from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(405, base_ring=CyclotomicField(108))
M = H._module
chi = DirichletCharacter(H, M([100,27]))
pari: [g,chi] = znchar(Mod(157,405))
χ405(7,⋅)
χ405(13,⋅)
χ405(22,⋅)
χ405(43,⋅)
χ405(52,⋅)
χ405(58,⋅)
χ405(67,⋅)
χ405(88,⋅)
χ405(97,⋅)
χ405(103,⋅)
χ405(112,⋅)
χ405(133,⋅)
χ405(142,⋅)
χ405(148,⋅)
χ405(157,⋅)
χ405(178,⋅)
χ405(187,⋅)
χ405(193,⋅)
χ405(202,⋅)
χ405(223,⋅)
χ405(232,⋅)
χ405(238,⋅)
χ405(247,⋅)
χ405(268,⋅)
χ405(277,⋅)
χ405(283,⋅)
χ405(292,⋅)
χ405(313,⋅)
χ405(322,⋅)
χ405(328,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(326,82) → (e(2725),i)
a |
−1 | 1 | 2 | 4 | 7 | 8 | 11 | 13 | 14 | 16 | 17 | 19 |
χ405(157,a) |
−1 | 1 | e(10819) | e(5419) | e(1087) | e(3619) | e(271) | e(10817) | e(5413) | e(2719) | e(3629) | e(1817) |
pari: znchargauss(g,chi,a)
sage: chi.kloosterman_sum(a,b)