sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(16245, base_ring=CyclotomicField(228))
M = H._module
chi = DirichletCharacter(H, M([76,57,146]))
pari:[g,chi] = znchar(Mod(787,16245))
Modulus: | 16245 | |
Conductor: | 16245 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 228 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ16245(88,⋅)
χ16245(103,⋅)
χ16245(772,⋅)
χ16245(787,⋅)
χ16245(943,⋅)
χ16245(958,⋅)
χ16245(1627,⋅)
χ16245(1642,⋅)
χ16245(1798,⋅)
χ16245(1813,⋅)
χ16245(2482,⋅)
χ16245(2497,⋅)
χ16245(2653,⋅)
χ16245(2668,⋅)
χ16245(3337,⋅)
χ16245(3352,⋅)
χ16245(3508,⋅)
χ16245(3523,⋅)
χ16245(4192,⋅)
χ16245(4207,⋅)
χ16245(4363,⋅)
χ16245(4378,⋅)
χ16245(5047,⋅)
χ16245(5062,⋅)
χ16245(5218,⋅)
χ16245(5233,⋅)
χ16245(5902,⋅)
χ16245(5917,⋅)
χ16245(6073,⋅)
χ16245(6088,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(3611,12997,15886) → (e(31),i,e(11473))
a |
−1 | 1 | 2 | 4 | 7 | 8 | 11 | 13 | 14 | 16 | 17 | 22 |
χ16245(787,a) |
1 | 1 | e(7617) | e(3817) | e(228145) | e(7651) | e(5737) | e(767) | e(5749) | e(1917) | e(228221) | e(228199) |
sage:chi.jacobi_sum(n)