from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(405, base_ring=CyclotomicField(108))
M = H._module
chi = DirichletCharacter(H, M([76,81]))
pari: [g,chi] = znchar(Mod(58,405))
χ405(7,⋅)
χ405(13,⋅)
χ405(22,⋅)
χ405(43,⋅)
χ405(52,⋅)
χ405(58,⋅)
χ405(67,⋅)
χ405(88,⋅)
χ405(97,⋅)
χ405(103,⋅)
χ405(112,⋅)
χ405(133,⋅)
χ405(142,⋅)
χ405(148,⋅)
χ405(157,⋅)
χ405(178,⋅)
χ405(187,⋅)
χ405(193,⋅)
χ405(202,⋅)
χ405(223,⋅)
χ405(232,⋅)
χ405(238,⋅)
χ405(247,⋅)
χ405(268,⋅)
χ405(277,⋅)
χ405(283,⋅)
χ405(292,⋅)
χ405(313,⋅)
χ405(322,⋅)
χ405(328,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(326,82) → (e(2719),−i)
a |
−1 | 1 | 2 | 4 | 7 | 8 | 11 | 13 | 14 | 16 | 17 | 19 |
χ405(58,a) |
−1 | 1 | e(10849) | e(5449) | e(1081) | e(3613) | e(274) | e(10895) | e(5425) | e(2722) | e(3635) | e(185) |
pari: znchargauss(g,chi,a)
sage: chi.kloosterman_sum(a,b)