Properties

Label 16245.gc
Modulus $16245$
Conductor $16245$
Order $228$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(16245, base_ring=CyclotomicField(228))
 
M = H._module
 
chi = DirichletCharacter(H, M([152,171,70]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(88,16245))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(16245\)
Conductor: \(16245\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(228\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{228})$
Fixed field: Number field defined by a degree 228 polynomial (not computed)

First 31 of 72 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(11\) \(13\) \(14\) \(16\) \(17\) \(22\)
\(\chi_{16245}(88,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{76}\right)\) \(e\left(\frac{17}{38}\right)\) \(e\left(\frac{107}{228}\right)\) \(e\left(\frac{13}{76}\right)\) \(e\left(\frac{56}{57}\right)\) \(e\left(\frac{45}{76}\right)\) \(e\left(\frac{11}{57}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{31}{228}\right)\) \(e\left(\frac{161}{228}\right)\)
\(\chi_{16245}(103,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{76}\right)\) \(e\left(\frac{11}{38}\right)\) \(e\left(\frac{67}{228}\right)\) \(e\left(\frac{33}{76}\right)\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{9}{76}\right)\) \(e\left(\frac{25}{57}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{143}{228}\right)\) \(e\left(\frac{169}{228}\right)\)
\(\chi_{16245}(772,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{76}\right)\) \(e\left(\frac{21}{38}\right)\) \(e\left(\frac{197}{228}\right)\) \(e\left(\frac{63}{76}\right)\) \(e\left(\frac{20}{57}\right)\) \(e\left(\frac{31}{76}\right)\) \(e\left(\frac{8}{57}\right)\) \(e\left(\frac{2}{19}\right)\) \(e\left(\frac{121}{228}\right)\) \(e\left(\frac{143}{228}\right)\)
\(\chi_{16245}(787,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{76}\right)\) \(e\left(\frac{17}{38}\right)\) \(e\left(\frac{145}{228}\right)\) \(e\left(\frac{51}{76}\right)\) \(e\left(\frac{37}{57}\right)\) \(e\left(\frac{7}{76}\right)\) \(e\left(\frac{49}{57}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{221}{228}\right)\) \(e\left(\frac{199}{228}\right)\)
\(\chi_{16245}(943,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{76}\right)\) \(e\left(\frac{3}{38}\right)\) \(e\left(\frac{191}{228}\right)\) \(e\left(\frac{9}{76}\right)\) \(e\left(\frac{11}{57}\right)\) \(e\left(\frac{37}{76}\right)\) \(e\left(\frac{50}{57}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{115}{228}\right)\) \(e\left(\frac{53}{228}\right)\)
\(\chi_{16245}(958,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{76}\right)\) \(e\left(\frac{9}{38}\right)\) \(e\left(\frac{79}{228}\right)\) \(e\left(\frac{65}{76}\right)\) \(e\left(\frac{52}{57}\right)\) \(e\left(\frac{73}{76}\right)\) \(e\left(\frac{55}{57}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{155}{228}\right)\) \(e\left(\frac{121}{228}\right)\)
\(\chi_{16245}(1627,\cdot)\) \(1\) \(1\) \(e\left(\frac{45}{76}\right)\) \(e\left(\frac{7}{38}\right)\) \(e\left(\frac{53}{228}\right)\) \(e\left(\frac{59}{76}\right)\) \(e\left(\frac{32}{57}\right)\) \(e\left(\frac{23}{76}\right)\) \(e\left(\frac{47}{57}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{205}{228}\right)\) \(e\left(\frac{35}{228}\right)\)
\(\chi_{16245}(1642,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{76}\right)\) \(e\left(\frac{15}{38}\right)\) \(e\left(\frac{157}{228}\right)\) \(e\left(\frac{7}{76}\right)\) \(e\left(\frac{55}{57}\right)\) \(e\left(\frac{71}{76}\right)\) \(e\left(\frac{22}{57}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{5}{228}\right)\) \(e\left(\frac{151}{228}\right)\)
\(\chi_{16245}(1798,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{76}\right)\) \(e\left(\frac{27}{38}\right)\) \(e\left(\frac{47}{228}\right)\) \(e\left(\frac{5}{76}\right)\) \(e\left(\frac{23}{57}\right)\) \(e\left(\frac{29}{76}\right)\) \(e\left(\frac{32}{57}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{199}{228}\right)\) \(e\left(\frac{173}{228}\right)\)
\(\chi_{16245}(1813,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{76}\right)\) \(e\left(\frac{7}{38}\right)\) \(e\left(\frac{91}{228}\right)\) \(e\left(\frac{21}{76}\right)\) \(e\left(\frac{13}{57}\right)\) \(e\left(\frac{61}{76}\right)\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{167}{228}\right)\) \(e\left(\frac{73}{228}\right)\)
\(\chi_{16245}(2482,\cdot)\) \(1\) \(1\) \(e\left(\frac{69}{76}\right)\) \(e\left(\frac{31}{38}\right)\) \(e\left(\frac{137}{228}\right)\) \(e\left(\frac{55}{76}\right)\) \(e\left(\frac{44}{57}\right)\) \(e\left(\frac{15}{76}\right)\) \(e\left(\frac{29}{57}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{61}{228}\right)\) \(e\left(\frac{155}{228}\right)\)
\(\chi_{16245}(2497,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{76}\right)\) \(e\left(\frac{13}{38}\right)\) \(e\left(\frac{169}{228}\right)\) \(e\left(\frac{39}{76}\right)\) \(e\left(\frac{16}{57}\right)\) \(e\left(\frac{59}{76}\right)\) \(e\left(\frac{52}{57}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{17}{228}\right)\) \(e\left(\frac{103}{228}\right)\)
\(\chi_{16245}(2653,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{76}\right)\) \(e\left(\frac{13}{38}\right)\) \(e\left(\frac{131}{228}\right)\) \(e\left(\frac{1}{76}\right)\) \(e\left(\frac{35}{57}\right)\) \(e\left(\frac{21}{76}\right)\) \(e\left(\frac{14}{57}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{55}{228}\right)\) \(e\left(\frac{65}{228}\right)\)
\(\chi_{16245}(2668,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{76}\right)\) \(e\left(\frac{5}{38}\right)\) \(e\left(\frac{103}{228}\right)\) \(e\left(\frac{53}{76}\right)\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{49}{76}\right)\) \(e\left(\frac{1}{57}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{179}{228}\right)\) \(e\left(\frac{25}{228}\right)\)
\(\chi_{16245}(3337,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{76}\right)\) \(e\left(\frac{17}{38}\right)\) \(e\left(\frac{221}{228}\right)\) \(e\left(\frac{51}{76}\right)\) \(e\left(\frac{56}{57}\right)\) \(e\left(\frac{7}{76}\right)\) \(e\left(\frac{11}{57}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{145}{228}\right)\) \(e\left(\frac{47}{228}\right)\)
\(\chi_{16245}(3352,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{76}\right)\) \(e\left(\frac{11}{38}\right)\) \(e\left(\frac{181}{228}\right)\) \(e\left(\frac{71}{76}\right)\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{47}{76}\right)\) \(e\left(\frac{25}{57}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{29}{228}\right)\) \(e\left(\frac{55}{228}\right)\)
\(\chi_{16245}(3508,\cdot)\) \(1\) \(1\) \(e\left(\frac{75}{76}\right)\) \(e\left(\frac{37}{38}\right)\) \(e\left(\frac{215}{228}\right)\) \(e\left(\frac{73}{76}\right)\) \(e\left(\frac{47}{57}\right)\) \(e\left(\frac{13}{76}\right)\) \(e\left(\frac{53}{57}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{139}{228}\right)\) \(e\left(\frac{185}{228}\right)\)
\(\chi_{16245}(3523,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{76}\right)\) \(e\left(\frac{3}{38}\right)\) \(e\left(\frac{115}{228}\right)\) \(e\left(\frac{9}{76}\right)\) \(e\left(\frac{49}{57}\right)\) \(e\left(\frac{37}{76}\right)\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{191}{228}\right)\) \(e\left(\frac{205}{228}\right)\)
\(\chi_{16245}(4192,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{76}\right)\) \(e\left(\frac{3}{38}\right)\) \(e\left(\frac{77}{228}\right)\) \(e\left(\frac{47}{76}\right)\) \(e\left(\frac{11}{57}\right)\) \(e\left(\frac{75}{76}\right)\) \(e\left(\frac{50}{57}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{1}{228}\right)\) \(e\left(\frac{167}{228}\right)\)
\(\chi_{16245}(4207,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{76}\right)\) \(e\left(\frac{9}{38}\right)\) \(e\left(\frac{193}{228}\right)\) \(e\left(\frac{27}{76}\right)\) \(e\left(\frac{52}{57}\right)\) \(e\left(\frac{35}{76}\right)\) \(e\left(\frac{55}{57}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{41}{228}\right)\) \(e\left(\frac{7}{228}\right)\)
\(\chi_{16245}(4363,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{76}\right)\) \(e\left(\frac{23}{38}\right)\) \(e\left(\frac{71}{228}\right)\) \(e\left(\frac{69}{76}\right)\) \(e\left(\frac{2}{57}\right)\) \(e\left(\frac{5}{76}\right)\) \(e\left(\frac{35}{57}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{223}{228}\right)\) \(e\left(\frac{77}{228}\right)\)
\(\chi_{16245}(4378,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{76}\right)\) \(e\left(\frac{1}{38}\right)\) \(e\left(\frac{127}{228}\right)\) \(e\left(\frac{41}{76}\right)\) \(e\left(\frac{10}{57}\right)\) \(e\left(\frac{25}{76}\right)\) \(e\left(\frac{4}{57}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{203}{228}\right)\) \(e\left(\frac{157}{228}\right)\)
\(\chi_{16245}(5047,\cdot)\) \(1\) \(1\) \(e\left(\frac{65}{76}\right)\) \(e\left(\frac{27}{38}\right)\) \(e\left(\frac{161}{228}\right)\) \(e\left(\frac{43}{76}\right)\) \(e\left(\frac{23}{57}\right)\) \(e\left(\frac{67}{76}\right)\) \(e\left(\frac{32}{57}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{85}{228}\right)\) \(e\left(\frac{59}{228}\right)\)
\(\chi_{16245}(5062,\cdot)\) \(1\) \(1\) \(e\left(\frac{45}{76}\right)\) \(e\left(\frac{7}{38}\right)\) \(e\left(\frac{205}{228}\right)\) \(e\left(\frac{59}{76}\right)\) \(e\left(\frac{13}{57}\right)\) \(e\left(\frac{23}{76}\right)\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{53}{228}\right)\) \(e\left(\frac{187}{228}\right)\)
\(\chi_{16245}(5218,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{76}\right)\) \(e\left(\frac{9}{38}\right)\) \(e\left(\frac{155}{228}\right)\) \(e\left(\frac{65}{76}\right)\) \(e\left(\frac{14}{57}\right)\) \(e\left(\frac{73}{76}\right)\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{79}{228}\right)\) \(e\left(\frac{197}{228}\right)\)
\(\chi_{16245}(5233,\cdot)\) \(1\) \(1\) \(e\left(\frac{75}{76}\right)\) \(e\left(\frac{37}{38}\right)\) \(e\left(\frac{139}{228}\right)\) \(e\left(\frac{73}{76}\right)\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{13}{76}\right)\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{215}{228}\right)\) \(e\left(\frac{109}{228}\right)\)
\(\chi_{16245}(5902,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{76}\right)\) \(e\left(\frac{13}{38}\right)\) \(e\left(\frac{17}{228}\right)\) \(e\left(\frac{39}{76}\right)\) \(e\left(\frac{35}{57}\right)\) \(e\left(\frac{59}{76}\right)\) \(e\left(\frac{14}{57}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{169}{228}\right)\) \(e\left(\frac{179}{228}\right)\)
\(\chi_{16245}(5917,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{76}\right)\) \(e\left(\frac{5}{38}\right)\) \(e\left(\frac{217}{228}\right)\) \(e\left(\frac{15}{76}\right)\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{11}{76}\right)\) \(e\left(\frac{1}{57}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{65}{228}\right)\) \(e\left(\frac{139}{228}\right)\)
\(\chi_{16245}(6073,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{76}\right)\) \(e\left(\frac{33}{38}\right)\) \(e\left(\frac{11}{228}\right)\) \(e\left(\frac{61}{76}\right)\) \(e\left(\frac{26}{57}\right)\) \(e\left(\frac{65}{76}\right)\) \(e\left(\frac{56}{57}\right)\) \(e\left(\frac{14}{19}\right)\) \(e\left(\frac{163}{228}\right)\) \(e\left(\frac{89}{228}\right)\)
\(\chi_{16245}(6088,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{76}\right)\) \(e\left(\frac{35}{38}\right)\) \(e\left(\frac{151}{228}\right)\) \(e\left(\frac{29}{76}\right)\) \(e\left(\frac{46}{57}\right)\) \(e\left(\frac{1}{76}\right)\) \(e\left(\frac{7}{57}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{227}{228}\right)\) \(e\left(\frac{61}{228}\right)\)
\(\chi_{16245}(6757,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{76}\right)\) \(e\left(\frac{37}{38}\right)\) \(e\left(\frac{101}{228}\right)\) \(e\left(\frac{35}{76}\right)\) \(e\left(\frac{47}{57}\right)\) \(e\left(\frac{51}{76}\right)\) \(e\left(\frac{53}{57}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{25}{228}\right)\) \(e\left(\frac{71}{228}\right)\)