Properties

Label 16245.787
Modulus 1624516245
Conductor 1624516245
Order 228228
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(16245, base_ring=CyclotomicField(228)) M = H._module chi = DirichletCharacter(H, M([76,57,146]))
 
Copy content pari:[g,chi] = znchar(Mod(787,16245))
 

Basic properties

Modulus: 1624516245
Conductor: 1624516245
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 228228
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 16245.gc

χ16245(88,)\chi_{16245}(88,\cdot) χ16245(103,)\chi_{16245}(103,\cdot) χ16245(772,)\chi_{16245}(772,\cdot) χ16245(787,)\chi_{16245}(787,\cdot) χ16245(943,)\chi_{16245}(943,\cdot) χ16245(958,)\chi_{16245}(958,\cdot) χ16245(1627,)\chi_{16245}(1627,\cdot) χ16245(1642,)\chi_{16245}(1642,\cdot) χ16245(1798,)\chi_{16245}(1798,\cdot) χ16245(1813,)\chi_{16245}(1813,\cdot) χ16245(2482,)\chi_{16245}(2482,\cdot) χ16245(2497,)\chi_{16245}(2497,\cdot) χ16245(2653,)\chi_{16245}(2653,\cdot) χ16245(2668,)\chi_{16245}(2668,\cdot) χ16245(3337,)\chi_{16245}(3337,\cdot) χ16245(3352,)\chi_{16245}(3352,\cdot) χ16245(3508,)\chi_{16245}(3508,\cdot) χ16245(3523,)\chi_{16245}(3523,\cdot) χ16245(4192,)\chi_{16245}(4192,\cdot) χ16245(4207,)\chi_{16245}(4207,\cdot) χ16245(4363,)\chi_{16245}(4363,\cdot) χ16245(4378,)\chi_{16245}(4378,\cdot) χ16245(5047,)\chi_{16245}(5047,\cdot) χ16245(5062,)\chi_{16245}(5062,\cdot) χ16245(5218,)\chi_{16245}(5218,\cdot) χ16245(5233,)\chi_{16245}(5233,\cdot) χ16245(5902,)\chi_{16245}(5902,\cdot) χ16245(5917,)\chi_{16245}(5917,\cdot) χ16245(6073,)\chi_{16245}(6073,\cdot) χ16245(6088,)\chi_{16245}(6088,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ228)\Q(\zeta_{228})
Fixed field: Number field defined by a degree 228 polynomial (not computed)

Values on generators

(3611,12997,15886)(3611,12997,15886)(e(13),i,e(73114))(e\left(\frac{1}{3}\right),i,e\left(\frac{73}{114}\right))

First values

aa 1-11122447788111113131414161617172222
χ16245(787,a) \chi_{ 16245 }(787, a) 1111e(1776)e\left(\frac{17}{76}\right)e(1738)e\left(\frac{17}{38}\right)e(145228)e\left(\frac{145}{228}\right)e(5176)e\left(\frac{51}{76}\right)e(3757)e\left(\frac{37}{57}\right)e(776)e\left(\frac{7}{76}\right)e(4957)e\left(\frac{49}{57}\right)e(1719)e\left(\frac{17}{19}\right)e(221228)e\left(\frac{221}{228}\right)e(199228)e\left(\frac{199}{228}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ16245(787,a)   \chi_{ 16245 }(787,a) \; at   a=\;a = e.g. 2