Properties

Label 16245.2668
Modulus $16245$
Conductor $16245$
Order $228$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(16245, base_ring=CyclotomicField(228))
 
M = H._module
 
chi = DirichletCharacter(H, M([76,171,110]))
 
pari: [g,chi] = znchar(Mod(2668,16245))
 

Basic properties

Modulus: \(16245\)
Conductor: \(16245\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(228\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 16245.gc

\(\chi_{16245}(88,\cdot)\) \(\chi_{16245}(103,\cdot)\) \(\chi_{16245}(772,\cdot)\) \(\chi_{16245}(787,\cdot)\) \(\chi_{16245}(943,\cdot)\) \(\chi_{16245}(958,\cdot)\) \(\chi_{16245}(1627,\cdot)\) \(\chi_{16245}(1642,\cdot)\) \(\chi_{16245}(1798,\cdot)\) \(\chi_{16245}(1813,\cdot)\) \(\chi_{16245}(2482,\cdot)\) \(\chi_{16245}(2497,\cdot)\) \(\chi_{16245}(2653,\cdot)\) \(\chi_{16245}(2668,\cdot)\) \(\chi_{16245}(3337,\cdot)\) \(\chi_{16245}(3352,\cdot)\) \(\chi_{16245}(3508,\cdot)\) \(\chi_{16245}(3523,\cdot)\) \(\chi_{16245}(4192,\cdot)\) \(\chi_{16245}(4207,\cdot)\) \(\chi_{16245}(4363,\cdot)\) \(\chi_{16245}(4378,\cdot)\) \(\chi_{16245}(5047,\cdot)\) \(\chi_{16245}(5062,\cdot)\) \(\chi_{16245}(5218,\cdot)\) \(\chi_{16245}(5233,\cdot)\) \(\chi_{16245}(5902,\cdot)\) \(\chi_{16245}(5917,\cdot)\) \(\chi_{16245}(6073,\cdot)\) \(\chi_{16245}(6088,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{228})$
Fixed field: Number field defined by a degree 228 polynomial (not computed)

Values on generators

\((3611,12997,15886)\) → \((e\left(\frac{1}{3}\right),-i,e\left(\frac{55}{114}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(22\)
\( \chi_{ 16245 }(2668, a) \) \(1\)\(1\)\(e\left(\frac{43}{76}\right)\)\(e\left(\frac{5}{38}\right)\)\(e\left(\frac{103}{228}\right)\)\(e\left(\frac{53}{76}\right)\)\(e\left(\frac{31}{57}\right)\)\(e\left(\frac{49}{76}\right)\)\(e\left(\frac{1}{57}\right)\)\(e\left(\frac{5}{19}\right)\)\(e\left(\frac{179}{228}\right)\)\(e\left(\frac{25}{228}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 16245 }(2668,a) \;\) at \(\;a = \) e.g. 2