sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4160, base_ring=CyclotomicField(48))
M = H._module
chi = DirichletCharacter(H, M([0,3,24,16]))
pari:[g,chi] = znchar(Mod(2629,4160))
Modulus: | 4160 | |
Conductor: | 4160 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 48 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ4160(29,⋅)
χ4160(269,⋅)
χ4160(549,⋅)
χ4160(789,⋅)
χ4160(1069,⋅)
χ4160(1309,⋅)
χ4160(1589,⋅)
χ4160(1829,⋅)
χ4160(2109,⋅)
χ4160(2349,⋅)
χ4160(2629,⋅)
χ4160(2869,⋅)
χ4160(3149,⋅)
χ4160(3389,⋅)
χ4160(3669,⋅)
χ4160(3909,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(4031,261,2497,1601) → (1,e(161),−1,e(31))
a |
−1 | 1 | 3 | 7 | 9 | 11 | 17 | 19 | 21 | 23 | 27 | 29 |
χ4160(2629,a) |
1 | 1 | e(481) | e(2419) | e(241) | e(4831) | e(1211) | e(485) | e(1613) | e(2417) | e(161) | e(481) |
sage:chi.jacobi_sum(n)