Basic properties
Modulus: | \(405\) | |
Conductor: | \(405\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(108\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 405.w
\(\chi_{405}(7,\cdot)\) \(\chi_{405}(13,\cdot)\) \(\chi_{405}(22,\cdot)\) \(\chi_{405}(43,\cdot)\) \(\chi_{405}(52,\cdot)\) \(\chi_{405}(58,\cdot)\) \(\chi_{405}(67,\cdot)\) \(\chi_{405}(88,\cdot)\) \(\chi_{405}(97,\cdot)\) \(\chi_{405}(103,\cdot)\) \(\chi_{405}(112,\cdot)\) \(\chi_{405}(133,\cdot)\) \(\chi_{405}(142,\cdot)\) \(\chi_{405}(148,\cdot)\) \(\chi_{405}(157,\cdot)\) \(\chi_{405}(178,\cdot)\) \(\chi_{405}(187,\cdot)\) \(\chi_{405}(193,\cdot)\) \(\chi_{405}(202,\cdot)\) \(\chi_{405}(223,\cdot)\) \(\chi_{405}(232,\cdot)\) \(\chi_{405}(238,\cdot)\) \(\chi_{405}(247,\cdot)\) \(\chi_{405}(268,\cdot)\) \(\chi_{405}(277,\cdot)\) \(\chi_{405}(283,\cdot)\) \(\chi_{405}(292,\cdot)\) \(\chi_{405}(313,\cdot)\) \(\chi_{405}(322,\cdot)\) \(\chi_{405}(328,\cdot)\) ...
Related number fields
Field of values: | $\Q(\zeta_{108})$ |
Fixed field: | Number field defined by a degree 108 polynomial (not computed) |
Values on generators
\((326,82)\) → \((e\left(\frac{19}{27}\right),-i)\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 405 }(58, a) \) | \(-1\) | \(1\) | \(e\left(\frac{49}{108}\right)\) | \(e\left(\frac{49}{54}\right)\) | \(e\left(\frac{1}{108}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{4}{27}\right)\) | \(e\left(\frac{95}{108}\right)\) | \(e\left(\frac{25}{54}\right)\) | \(e\left(\frac{22}{27}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) |