Properties

Label 405.58
Modulus 405405
Conductor 405405
Order 108108
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(108))
 
M = H._module
 
chi = DirichletCharacter(H, M([76,81]))
 
pari: [g,chi] = znchar(Mod(58,405))
 

Basic properties

Modulus: 405405
Conductor: 405405
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 108108
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 405.w

χ405(7,)\chi_{405}(7,\cdot) χ405(13,)\chi_{405}(13,\cdot) χ405(22,)\chi_{405}(22,\cdot) χ405(43,)\chi_{405}(43,\cdot) χ405(52,)\chi_{405}(52,\cdot) χ405(58,)\chi_{405}(58,\cdot) χ405(67,)\chi_{405}(67,\cdot) χ405(88,)\chi_{405}(88,\cdot) χ405(97,)\chi_{405}(97,\cdot) χ405(103,)\chi_{405}(103,\cdot) χ405(112,)\chi_{405}(112,\cdot) χ405(133,)\chi_{405}(133,\cdot) χ405(142,)\chi_{405}(142,\cdot) χ405(148,)\chi_{405}(148,\cdot) χ405(157,)\chi_{405}(157,\cdot) χ405(178,)\chi_{405}(178,\cdot) χ405(187,)\chi_{405}(187,\cdot) χ405(193,)\chi_{405}(193,\cdot) χ405(202,)\chi_{405}(202,\cdot) χ405(223,)\chi_{405}(223,\cdot) χ405(232,)\chi_{405}(232,\cdot) χ405(238,)\chi_{405}(238,\cdot) χ405(247,)\chi_{405}(247,\cdot) χ405(268,)\chi_{405}(268,\cdot) χ405(277,)\chi_{405}(277,\cdot) χ405(283,)\chi_{405}(283,\cdot) χ405(292,)\chi_{405}(292,\cdot) χ405(313,)\chi_{405}(313,\cdot) χ405(322,)\chi_{405}(322,\cdot) χ405(328,)\chi_{405}(328,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ108)\Q(\zeta_{108})
Fixed field: Number field defined by a degree 108 polynomial (not computed)

Values on generators

(326,82)(326,82)(e(1927),i)(e\left(\frac{19}{27}\right),-i)

First values

aa 1-11122447788111113131414161617171919
χ405(58,a) \chi_{ 405 }(58, a) 1-111e(49108)e\left(\frac{49}{108}\right)e(4954)e\left(\frac{49}{54}\right)e(1108)e\left(\frac{1}{108}\right)e(1336)e\left(\frac{13}{36}\right)e(427)e\left(\frac{4}{27}\right)e(95108)e\left(\frac{95}{108}\right)e(2554)e\left(\frac{25}{54}\right)e(2227)e\left(\frac{22}{27}\right)e(3536)e\left(\frac{35}{36}\right)e(518)e\left(\frac{5}{18}\right)
sage: chi.jacobi_sum(n)
 
χ405(58,a)   \chi_{ 405 }(58,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ405(58,))   \tau_{ a }( \chi_{ 405 }(58,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ405(58,),χ405(n,))   J(\chi_{ 405 }(58,·),\chi_{ 405 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ405(58,))  K(a,b,\chi_{ 405 }(58,·)) \; at   a,b=\; a,b = e.g. 1,2