404825448, 78310425600, 1801152661464, 41426524086336]$ |
$6$ |
$6$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-23}) \) |
$C_2$ |
simple |
1.25.ak |
$1$ |
$\F_{5^{2}}$ |
$5$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$( 1 - 5 x )^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$16$ |
$[16, 576, 15376, 389376, 9759376, 244109376, 6103359376, 152587109376, 3814693359376, 95367412109376]$ |
$16$ |
$[16, 576, 15376, 389376, 9759376, 244109376, 6103359376, 152587109376, 3814693359376, 95367412109376]$ |
$1$ |
$1$ |
$4$ |
$6$ |
$1$ |
\(\Q\) |
Trivial |
simple |
1.25.af |
$1$ |
$\F_{5^{2}}$ |
$5$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 - 5 x + 25 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$21$ |
$[21, 651, 15876, 391251, 9762501, 244109376, 6103437501, 152588281251, 3814701171876, 95367441406251]$ |
$21$ |
$[21, 651, 15876, 391251, 9762501, 244109376, 6103437501, 152588281251, 3814701171876, 95367441406251]$ |
$2$ |
$2$ |
$4$ |
$6$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.25.f |
$1$ |
$\F_{5^{2}}$ |
$5$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 5 x + 25 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$31$ |
$[31, 651, 15376, 391251, 9768751, 244109376, 6103593751, 152588281251, 3814693359376, 95367441406251]$ |
$31$ |
$[31, 651, 15376, 391251, 9768751, 244109376, 6103593751, 152588281251, 3814693359376, 95367441406251]$ |
$2$ |
$2$ |
$4$ |
$6$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.25.k |
$1$ |
$\F_{5^{2}}$ |
$5$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$( 1 + 5 x )^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$36$ |
$[36, 576, 15876, 389376, 9771876, 244109376, 6103671876, 152587109376, 3814701171876, 95367412109376]$ |
$36$ |
$[36, 576, 15876, 389376, 9771876, 244109376, 6103671876, 152587109376, 3814701171876, 95367412109376]$ |
$1$ |
$1$ |
$4$ |
$6$ |
$1$ |
\(\Q\) |
Trivial |
simple |
1.27.aj |
$1$ |
$\F_{3^{3}}$ |
$3$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 - 9 x + 27 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$19$ |
$[19, 703, 19684, 532171, 14355469, 387459856, 10460530351, 282430067923, 7625597484988, 205891117745743]$ |
$19$ |
$[19, 703, 19684, 532171, 14355469, 387459856, 10460530351, 282430067923, 7625597484988, 205891117745743]$ |
$1$ |
$1$ |
$3$ |
$3$ |
$6$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.27.a |
$1$ |
$\F_{3^{3}}$ |
$3$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$1 + 27 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$28$ |
$[28, 784, 19684, 529984, 14348908, 387459856, 10460353204, 282428473600, 7625597484988, 205891160792464]$ |
$28$ |
$[28, 784, 19684, 529984, 14348908, 387459856, 10460353204, 282428473600, 7625597484988, 205891160792464]$ |
$2$ |
$2$ |
$3$ |
$6$ |
$2$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.27.j |
$1$ |
$\F_{3^{3}}$ |
$3$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 9 x + 27 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$37$ |
$[37, 703, 19684, 532171, 14342347, 387459856, 10460176057, 282430067923, 7625597484988, 205891117745743]$ |
$37$ |
$[37, 703, 19684, 532171, 14342347, 387459856, 10460176057, 282430067923, 7625597484988, 205891117745743]$ |
$1$ |
$1$ |
$3$ |
$6$ |
$6$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.29.a |
$1$ |
$\F_{29}$ |
$29$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 29 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$30$ |
$[30, 900, 24390, 705600, 20511150, 594872100, 17249876310, 500244998400, 14507145975870, 420707274322500]$ |
$30$ |
$[30, 900, 24390, 705600, 20511150, 594872100, 17249876310, 500244998400, 14507145975870, 420707274322500]$ |
$6$ |
$6$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-29}) \) |
$C_2$ |
simple |
1.31.a |
$1$ |
$\F_{31}$ |
$31$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 31 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$32$ |
$[32, 1024, 29792, 921600, 28629152, 887563264, 27512614112, 852889190400, 26439622160672, 819628344239104]$ |
$32$ |
$[32, 1024, 29792, 921600, 28629152, 887563264, 27512614112, 852889190400, 26439622160672, 819628344239104]$ |
$6$ |
$6$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-31}) \) |
$C_2$ |
simple |
1.32.ai |
$1$ |
$\F_{2^{5}}$ |
$2$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$1 - 8 x + 32 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$25$ |
$[25, 1025, 33025, 1050625, 33562625, 1073741825, 34359476225, 1099509530625, 35184363700225, 1125899906842625]$ |
$25$ |
$[25, 1025, 33025, 1050625, 33562625, 1073741825, 34359476225, 1099509530625, 35184363700225, 1125899906842625]$ |
$1$ |
$1$ |
$3$ |
$8$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
1.32.a |
$1$ |
$\F_{2^{5}}$ |
$2$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$1 + 32 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$33$ |
$[33, 1089, 32769, 1046529, 33554433, 1073807361, 34359738369, 1099509530625, 35184372088833, 1125899973951489]$ |
$33$ |
$[33, 1089, 32769, 1046529, 33554433, 1073807361, 34359738369, 1099509530625, 35184372088833, 1125899973951489]$ |
$1$ |
$1$ |
$3$ |
$8$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
1.32.i |
$1$ |
$\F_{2^{5}}$ |
$2$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$1 + 8 x + 32 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$41$ |
$[41, 1025, 32513, 1050625, 33546241, 1073741825, 34360000513, 1099509530625, 35184380477441, 1125899906842625]$ |
$41$ |
$[41, 1025, 32513, 1050625, 33546241, 1073741825, 34360000513, 1099509530625, 35184380477441, 1125899906842625]$ |
$1$ |
$1$ |
$3$ |
$8$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
1.37.a |
$1$ |
$\F_{37}$ |
$37$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 37 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$38$ |
$[38, 1444, 50654, 1871424, 69343958, 2565827716, 94931877134, 3512475705600, 129961739795078, 4808584511105764]$ |
$38$ |
$[38, 1444, 50654, 1871424, 69343958, 2565827716, 94931877134, 3512475705600, 129961739795078, 4808584511105764]$ |
$2$ |
$2$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-37}) \) |
$C_2$ |
simple |
1.41.a |
$1$ |
$\F_{41}$ |
$41$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 41 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$42$ |
$[42, 1764, 68922, 2822400, 115856202, 4750242084, 194754273882, 7984919577600, 327381934393962, 13422659541864804]$ |
$42$ |
$[42, 1764, 68922, 2822400, 115856202, 4750242084, 194754273882, 7984919577600, 327381934393962, 13422659541864804]$ |
$8$ |
$8$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-41}) \) |
$C_2$ |
simple |
1.43.a |
$1$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 43 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$44$ |
$[44, 1936, 79508, 3415104, 147008444, 6321522064, 271818611108, 11688193440000, 502592611936844, 21611482607301136]$ |
$44$ |
$[44, 1936, 79508, 3415104, 147008444, 6321522064, 271818611108, 11688193440000, 502592611936844, 21611482607301136]$ |
$4$ |
$4$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-43}) \) |
$C_2$ |
simple |
1.47.a |
$1$ |
$\F_{47}$ |
$47$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 47 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$48$ |
$[48, 2304, 103824, 4875264, 229345008, 10779422976, 506623120464, 23811276902400, 1119130473102768, 52599132694520064]$ |
$48$ |
$[48, 2304, 103824, 4875264, 229345008, 10779422976, 506623120464, 23811276902400, 1119130473102768, 52599132694520064]$ |
$10$ |
$10$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-47}) \) |
$C_2$ |
simple |
1.49.ao |
$1$ |
$\F_{7^{2}}$ |
$7$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$( 1 - 7 x )^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$36$ |
$[36, 2304, 116964, 5760000, 282441636, 13841051904, 678221425764, 33232919040000, 1628413517203236, 79792265732661504]$ |
$36$ |
$[36, 2304, 116964, 5760000, 282441636, 13841051904, 678221425764, 33232919040000, 1628413517203236, 79792265732661504]$ |
$1$ |
$1$ |
$3$ |
$4$ |
$1$ |
\(\Q\) |
Trivial |
simple |
1.49.a |
$1$ |
$\F_{7^{2}}$ |
$7$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 49 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$50$ |
$[50, 2500, 117650, 5760000, 282475250, 13841522500, 678223072850, 33232919040000, 1628413597910450, 79792266862562500]$ |
$50$ |
$[50, 2500, 117650, 5760000, 282475250, 13841522500, 678223072850, 33232919040000, 1628413597910450, 79792266862562500]$ |
$2$ |
$2$ |
$3$ |
$4$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
1.49.o |
$1$ |
$\F_{7^{2}}$ |
$7$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$( 1 + 7 x )^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$64$ |
$[64, 2304, 118336, 5760000, 282508864, 13841051904, 678224719936, 33232919040000, 1628413678617664, 79792265732661504]$ |
$64$ |
$[64, 2304, 118336, 5760000, 282508864, 13841051904, 678224719936, 33232919040000, 1628413678617664, 79792265732661504]$ |
$1$ |
$1$ |
$3$ |
$4$ |
$1$ |
\(\Q\) |
Trivial |
simple |