from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4160, base_ring=CyclotomicField(48))
M = H._module
chi = DirichletCharacter(H, M([0,15,24,32]))
pari: [g,chi] = znchar(Mod(2869,4160))
Basic properties
Modulus: | \(4160\) | |
Conductor: | \(4160\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(48\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 4160.jp
\(\chi_{4160}(29,\cdot)\) \(\chi_{4160}(269,\cdot)\) \(\chi_{4160}(549,\cdot)\) \(\chi_{4160}(789,\cdot)\) \(\chi_{4160}(1069,\cdot)\) \(\chi_{4160}(1309,\cdot)\) \(\chi_{4160}(1589,\cdot)\) \(\chi_{4160}(1829,\cdot)\) \(\chi_{4160}(2109,\cdot)\) \(\chi_{4160}(2349,\cdot)\) \(\chi_{4160}(2629,\cdot)\) \(\chi_{4160}(2869,\cdot)\) \(\chi_{4160}(3149,\cdot)\) \(\chi_{4160}(3389,\cdot)\) \(\chi_{4160}(3669,\cdot)\) \(\chi_{4160}(3909,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{48})\) |
Fixed field: | Number field defined by a degree 48 polynomial |
Values on generators
\((4031,261,2497,1601)\) → \((1,e\left(\frac{5}{16}\right),-1,e\left(\frac{2}{3}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 4160 }(2869, a) \) | \(1\) | \(1\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{5}{48}\right)\) |
sage: chi.jacobi_sum(n)