Properties

Label 405.133
Modulus 405405
Conductor 405405
Order 108108
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(108))
 
M = H._module
 
chi = DirichletCharacter(H, M([20,81]))
 
pari: [g,chi] = znchar(Mod(133,405))
 

Basic properties

Modulus: 405405
Conductor: 405405
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 108108
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 405.w

χ405(7,)\chi_{405}(7,\cdot) χ405(13,)\chi_{405}(13,\cdot) χ405(22,)\chi_{405}(22,\cdot) χ405(43,)\chi_{405}(43,\cdot) χ405(52,)\chi_{405}(52,\cdot) χ405(58,)\chi_{405}(58,\cdot) χ405(67,)\chi_{405}(67,\cdot) χ405(88,)\chi_{405}(88,\cdot) χ405(97,)\chi_{405}(97,\cdot) χ405(103,)\chi_{405}(103,\cdot) χ405(112,)\chi_{405}(112,\cdot) χ405(133,)\chi_{405}(133,\cdot) χ405(142,)\chi_{405}(142,\cdot) χ405(148,)\chi_{405}(148,\cdot) χ405(157,)\chi_{405}(157,\cdot) χ405(178,)\chi_{405}(178,\cdot) χ405(187,)\chi_{405}(187,\cdot) χ405(193,)\chi_{405}(193,\cdot) χ405(202,)\chi_{405}(202,\cdot) χ405(223,)\chi_{405}(223,\cdot) χ405(232,)\chi_{405}(232,\cdot) χ405(238,)\chi_{405}(238,\cdot) χ405(247,)\chi_{405}(247,\cdot) χ405(268,)\chi_{405}(268,\cdot) χ405(277,)\chi_{405}(277,\cdot) χ405(283,)\chi_{405}(283,\cdot) χ405(292,)\chi_{405}(292,\cdot) χ405(313,)\chi_{405}(313,\cdot) χ405(322,)\chi_{405}(322,\cdot) χ405(328,)\chi_{405}(328,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ108)\Q(\zeta_{108})
Fixed field: Number field defined by a degree 108 polynomial (not computed)

Values on generators

(326,82)(326,82)(e(527),i)(e\left(\frac{5}{27}\right),-i)

First values

aa 1-11122447788111113131414161617171919
χ405(133,a) \chi_{ 405 }(133, a) 1-111e(101108)e\left(\frac{101}{108}\right)e(4754)e\left(\frac{47}{54}\right)e(77108)e\left(\frac{77}{108}\right)e(2936)e\left(\frac{29}{36}\right)e(1127)e\left(\frac{11}{27}\right)e(79108)e\left(\frac{79}{108}\right)e(3554)e\left(\frac{35}{54}\right)e(2027)e\left(\frac{20}{27}\right)e(3136)e\left(\frac{31}{36}\right)e(718)e\left(\frac{7}{18}\right)
sage: chi.jacobi_sum(n)
 
χ405(133,a)   \chi_{ 405 }(133,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ405(133,))   \tau_{ a }( \chi_{ 405 }(133,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ405(133,),χ405(n,))   J(\chi_{ 405 }(133,·),\chi_{ 405 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ405(133,))  K(a,b,\chi_{ 405 }(133,·)) \; at   a,b=\; a,b = e.g. 1,2