Basic properties
Modulus: | \(16245\) | |
Conductor: | \(16245\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(228\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 16245.gc
\(\chi_{16245}(88,\cdot)\) \(\chi_{16245}(103,\cdot)\) \(\chi_{16245}(772,\cdot)\) \(\chi_{16245}(787,\cdot)\) \(\chi_{16245}(943,\cdot)\) \(\chi_{16245}(958,\cdot)\) \(\chi_{16245}(1627,\cdot)\) \(\chi_{16245}(1642,\cdot)\) \(\chi_{16245}(1798,\cdot)\) \(\chi_{16245}(1813,\cdot)\) \(\chi_{16245}(2482,\cdot)\) \(\chi_{16245}(2497,\cdot)\) \(\chi_{16245}(2653,\cdot)\) \(\chi_{16245}(2668,\cdot)\) \(\chi_{16245}(3337,\cdot)\) \(\chi_{16245}(3352,\cdot)\) \(\chi_{16245}(3508,\cdot)\) \(\chi_{16245}(3523,\cdot)\) \(\chi_{16245}(4192,\cdot)\) \(\chi_{16245}(4207,\cdot)\) \(\chi_{16245}(4363,\cdot)\) \(\chi_{16245}(4378,\cdot)\) \(\chi_{16245}(5047,\cdot)\) \(\chi_{16245}(5062,\cdot)\) \(\chi_{16245}(5218,\cdot)\) \(\chi_{16245}(5233,\cdot)\) \(\chi_{16245}(5902,\cdot)\) \(\chi_{16245}(5917,\cdot)\) \(\chi_{16245}(6073,\cdot)\) \(\chi_{16245}(6088,\cdot)\) ...
Related number fields
Field of values: | $\Q(\zeta_{228})$ |
Fixed field: | Number field defined by a degree 228 polynomial (not computed) |
Values on generators
\((3611,12997,15886)\) → \((e\left(\frac{1}{3}\right),i,e\left(\frac{1}{114}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(22\) |
\( \chi_{ 16245 }(5062, a) \) | \(1\) | \(1\) | \(e\left(\frac{45}{76}\right)\) | \(e\left(\frac{7}{38}\right)\) | \(e\left(\frac{205}{228}\right)\) | \(e\left(\frac{59}{76}\right)\) | \(e\left(\frac{13}{57}\right)\) | \(e\left(\frac{23}{76}\right)\) | \(e\left(\frac{28}{57}\right)\) | \(e\left(\frac{7}{19}\right)\) | \(e\left(\frac{53}{228}\right)\) | \(e\left(\frac{187}{228}\right)\) |