Properties

Label 405.148
Modulus $405$
Conductor $405$
Order $108$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(108))
 
M = H._module
 
chi = DirichletCharacter(H, M([88,81]))
 
pari: [g,chi] = znchar(Mod(148,405))
 

Basic properties

Modulus: \(405\)
Conductor: \(405\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(108\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 405.w

\(\chi_{405}(7,\cdot)\) \(\chi_{405}(13,\cdot)\) \(\chi_{405}(22,\cdot)\) \(\chi_{405}(43,\cdot)\) \(\chi_{405}(52,\cdot)\) \(\chi_{405}(58,\cdot)\) \(\chi_{405}(67,\cdot)\) \(\chi_{405}(88,\cdot)\) \(\chi_{405}(97,\cdot)\) \(\chi_{405}(103,\cdot)\) \(\chi_{405}(112,\cdot)\) \(\chi_{405}(133,\cdot)\) \(\chi_{405}(142,\cdot)\) \(\chi_{405}(148,\cdot)\) \(\chi_{405}(157,\cdot)\) \(\chi_{405}(178,\cdot)\) \(\chi_{405}(187,\cdot)\) \(\chi_{405}(193,\cdot)\) \(\chi_{405}(202,\cdot)\) \(\chi_{405}(223,\cdot)\) \(\chi_{405}(232,\cdot)\) \(\chi_{405}(238,\cdot)\) \(\chi_{405}(247,\cdot)\) \(\chi_{405}(268,\cdot)\) \(\chi_{405}(277,\cdot)\) \(\chi_{405}(283,\cdot)\) \(\chi_{405}(292,\cdot)\) \(\chi_{405}(313,\cdot)\) \(\chi_{405}(322,\cdot)\) \(\chi_{405}(328,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{108})$
Fixed field: Number field defined by a degree 108 polynomial (not computed)

Values on generators

\((326,82)\) → \((e\left(\frac{22}{27}\right),-i)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 405 }(148, a) \) \(-1\)\(1\)\(e\left(\frac{61}{108}\right)\)\(e\left(\frac{7}{54}\right)\)\(e\left(\frac{85}{108}\right)\)\(e\left(\frac{25}{36}\right)\)\(e\left(\frac{16}{27}\right)\)\(e\left(\frac{83}{108}\right)\)\(e\left(\frac{19}{54}\right)\)\(e\left(\frac{7}{27}\right)\)\(e\left(\frac{23}{36}\right)\)\(e\left(\frac{11}{18}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 405 }(148,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 405 }(148,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 405 }(148,·),\chi_{ 405 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 405 }(148,·)) \;\) at \(\; a,b = \) e.g. 1,2