Learn more

Refine search


Results (1-50 of 121 matches)

Next   displayed columns for results
Label Class Conductor Rank* Torsion End0(JQ)\textrm{End}^0(J_{\overline\Q}) Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
504.a.27216.1 504.a 23327 2^{3} \cdot 3^{2} \cdot 7 00 Z/4ZZ/4Z\Z/4\Z\oplus\Z/4\Z Q×Q\Q \times \Q [8456,9496,26675348,108864][8456,9496,26675348,108864] [4228,743250,173847744,45651924783,27216][4228,743250,173847744,45651924783,27216] [12063042849801664/243,167186257609000/81,3083035208512/27][12063042849801664/243,167186257609000/81,3083035208512/27] y2+(x3+x)y=3x4+15x2+21y^2 + (x^3 + x)y = 3x^4 + 15x^2 + 21
523.a.523.1 523.a 523 523 00 Z/10Z\Z/10\Z Q\Q [120,540,29169,2092][120,-540,-29169,-2092] [60,240,2241,19215,523][60,240,2241,19215,-523] [777600000/523,51840000/523,8067600/523][-777600000/523,-51840000/523,-8067600/523] y2+(x+1)y=x5x4x3y^2 + (x + 1)y = x^5 - x^4 - x^3
523.a.523.2 523.a 523 523 00 Z/2Z\Z/2\Z Q\Q [332400,10084860,1107044456391,2092][332400,10084860,1107044456391,-2092] [166200,1149254190,10581558955401,109467476288772525,523][166200,1149254190,10581558955401,109467476288772525,-523] [126810465636208320000000000/523,5276053055713522320000000/523,292288477352026798440000/523][-126810465636208320000000000/523,-5276053055713522320000000/523,-292288477352026798440000/523] y2+xy=x531x4110x3+21x2xy^2 + xy = x^5 - 31x^4 - 110x^3 + 21x^2 - x
529.a.529.1 529.a 232 23^{2} 00 Z/11Z\Z/11\Z RM\mathsf{RM} [284,2401,246639,67712][284,2401,246639,-67712] [71,110,624,14101,529][71,110,-624,-14101,-529] [1804229351/529,39370210/529,3145584/529][-1804229351/529,-39370210/529,3145584/529] y2+(x3+x+1)y=x5y^2 + (x^3 + x + 1)y = -x^5
555.a.8325.1 555.a 3537 3 \cdot 5 \cdot 37 00 Z/2ZZ/10Z\Z/2\Z\oplus\Z/10\Z Q\Q [1264,18124,6869487,33300][1264,18124,6869487,33300] [632,13622,351361,9125317,8325][632,13622,351361,9125317,8325] [100828984082432/8325,3438682756096/8325,140342016064/8325][100828984082432/8325,3438682756096/8325,140342016064/8325] y2+(x+1)y=3x52x44x3+x2+xy^2 + (x + 1)y = 3x^5 - 2x^4 - 4x^3 + x^2 + x
574.a.293888.1 574.a 2741 2 \cdot 7 \cdot 41 00 Z/2ZZ/10Z\Z/2\Z\oplus\Z/10\Z Q\Q [68,55823,955895,37617664][68,-55823,-955895,-37617664] [17,2338,2304,1356769,293888][17,2338,2304,-1356769,-293888] [1419857/293888,820471/20992,2601/1148][-1419857/293888,-820471/20992,-2601/1148] y2+(x2+x)y=x5x43x2+x+1y^2 + (x^2 + x)y = x^5 - x^4 - 3x^2 + x + 1
576.a.576.1 576.a 2632 2^{6} \cdot 3^{2} 00 Z/10Z\Z/10\Z M2(Q)\mathrm{M}_2(\Q) [68,124,2616,72][68,124,2616,72] [68,110,36,3637,576][68,110,-36,-3637,576] [22717712/9,540430/9,289][22717712/9,540430/9,-289] y2+(x3+x2+x+1)y=x3xy^2 + (x^3 + x^2 + x + 1)y = -x^3 - x
576.b.147456.1 576.b 2632 2^{6} \cdot 3^{2} 00 Z/4ZZ/4Z\Z/4\Z\oplus\Z/4\Z M2(Q)\mathrm{M}_2(\Q) [152,109,5469,18][152,109,5469,18] [608,14240,405504,10942208,147456][608,14240,405504,10942208,147456] [5071050752/9,195344320/9,1016576][5071050752/9,195344320/9,1016576] y2=x6+2x4+2x2+1y^2 = x^6 + 2x^4 + 2x^2 + 1
578.a.2312.1 578.a 2172 2 \cdot 17^{2} 00 Z/12Z\Z/12\Z Q×Q\Q \times \Q [228,705,135777,295936][228,705,135777,295936] [57,106,992,16945,2312][57,106,-992,-16945,2312] [601692057/2312,9815229/1156,402876/289][601692057/2312,9815229/1156,-402876/289] y2+(x2+x)y=x52x4+2x32x2+xy^2 + (x^2 + x)y = x^5 - 2x^4 + 2x^3 - 2x^2 + x
587.a.587.1 587.a 587 587 11 trivial\mathsf{trivial} Q\Q [60,1401,54147,75136][60,1401,54147,-75136] [15,49,501,2479,587][15,-49,-501,-2479,-587] [759375/587,165375/587,112725/587][-759375/587,165375/587,112725/587] y2+(x3+x+1)y=x2xy^2 + (x^3 + x + 1)y = -x^2 - x
588.a.18816.1 588.a 22372 2^{2} \cdot 3 \cdot 7^{2} 00 Z/24Z\Z/24\Z Q×Q\Q \times \Q [748,11545,2902787,2408448][748,11545,2902787,2408448] [187,976,192,247120,18816][187,976,-192,-247120,18816] [228669389707/18816,398891383/1176,34969/98][228669389707/18816,398891383/1176,-34969/98] y2+(x3+1)y=x5+x4+5x2+12x+8y^2 + (x^3 + 1)y = x^5 + x^4 + 5x^2 + 12x + 8
597.a.597.1 597.a 3199 3 \cdot 199 00 Z/7Z\Z/7\Z Q\Q [120,192,9912,2388][120,192,9912,2388] [60,118,68,4501,597][60,118,-68,-4501,597] [259200000/199,8496000/199,81600/199][259200000/199,8496000/199,-81600/199] y2+y=x5+2x4+3x3+2x2+xy^2 + y = x^5 + 2x^4 + 3x^3 + 2x^2 + x
600.a.18000.1 600.a 23352 2^{3} \cdot 3 \cdot 5^{2} 00 Z/2ZZ/2ZZ/6Z\Z/2\Z\oplus\Z/2\Z\oplus\Z/6\Z Q×Q\Q \times \Q [1376,23824,11410044,72000][1376,23824,11410044,72000] [688,15752,244900,19908576,18000][688,15752,244900,-19908576,18000] [9634345320448/1125,320612931584/1125,289804864/45][9634345320448/1125,320612931584/1125,289804864/45] y2+xy=10x518x4+8x3+x2xy^2 + xy = 10x^5 - 18x^4 + 8x^3 + x^2 - x
600.a.96000.1 600.a 23352 2^{3} \cdot 3 \cdot 5^{2} 00 Z/2ZZ/6Z\Z/2\Z\oplus\Z/6\Z Q×Q\Q \times \Q [92,4981,43947,12000][92,4981,43947,-12000] [92,2968,47600,1107456,96000][92,-2968,47600,-1107456,-96000] [25745372/375,9027914/375,62951/15][-25745372/375,9027914/375,-62951/15] y2+(x+1)y=4x5+5x4+3x3+2x2y^2 + (x + 1)y = 4x^5 + 5x^4 + 3x^3 + 2x^2
600.b.30000.1 600.b 23352 2^{3} \cdot 3 \cdot 5^{2} 00 Z/2ZZ/8Z\Z/2\Z\oplus\Z/8\Z Q×Q\Q \times \Q [600,18744,4690524,120000][600,18744,4690524,120000] [300,626,198336,14973169,30000][300,626,-198336,-14973169,30000] [81000000,563400,595008][81000000,563400,-595008] y2+(x3+x)y=x4+x23y^2 + (x^3 + x)y = x^4 + x^2 - 3
600.b.450000.1 600.b 23352 2^{3} \cdot 3 \cdot 5^{2} 00 Z/2ZZ/2ZZ/8Z\Z/2\Z\oplus\Z/2\Z\oplus\Z/8\Z Q×Q\Q \times \Q [18072,38904,233095932,1800000][18072,38904,233095932,1800000] [9036,3395570,1698206400,953774351375,450000][9036,3395570,1698206400,953774351375,450000] [418329622965299904/3125,3479436045234936/625,38515932506304/125][418329622965299904/3125,3479436045234936/625,38515932506304/125] y2+(x3+x)y=5x4+25x245y^2 + (x^3 + x)y = -5x^4 + 25x^2 - 45
603.a.603.1 603.a 3267 3^{2} \cdot 67 00 Z/10Z\Z/10\Z Q\Q [1672,75628,49887881,2412][1672,75628,49887881,2412] [836,16516,1263521,332270453,603][836,16516,-1263521,-332270453,603] [408348897330176/603,9649919856896/603,883069772816/603][408348897330176/603,9649919856896/603,-883069772816/603] y2+(x2+1)y=x5+8x4+4x3+4x2+2xy^2 + (x^2 + 1)y = x^5 + 8x^4 + 4x^3 + 4x^2 + 2x
603.a.603.2 603.a 3267 3^{2} \cdot 67 00 Z/10Z\Z/10\Z Q\Q [176,148,7375,2412][176,148,7375,-2412] [88,298,1361,7741,603][88,298,1361,7741,-603] [5277319168/603,203078656/603,10539584/603][-5277319168/603,-203078656/603,-10539584/603] y2+(x2+1)y=x5x3+xy^2 + (x^2 + 1)y = x^5 - x^3 + x
604.a.9664.1 604.a 22151 2^{2} \cdot 151 00 trivial\mathsf{trivial} Q\Q [49556,797087975,23996873337603,1236992][49556,-797087975,-23996873337603,1236992] [12389,39607304,223396249616,299729401586052,9664][12389,39607304,223396249616,299729401586052,9664] [291864493641401980949/9664,9414430497536890397/1208,2143030742187944921/604][291864493641401980949/9664,9414430497536890397/1208,2143030742187944921/604] y2+(x2+x+1)y=4x5+9x4+48x34x253x21y^2 + (x^2 + x + 1)y = 4x^5 + 9x^4 + 48x^3 - 4x^2 - 53x - 21
604.a.9664.2 604.a 22151 2^{2} \cdot 151 00 Z/27Z\Z/27\Z Q\Q [116,6265,95277,1236992][116,6265,95277,1236992] [29,226,836,6708,9664][29,-226,836,-6708,9664] [20511149/9664,2755957/4832,175769/2416][20511149/9664,-2755957/4832,175769/2416] y2+(x3+1)y=x4+x3+x2xy^2 + (x^3 + 1)y = -x^4 + x^3 + x^2 - x
630.a.34020.1 630.a 23257 2 \cdot 3^{2} \cdot 5 \cdot 7 00 Z/2ZZ/2ZZ/4Z\Z/2\Z\oplus\Z/2\Z\oplus\Z/4\Z Q×Q\Q \times \Q [24100,969793,7474503265,4354560][24100,969793,7474503265,4354560] [6025,1472118,470090880,166291536519,34020][6025,1472118,470090880,166291536519,34020] [1587871127345703125/6804,10732293030978125/1134,13543327580000/27][1587871127345703125/6804,10732293030978125/1134,13543327580000/27] y2+(x2+x)y=3x5+10x423x26x+15y^2 + (x^2 + x)y = 3x^5 + 10x^4 - 23x^2 - 6x + 15
640.a.81920.1 640.a 275 2^{7} \cdot 5 00 Z/12Z\Z/12\Z CM×Q\mathsf{CM} \times \Q [912,147,44562,10][912,147,44562,10] [3648,552928,111431680,25193348864,81920][3648,552928,111431680,25193348864,81920] [39432490647552/5,1638374321664/5,18102076416][39432490647552/5,1638374321664/5,18102076416] y2+x3y=3x4+13x2+20y^2 + x^3y = 3x^4 + 13x^2 + 20
640.a.81920.2 640.a 275 2^{7} \cdot 5 00 Z/12Z\Z/12\Z CM×Q\mathsf{CM} \times \Q [912,147,44562,10][912,147,44562,10] [3648,552928,111431680,25193348864,81920][3648,552928,111431680,25193348864,81920] [39432490647552/5,1638374321664/5,18102076416][39432490647552/5,1638374321664/5,18102076416] y2+x3y=3x4+13x220y^2 + x^3y = -3x^4 + 13x^2 - 20
644.a.2576.1 644.a 22723 2^{2} \cdot 7 \cdot 23 00 Z/6Z\Z/6\Z Q×Q\Q \times \Q [39036,4124865,50880984159,329728][39036,4124865,50880984159,329728] [9759,3796384,1910683600,1058457444236,2576][9759,3796384,1910683600,1058457444236,2576] [88516980336138032799/2576,220529201888022246/161,70640465629725][88516980336138032799/2576,220529201888022246/161,70640465629725] y2+(x2+x)y=5x6+11x520x4+20x320x2+11x5y^2 + (x^2 + x)y = -5x^6 + 11x^5 - 20x^4 + 20x^3 - 20x^2 + 11x - 5
644.a.659456.1 644.a 22723 2^{2} \cdot 7 \cdot 23 00 Z/2Z\Z/2\Z Q×Q\Q \times \Q [161796,1070662305,46065265919409,84410368][161796,1070662305,46065265919409,84410368] [40449,23560804,14638854160,9253881697856,659456][40449,23560804,14638854160,9253881697856,659456] [108277681088425330677249/659456,389810454818831018649/164864,9297727292338785/256][108277681088425330677249/659456,389810454818831018649/164864,9297727292338785/256] y2+(x2+x)y=3x613x5+4x4+51x3+4x213x3y^2 + (x^2 + x)y = -3x^6 - 13x^5 + 4x^4 + 51x^3 + 4x^2 - 13x - 3
644.b.14812.1 644.b 22723 2^{2} \cdot 7 \cdot 23 00 Z/10Z\Z/10\Z Q\Q [1268,40511,17688719,1895936][1268,-40511,-17688719,-1895936] [317,5875,170781,4905488,14812][317,5875,170781,4905488,-14812] [3201078401357/14812,187148201375/14812,17161611909/14812][-3201078401357/14812,-187148201375/14812,-17161611909/14812] y2+(x3+1)y=x5x44x3+5x2x1y^2 + (x^3 + 1)y = x^5 - x^4 - 4x^3 + 5x^2 - x - 1
672.a.172032.1 672.a 2537 2^{5} \cdot 3 \cdot 7 00 Z/4Z\Z/4\Z Q×Q\Q \times \Q [16916,151117825,232872423961,21504][16916,151117825,232872423961,-21504] [16916,88822256,277597802496,798387183476800,172032][16916,-88822256,277597802496,-798387183476800,-172032] [1352659309173012149/168,419870026410625699/168,461744933079368][-1352659309173012149/168,419870026410625699/168,-461744933079368] y2+(x3+x)y=x616x475x2+56y^2 + (x^3 + x)y = -x^6 - 16x^4 - 75x^2 + 56
676.a.5408.1 676.a 22132 2^{2} \cdot 13^{2} 00 Z/21Z\Z/21\Z Q×Q\Q \times \Q [204,3273,161211,692224][204,3273,161211,692224] [51,28,0,196,5408][51,-28,0,-196,5408] [345025251/5408,928557/1352,0][345025251/5408,-928557/1352,0] y2+(x3+x2+x)y=x3+3x2+3x+1y^2 + (x^3 + x^2 + x)y = x^3 + 3x^2 + 3x + 1
676.a.562432.1 676.a 22132 2^{2} \cdot 13^{2} 00 Z/21Z\Z/21\Z Q×Q\Q \times \Q [1620,52953,29527389,71991296][1620,52953,29527389,71991296] [405,4628,8112,6175936,562432][405,4628,-8112,-6175936,562432] [10896201253125/562432,5912281125/10816,492075/208][10896201253125/562432,5912281125/10816,-492075/208] y2+(x3+1)y=2x5+2x4+4x3+2x2+2xy^2 + (x^3 + 1)y = 2x^5 + 2x^4 + 4x^3 + 2x^2 + 2x
676.b.17576.1 676.b 22132 2^{2} \cdot 13^{2} 00 Z/3ZZ/3Z\Z/3\Z\oplus\Z/3\Z M2(Q)\mathrm{M}_2(\Q) [1244,1249,129167,2249728][1244,1249,129167,2249728] [311,3978,72332,1667692,17576][311,3978,72332,1667692,17576] [2909390022551/17576,4602275343/676,10349147/26][2909390022551/17576,4602275343/676,10349147/26] y2+(x2+x)y=x6+3x56x4+6x36x2+3x1y^2 + (x^2 + x)y = -x^6 + 3x^5 - 6x^4 + 6x^3 - 6x^2 + 3x - 1
686.a.686.1 686.a 273 2 \cdot 7^{3} 00 Z/6Z\Z/6\Z CM×Q\mathsf{CM} \times \Q [420,4305,640185,87808][420,4305,640185,87808] [105,280,980,45325,686][105,280,-980,-45325,686] [37209375/2,472500,15750][37209375/2,472500,-15750] y2+(x2+x)y=x5+x4+2x3+x2+xy^2 + (x^2 + x)y = x^5 + x^4 + 2x^3 + x^2 + x
688.a.2752.1 688.a 2443 2^{4} \cdot 43 00 Z/20Z\Z/20\Z Q\Q [32,112,680,344][32,112,-680,-344] [32,32,1344,10496,2752][32,-32,1344,10496,-2752] [524288/43,16384/43,21504/43][-524288/43,16384/43,-21504/43] y2+y=2x55x4+4x3xy^2 + y = 2x^5 - 5x^4 + 4x^3 - x
688.a.704512.2 688.a 2443 2^{4} \cdot 43 00 Z/10Z\Z/10\Z Q\Q [464,248,39602,86][464,-248,-39602,-86] [1856,146176,15688704,1937702912,704512][1856,146176,15688704,1937702912,-704512] [1344218660864/43,57041383424/43,3298550016/43][-1344218660864/43,-57041383424/43,-3298550016/43] y2=2x57x48x3+2x2+4x+1y^2 = 2x^5 - 7x^4 - 8x^3 + 2x^2 + 4x + 1
688.a.704512.1 688.a 2443 2^{4} \cdot 43 00 Z/10Z\Z/10\Z Q\Q [128,532,26830,86][128,532,26830,86] [512,5248,408576,59183104,704512][512,5248,-408576,-59183104,704512] [2147483648/43,42991616/43,6537216/43][2147483648/43,42991616/43,-6537216/43] y2=2x5+4x3+x2+2x+1y^2 = 2x^5 + 4x^3 + x^2 + 2x + 1
691.a.691.1 691.a 691 691 00 Z/8Z\Z/8\Z Q\Q [104,824,20333,2764][104,-824,-20333,-2764] [52,250,601,7812,691][52,250,601,-7812,-691] [380204032/691,35152000/691,1625104/691][-380204032/691,-35152000/691,-1625104/691] y2+(x+1)y=x5x3x2y^2 + (x + 1)y = x^5 - x^3 - x^2
704.a.45056.1 704.a 2611 2^{6} \cdot 11 00 Z/2ZZ/6Z\Z/2\Z\oplus\Z/6\Z Q\Q [134,464,15328,176][134,-464,-15328,-176] [268,4230,61444,356477,45056][268,4230,61444,-356477,-45056] [1350125107/44,636113745/352,68955529/704][-1350125107/44,-636113745/352,-68955529/704] y2+y=4x5+4x4x32x2y^2 + y = 4x^5 + 4x^4 - x^3 - 2x^2
708.a.2832.1 708.a 22359 2^{2} \cdot 3 \cdot 59 00 Z/10Z\Z/10\Z Q\Q [148,2065,76361,362496][148,2065,76361,362496] [37,29,59,756,2832][37,-29,-59,-756,2832] [69343957/2832,1468937/2832,1369/48][69343957/2832,-1468937/2832,-1369/48] y2+(x2+x+1)y=x5y^2 + (x^2 + x + 1)y = x^5
708.a.19116.1 708.a 22359 2^{2} \cdot 3 \cdot 59 00 Z/10Z\Z/10\Z Q\Q [908,132815,8426215,2446848][908,-132815,8426215,2446848] [227,7681,438901,39657072,19116][227,7681,-438901,-39657072,19116] [602738989907/19116,89845294523/19116,383324231/324][602738989907/19116,89845294523/19116,-383324231/324] y2+(x3+1)y=x5+4x2+4x1y^2 + (x^3 + 1)y = -x^5 + 4x^2 + 4x - 1
708.a.181248.1 708.a 22359 2^{2} \cdot 3 \cdot 59 00 Z/2Z\Z/2\Z Q\Q [234100,3468879025,202585466081177,23199744][234100,3468879025,202585466081177,-23199744] [58525,1820975,60952909,62829762150,181248][58525,-1820975,60952909,62829762150,-181248] [686605237334059580078125/181248,365029741228054296875/181248,208774418179643125/181248][-686605237334059580078125/181248,365029741228054296875/181248,-208774418179643125/181248] y2+(x3+1)y=x64x5+9x4+48x341x298x36y^2 + (x^3 + 1)y = -x^6 - 4x^5 + 9x^4 + 48x^3 - 41x^2 - 98x - 36
709.a.709.1 709.a 709 709 00 Z/8Z\Z/8\Z Q\Q [160,1280,42089,2836][160,-1280,-42089,2836] [80,480,1121,35180,709][80,480,1121,-35180,709] [3276800000/709,245760000/709,7174400/709][3276800000/709,245760000/709,7174400/709] y2+xy=x52x2+xy^2 + xy = x^5 - 2x^2 + x
713.a.713.1 713.a 2331 23 \cdot 31 11 trivial\mathsf{trivial} Q\Q [36,1305,2547,91264][36,1305,-2547,91264] [9,51,173,261,713][9,-51,173,-261,713] [59049/713,37179/713,14013/713][59049/713,-37179/713,14013/713] y2+(x3+x+1)y=x5xy^2 + (x^3 + x + 1)y = -x^5 - x
713.b.713.1 713.b 2331 23 \cdot 31 00 Z/9Z\Z/9\Z Q\Q [92,73,6379,91264][92,73,6379,-91264] [23,19,41,326,713][23,19,-41,-326,-713] [279841/31,10051/31,943/31][-279841/31,-10051/31,943/31] y2+(x3+x+1)y=x4y^2 + (x^3 + x + 1)y = -x^4
720.a.6480.1 720.a 24325 2^{4} \cdot 3^{2} \cdot 5 00 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z Q×Q\Q \times \Q [2360,11992,9047820,25920][2360,11992,9047820,25920] [1180,56018,3453120,234166319,6480][1180,56018,3453120,234166319,6480] [28596971960000/81,1150492082200/81,6677950400/9][28596971960000/81,1150492082200/81,6677950400/9] y2+(x3+x)y=2x4+7x2+5y^2 + (x^3 + x)y = 2x^4 + 7x^2 + 5
720.b.116640.1 720.b 24325 2^{4} \cdot 3^{2} \cdot 5 00 Z/2ZZ/12Z\Z/2\Z\oplus\Z/12\Z Q×Q\Q \times \Q [35416,45688,537039964,466560][35416,45688,537039964,466560] [17708,13057938,12831384960,14177105014959,116640][17708,13057938,12831384960,14177105014959,116640] [54412363190235229024/3645,251762275020280012/405,310461362928064/9][54412363190235229024/3645,251762275020280012/405,310461362928064/9] y2+(x3+x)y=6x4+39x290y^2 + (x^3 + x)y = -6x^4 + 39x^2 - 90
726.a.1452.1 726.a 23112 2 \cdot 3 \cdot 11^{2} 00 Z/10Z\Z/10\Z Q×Q\Q \times \Q [760,69236,16142609,5808][760,-69236,-16142609,-5808] [380,17556,702601,10306189,1452][380,17556,702601,-10306189,-1452] [1980879200000/363,7297976000/11,25363896100/363][-1980879200000/363,-7297976000/11,-25363896100/363] y2+(x2+1)y=2x5+2x4+6x32x2xy^2 + (x^2 + 1)y = 2x^5 + 2x^4 + 6x^3 - 2x^2 - x
731.a.12427.1 731.a 1743 17 \cdot 43 00 Z/10Z\Z/10\Z Q\Q [480,21564,3373785,49708][480,-21564,-3373785,-49708] [240,5994,167265,1053891,12427][240,5994,167265,1053891,-12427] [796262400000/12427,82861056000/12427,9634464000/12427][-796262400000/12427,-82861056000/12427,-9634464000/12427] y2+(x3+x2)y=x5+2x4x3y^2 + (x^3 + x^2)y = x^5 + 2x^4 - x - 3
741.a.28899.1 741.a 31319 3 \cdot 13 \cdot 19 00 Z/2ZZ/8Z\Z/2\Z\oplus\Z/8\Z Q\Q [576,840,740385,115596][576,-840,740385,115596] [288,3596,38169,5980972,28899][288,3596,-38169,-5980972,28899] [220150628352/3211,9544531968/3211,351765504/3211][220150628352/3211,9544531968/3211,-351765504/3211] y2+(x+1)y=3x5x4+2x2+xy^2 + (x + 1)y = -3x^5 - x^4 + 2x^2 + x
743.a.743.1 743.a 743 743 11 trivial\mathsf{trivial} Q\Q [28,1945,15219,95104][28,1945,15219,95104] [7,79,53,1653,743][7,-79,-53,-1653,743] [16807/743,27097/743,2597/743][16807/743,-27097/743,-2597/743] y2+(x3+x+1)y=x4+x2y^2 + (x^3 + x + 1)y = -x^4 + x^2
745.a.745.1 745.a 5149 5 \cdot 149 00 Z/9Z\Z/9\Z Q\Q [124,1417,38763,95360][124,1417,38763,95360] [31,19,39,212,745][31,-19,39,212,745] [28629151/745,566029/745,37479/745][28629151/745,-566029/745,37479/745] y2+(x3+x+1)y=xy^2 + (x^3 + x + 1)y = -x
762.a.3048.1 762.a 23127 2 \cdot 3 \cdot 127 00 Z/12Z\Z/12\Z Q\Q [428,3169,355487,390144][428,3169,355487,390144] [107,345,1823,19009,3048][107,345,1823,19009,3048] [14025517307/3048,140879945/1016,20871527/3048][14025517307/3048,140879945/1016,20871527/3048] y2+(x3+x2+x)y=x2+x+1y^2 + (x^3 + x^2 + x)y = x^2 + x + 1
Next   displayed columns for results