Properties

Label 4160.3389
Modulus $4160$
Conductor $4160$
Order $48$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4160, base_ring=CyclotomicField(48))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,9,24,32]))
 
pari: [g,chi] = znchar(Mod(3389,4160))
 

Basic properties

Modulus: \(4160\)
Conductor: \(4160\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(48\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4160.jp

\(\chi_{4160}(29,\cdot)\) \(\chi_{4160}(269,\cdot)\) \(\chi_{4160}(549,\cdot)\) \(\chi_{4160}(789,\cdot)\) \(\chi_{4160}(1069,\cdot)\) \(\chi_{4160}(1309,\cdot)\) \(\chi_{4160}(1589,\cdot)\) \(\chi_{4160}(1829,\cdot)\) \(\chi_{4160}(2109,\cdot)\) \(\chi_{4160}(2349,\cdot)\) \(\chi_{4160}(2629,\cdot)\) \(\chi_{4160}(2869,\cdot)\) \(\chi_{4160}(3149,\cdot)\) \(\chi_{4160}(3389,\cdot)\) \(\chi_{4160}(3669,\cdot)\) \(\chi_{4160}(3909,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{48})\)
Fixed field: Number field defined by a degree 48 polynomial

Values on generators

\((4031,261,2497,1601)\) → \((1,e\left(\frac{3}{16}\right),-1,e\left(\frac{2}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 4160 }(3389, a) \) \(1\)\(1\)\(e\left(\frac{35}{48}\right)\)\(e\left(\frac{17}{24}\right)\)\(e\left(\frac{11}{24}\right)\)\(e\left(\frac{29}{48}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{31}{48}\right)\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{19}{24}\right)\)\(e\left(\frac{3}{16}\right)\)\(e\left(\frac{35}{48}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4160 }(3389,a) \;\) at \(\;a = \) e.g. 2