from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4160, base_ring=CyclotomicField(48))
M = H._module
chi = DirichletCharacter(H, M([0,33,24,16]))
chi.galois_orbit()
[g,chi] = znchar(Mod(29,4160))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(4160\) | |
Conductor: | \(4160\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(48\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{48})\) |
Fixed field: | Number field defined by a degree 48 polynomial |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{4160}(29,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{43}{48}\right)\) |
\(\chi_{4160}(269,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{47}{48}\right)\) |
\(\chi_{4160}(549,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{25}{48}\right)\) |
\(\chi_{4160}(789,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{29}{48}\right)\) |
\(\chi_{4160}(1069,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{7}{48}\right)\) |
\(\chi_{4160}(1309,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{11}{48}\right)\) |
\(\chi_{4160}(1589,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{37}{48}\right)\) |
\(\chi_{4160}(1829,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{41}{48}\right)\) |
\(\chi_{4160}(2109,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{19}{48}\right)\) |
\(\chi_{4160}(2349,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{23}{48}\right)\) |
\(\chi_{4160}(2629,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{1}{48}\right)\) |
\(\chi_{4160}(2869,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{5}{48}\right)\) |
\(\chi_{4160}(3149,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{31}{48}\right)\) |
\(\chi_{4160}(3389,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{35}{48}\right)\) |
\(\chi_{4160}(3669,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{13}{48}\right)\) |
\(\chi_{4160}(3909,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{17}{48}\right)\) |