Label |
Class |
Conductor |
Discriminant |
Rank* |
2-Selmer rank |
Torsion |
$\textrm{End}^0(J_{\overline\Q})$ |
$\textrm{End}^0(J)$ |
$\GL_2\textsf{-type}$ |
Sato-Tate |
Nonmaximal primes |
$\Q$-simple |
\(\overline{\Q}\)-simple |
\(\Aut(X)\) |
\(\Aut(X_{\overline{\Q}})\) |
$\Q$-points |
$\Q$-Weierstrass points |
mod-$\ell$ images |
Locally solvable |
Square Ш* |
Analytic Ш* |
Tamagawa |
Regulator |
Real period |
Leading coefficient |
Igusa-Clebsch invariants |
Igusa invariants |
G2-invariants |
Equation |
504.a.27216.1 |
504.a |
\( 2^{3} \cdot 3^{2} \cdot 7 \) |
\( - 2^{4} \cdot 3^{5} \cdot 7 \) |
$0$ |
$2$ |
$\Z/4\Z\oplus\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$0$ |
2.90.6, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{3} \) |
\(1.000000\) |
\(7.782699\) |
\(0.243209\) |
$[8456,9496,26675348,108864]$ |
$[4228,743250,173847744,45651924783,27216]$ |
$[12063042849801664/243,167186257609000/81,3083035208512/27]$ |
$y^2 + (x^3 + x)y = 3x^4 + 15x^2 + 21$ |
523.a.523.1 |
523.a |
\( 523 \) |
\( -523 \) |
$0$ |
$1$ |
$\Z/10\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(24.819904\) |
\(0.248199\) |
$[120,-540,-29169,-2092]$ |
$[60,240,2241,19215,-523]$ |
$[-777600000/523,-51840000/523,-8067600/523]$ |
$y^2 + (x + 1)y = x^5 - x^4 - x^3$ |
523.a.523.2 |
523.a |
\( 523 \) |
\( -523 \) |
$0$ |
$1$ |
$\Z/2\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$2$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(0.992796\) |
\(0.248199\) |
$[332400,10084860,1107044456391,-2092]$ |
$[166200,1149254190,10581558955401,109467476288772525,-523]$ |
$[-126810465636208320000000000/523,-5276053055713522320000000/523,-292288477352026798440000/523]$ |
$y^2 + xy = x^5 - 31x^4 - 110x^3 + 21x^2 - x$ |
529.a.529.1 |
529.a |
\( 23^{2} \) |
\( 23^{2} \) |
$0$ |
$0$ |
$\Z/11\Z$ |
\(\mathsf{RM}\) |
\(\mathsf{RM}\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$0$ |
2.120.2, 3.432.4 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(30.060256\) |
\(0.248432\) |
$[284,2401,246639,-67712]$ |
$[71,110,-624,-14101,-529]$ |
$[-1804229351/529,-39370210/529,3145584/529]$ |
$y^2 + (x^3 + x + 1)y = -x^5$ |
555.a.8325.1 |
555.a |
\( 3 \cdot 5 \cdot 37 \) |
\( 3^{2} \cdot 5^{2} \cdot 37 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/10\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$5$ |
$3$ |
2.120.3 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(25.692472\) |
\(0.256925\) |
$[1264,18124,6869487,33300]$ |
$[632,13622,351361,9125317,8325]$ |
$[100828984082432/8325,3438682756096/8325,140342016064/8325]$ |
$y^2 + (x + 1)y = 3x^5 - 2x^4 - 4x^3 + x^2 + x$ |
574.a.293888.1 |
574.a |
\( 2 \cdot 7 \cdot 41 \) |
\( - 2^{10} \cdot 7 \cdot 41 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/10\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$6$ |
$2$ |
2.180.3 |
✓ |
✓ |
$1$ |
\( 2 \cdot 5 \) |
\(1.000000\) |
\(11.546350\) |
\(0.288659\) |
$[68,-55823,-955895,-37617664]$ |
$[17,2338,2304,-1356769,-293888]$ |
$[-1419857/293888,-820471/20992,-2601/1148]$ |
$y^2 + (x^2 + x)y = x^5 - x^4 - 3x^2 + x + 1$ |
576.a.576.1 |
576.a |
\( 2^{6} \cdot 3^{2} \) |
\( - 2^{6} \cdot 3^{2} \) |
$0$ |
$1$ |
$\Z/10\Z$ |
\(\mathrm{M}_2(\Q)\) |
\(\mathsf{CM}\) |
✓ |
$E_2$ |
|
✓ |
|
$C_4$ |
$D_4$ |
$4$ |
$0$ |
2.180.4, 3.1080.16 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(22.396252\) |
\(0.223963\) |
$[68,124,2616,72]$ |
$[68,110,-36,-3637,576]$ |
$[22717712/9,540430/9,-289]$ |
$y^2 + (x^3 + x^2 + x + 1)y = -x^3 - x$ |
576.b.147456.1 |
576.b |
\( 2^{6} \cdot 3^{2} \) |
\( - 2^{14} \cdot 3^{2} \) |
$0$ |
$2$ |
$\Z/4\Z\oplus\Z/4\Z$ |
\(\mathrm{M}_2(\Q)\) |
\(\mathrm{M}_2(\Q)\) |
|
$E_1$ |
|
|
|
$D_4$ |
$D_4$ |
$4$ |
$0$ |
2.180.7, 3.2160.25 |
✓ |
✓ |
$1$ |
\( 2^{3} \) |
\(1.000000\) |
\(9.301119\) |
\(0.290660\) |
$[152,109,5469,18]$ |
$[608,14240,405504,10942208,147456]$ |
$[5071050752/9,195344320/9,1016576]$ |
$y^2 = x^6 + 2x^4 + 2x^2 + 1$ |
578.a.2312.1 |
578.a |
\( 2 \cdot 17^{2} \) |
\( 2^{3} \cdot 17^{2} \) |
$0$ |
$1$ |
$\Z/12\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.90.3, 3.2160.21 |
✓ |
✓ |
$1$ |
\( 3 \) |
\(1.000000\) |
\(13.910299\) |
\(0.289798\) |
$[228,705,135777,295936]$ |
$[57,106,-992,-16945,2312]$ |
$[601692057/2312,9815229/1156,-402876/289]$ |
$y^2 + (x^2 + x)y = x^5 - 2x^4 + 2x^3 - 2x^2 + x$ |
587.a.587.1 |
587.a |
\( 587 \) |
\( 587 \) |
$1$ |
$1$ |
$\mathsf{trivial}$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
|
✓ |
✓ |
$C_2$ |
$C_2$ |
$10$ |
$0$ |
|
✓ |
✓ |
$1$ |
\( 1 \) |
\(0.003773\) |
\(29.510964\) |
\(0.111352\) |
$[60,1401,54147,-75136]$ |
$[15,-49,-501,-2479,-587]$ |
$[-759375/587,165375/587,112725/587]$ |
$y^2 + (x^3 + x + 1)y = -x^2 - x$ |
588.a.18816.1 |
588.a |
\( 2^{2} \cdot 3 \cdot 7^{2} \) |
\( - 2^{7} \cdot 3 \cdot 7^{2} \) |
$0$ |
$1$ |
$\Z/24\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$6$ |
$0$ |
2.45.1, 3.720.4 |
✓ |
✓ |
$1$ |
\( 2^{3} \) |
\(1.000000\) |
\(20.658150\) |
\(0.286919\) |
$[748,11545,2902787,2408448]$ |
$[187,976,-192,-247120,18816]$ |
$[228669389707/18816,398891383/1176,-34969/98]$ |
$y^2 + (x^3 + 1)y = x^5 + x^4 + 5x^2 + 12x + 8$ |
597.a.597.1 |
597.a |
\( 3 \cdot 199 \) |
\( 3 \cdot 199 \) |
$0$ |
$0$ |
$\Z/7\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,7$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$3$ |
$1$ |
2.6.1 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(14.411617\) |
\(0.294115\) |
$[120,192,9912,2388]$ |
$[60,118,-68,-4501,597]$ |
$[259200000/199,8496000/199,-81600/199]$ |
$y^2 + y = x^5 + 2x^4 + 3x^3 + 2x^2 + x$ |
600.a.18000.1 |
600.a |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
$0$ |
$3$ |
$\Z/2\Z\oplus\Z/2\Z\oplus\Z/6\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2$ |
$C_2$ |
$6$ |
$4$ |
2.360.2, 3.640.2 |
✓ |
✓ |
$1$ |
\( 2^{3} \) |
\(1.000000\) |
\(18.934319\) |
\(0.262977\) |
$[1376,23824,11410044,72000]$ |
$[688,15752,244900,-19908576,18000]$ |
$[9634345320448/1125,320612931584/1125,289804864/45]$ |
$y^2 + xy = 10x^5 - 18x^4 + 8x^3 + x^2 - x$ |
600.a.96000.1 |
600.a |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{8} \cdot 3 \cdot 5^{3} \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/6\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2$ |
$C_2$ |
$4$ |
$2$ |
2.180.3, 3.640.2 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(9.467159\) |
\(0.262977\) |
$[92,4981,43947,-12000]$ |
$[92,-2968,47600,-1107456,-96000]$ |
$[-25745372/375,9027914/375,-62951/15]$ |
$y^2 + (x + 1)y = 4x^5 + 5x^4 + 3x^3 + 2x^2$ |
600.b.30000.1 |
600.b |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{4} \cdot 3 \cdot 5^{4} \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/8\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.180.3, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{3} \) |
\(1.000000\) |
\(8.316291\) |
\(0.259884\) |
$[600,18744,4690524,120000]$ |
$[300,626,-198336,-14973169,30000]$ |
$[81000000,563400,-595008]$ |
$y^2 + (x^3 + x)y = x^4 + x^2 - 3$ |
600.b.450000.1 |
600.b |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{5} \) |
$0$ |
$3$ |
$\Z/2\Z\oplus\Z/2\Z\oplus\Z/8\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$6$ |
$4$ |
2.360.2, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{5} \) |
\(1.000000\) |
\(8.316291\) |
\(0.259884\) |
$[18072,38904,233095932,1800000]$ |
$[9036,3395570,1698206400,953774351375,450000]$ |
$[418329622965299904/3125,3479436045234936/625,38515932506304/125]$ |
$y^2 + (x^3 + x)y = -5x^4 + 25x^2 - 45$ |
603.a.603.1 |
603.a |
\( 3^{2} \cdot 67 \) |
\( - 3^{2} \cdot 67 \) |
$0$ |
$1$ |
$\Z/10\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(26.910016\) |
\(0.269100\) |
$[1672,75628,49887881,2412]$ |
$[836,16516,-1263521,-332270453,603]$ |
$[408348897330176/603,9649919856896/603,-883069772816/603]$ |
$y^2 + (x^2 + 1)y = x^5 + 8x^4 + 4x^3 + 4x^2 + 2x$ |
603.a.603.2 |
603.a |
\( 3^{2} \cdot 67 \) |
\( - 3^{2} \cdot 67 \) |
$0$ |
$1$ |
$\Z/10\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(26.910016\) |
\(0.269100\) |
$[176,148,7375,-2412]$ |
$[88,298,1361,7741,-603]$ |
$[-5277319168/603,-203078656/603,-10539584/603]$ |
$y^2 + (x^2 + 1)y = x^5 - x^3 + x$ |
604.a.9664.1 |
604.a |
\( 2^{2} \cdot 151 \) |
\( 2^{6} \cdot 151 \) |
$0$ |
$0$ |
$\mathsf{trivial}$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,3$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$1$ |
$1$ |
2.6.1, 3.720.5 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(0.291788\) |
\(0.291788\) |
$[49556,-797087975,-23996873337603,1236992]$ |
$[12389,39607304,223396249616,299729401586052,9664]$ |
$[291864493641401980949/9664,9414430497536890397/1208,2143030742187944921/604]$ |
$y^2 + (x^2 + x + 1)y = 4x^5 + 9x^4 + 48x^3 - 4x^2 - 53x - 21$ |
604.a.9664.2 |
604.a |
\( 2^{2} \cdot 151 \) |
\( 2^{6} \cdot 151 \) |
$0$ |
$0$ |
$\Z/27\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,3$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$7$ |
$1$ |
2.6.1, 3.80.1 |
✓ |
✓ |
$1$ |
\( 3^{2} \) |
\(1.000000\) |
\(23.634831\) |
\(0.291788\) |
$[116,6265,95277,1236992]$ |
$[29,-226,836,-6708,9664]$ |
$[20511149/9664,-2755957/4832,175769/2416]$ |
$y^2 + (x^3 + 1)y = -x^4 + x^3 + x^2 - x$ |
630.a.34020.1 |
630.a |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7 \) |
\( 2^{2} \cdot 3^{5} \cdot 5 \cdot 7 \) |
$0$ |
$3$ |
$\Z/2\Z\oplus\Z/2\Z\oplus\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$4$ |
2.360.2, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(19.470889\) |
\(0.304233\) |
$[24100,969793,7474503265,4354560]$ |
$[6025,1472118,470090880,166291536519,34020]$ |
$[1587871127345703125/6804,10732293030978125/1134,13543327580000/27]$ |
$y^2 + (x^2 + x)y = 3x^5 + 10x^4 - 23x^2 - 6x + 15$ |
640.a.81920.1 |
640.a |
\( 2^{7} \cdot 5 \) |
\( - 2^{14} \cdot 5 \) |
$0$ |
$1$ |
$\Z/12\Z$ |
\(\mathsf{CM} \times \Q\) |
\(\Q \times \Q\) |
✓ |
$N(\mathrm{U}(1)\times\mathrm{SU}(2))$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$0$ |
2.90.1, 3.2160.5 |
✓ |
✓ |
$1$ |
\( 2 \cdot 3 \) |
\(1.000000\) |
\(7.405674\) |
\(0.308570\) |
$[912,147,44562,10]$ |
$[3648,552928,111431680,25193348864,81920]$ |
$[39432490647552/5,1638374321664/5,18102076416]$ |
$y^2 + x^3y = 3x^4 + 13x^2 + 20$ |
640.a.81920.2 |
640.a |
\( 2^{7} \cdot 5 \) |
\( 2^{14} \cdot 5 \) |
$0$ |
$1$ |
$\Z/12\Z$ |
\(\mathsf{CM} \times \Q\) |
\(\Q \times \Q\) |
✓ |
$N(\mathrm{U}(1)\times\mathrm{SU}(2))$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.90.3, 3.2160.5 |
✓ |
✓ |
$1$ |
\( 2 \cdot 3 \) |
\(1.000000\) |
\(7.405674\) |
\(0.308570\) |
$[912,147,44562,10]$ |
$[3648,552928,111431680,25193348864,81920]$ |
$[39432490647552/5,1638374321664/5,18102076416]$ |
$y^2 + x^3y = -3x^4 + 13x^2 - 20$ |
644.a.2576.1 |
644.a |
\( 2^{2} \cdot 7 \cdot 23 \) |
\( - 2^{4} \cdot 7 \cdot 23 \) |
$0$ |
$2$ |
$\Z/6\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$0$ |
$0$ |
2.45.1, 3.720.4 |
|
|
$2$ |
\( 1 \) |
\(1.000000\) |
\(3.928431\) |
\(0.218246\) |
$[39036,4124865,50880984159,329728]$ |
$[9759,3796384,1910683600,1058457444236,2576]$ |
$[88516980336138032799/2576,220529201888022246/161,70640465629725]$ |
$y^2 + (x^2 + x)y = -5x^6 + 11x^5 - 20x^4 + 20x^3 - 20x^2 + 11x - 5$ |
644.a.659456.1 |
644.a |
\( 2^{2} \cdot 7 \cdot 23 \) |
\( 2^{12} \cdot 7 \cdot 23 \) |
$0$ |
$1$ |
$\Z/2\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.90.3, 3.720.5 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(0.872985\) |
\(0.218246\) |
$[161796,1070662305,46065265919409,84410368]$ |
$[40449,23560804,14638854160,9253881697856,659456]$ |
$[108277681088425330677249/659456,389810454818831018649/164864,9297727292338785/256]$ |
$y^2 + (x^2 + x)y = -3x^6 - 13x^5 + 4x^4 + 51x^3 + 4x^2 - 13x - 3$ |
644.b.14812.1 |
644.b |
\( 2^{2} \cdot 7 \cdot 23 \) |
\( - 2^{2} \cdot 7 \cdot 23^{2} \) |
$0$ |
$1$ |
$\Z/10\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$2$ |
2.90.3 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(15.435107\) |
\(0.308702\) |
$[1268,-40511,-17688719,-1895936]$ |
$[317,5875,170781,4905488,-14812]$ |
$[-3201078401357/14812,-187148201375/14812,-17161611909/14812]$ |
$y^2 + (x^3 + 1)y = x^5 - x^4 - 4x^3 + 5x^2 - x - 1$ |
672.a.172032.1 |
672.a |
\( 2^{5} \cdot 3 \cdot 7 \) |
\( 2^{13} \cdot 3 \cdot 7 \) |
$0$ |
$2$ |
$\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$0$ |
$0$ |
2.45.1, 3.720.5 |
|
|
$2$ |
\( 2 \) |
\(1.000000\) |
\(1.113349\) |
\(0.278337\) |
$[16916,151117825,232872423961,-21504]$ |
$[16916,-88822256,277597802496,-798387183476800,-172032]$ |
$[-1352659309173012149/168,419870026410625699/168,-461744933079368]$ |
$y^2 + (x^3 + x)y = -x^6 - 16x^4 - 75x^2 + 56$ |
676.a.5408.1 |
676.a |
\( 2^{2} \cdot 13^{2} \) |
\( - 2^{5} \cdot 13^{2} \) |
$0$ |
$0$ |
$\Z/21\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$6$ |
$0$ |
2.60.2, 3.2160.21 |
✓ |
✓ |
$1$ |
\( 7 \) |
\(1.000000\) |
\(20.169780\) |
\(0.320155\) |
$[204,3273,161211,692224]$ |
$[51,-28,0,-196,5408]$ |
$[345025251/5408,-928557/1352,0]$ |
$y^2 + (x^3 + x^2 + x)y = x^3 + 3x^2 + 3x + 1$ |
676.a.562432.1 |
676.a |
\( 2^{2} \cdot 13^{2} \) |
\( 2^{8} \cdot 13^{3} \) |
$0$ |
$0$ |
$\Z/21\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$0$ |
2.60.2, 3.2160.20 |
✓ |
✓ |
$1$ |
\( 3 \cdot 7 \) |
\(1.000000\) |
\(6.723260\) |
\(0.320155\) |
$[1620,52953,29527389,71991296]$ |
$[405,4628,-8112,-6175936,562432]$ |
$[10896201253125/562432,5912281125/10816,-492075/208]$ |
$y^2 + (x^3 + 1)y = 2x^5 + 2x^4 + 4x^3 + 2x^2 + 2x$ |
676.b.17576.1 |
676.b |
\( 2^{2} \cdot 13^{2} \) |
\( - 2^{3} \cdot 13^{3} \) |
$0$ |
$0$ |
$\Z/3\Z\oplus\Z/3\Z$ |
\(\mathrm{M}_2(\Q)\) |
\(\mathrm{M}_2(\Q)\) |
|
$E_1$ |
|
|
|
$D_6$ |
$D_6$ |
$0$ |
$0$ |
2.120.4, 3.17280.1 |
|
✓ |
$1$ |
\( 3 \) |
\(1.000000\) |
\(7.177121\) |
\(0.265819\) |
$[1244,1249,129167,2249728]$ |
$[311,3978,72332,1667692,17576]$ |
$[2909390022551/17576,4602275343/676,10349147/26]$ |
$y^2 + (x^2 + x)y = -x^6 + 3x^5 - 6x^4 + 6x^3 - 6x^2 + 3x - 1$ |
686.a.686.1 |
686.a |
\( 2 \cdot 7^{3} \) |
\( 2 \cdot 7^{3} \) |
$0$ |
$1$ |
$\Z/6\Z$ |
\(\mathsf{CM} \times \Q\) |
\(\Q \times \Q\) |
✓ |
$N(\mathrm{U}(1)\times\mathrm{SU}(2))$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.90.3, 3.2160.5 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(11.491655\) |
\(0.319213\) |
$[420,4305,640185,87808]$ |
$[105,280,-980,-45325,686]$ |
$[37209375/2,472500,-15750]$ |
$y^2 + (x^2 + x)y = x^5 + x^4 + 2x^3 + x^2 + x$ |
688.a.2752.1 |
688.a |
\( 2^{4} \cdot 43 \) |
\( - 2^{6} \cdot 43 \) |
$0$ |
$1$ |
$\Z/20\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$6$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 5 \) |
\(1.000000\) |
\(25.707298\) |
\(0.321341\) |
$[32,112,-680,-344]$ |
$[32,-32,1344,10496,-2752]$ |
$[-524288/43,16384/43,-21504/43]$ |
$y^2 + y = 2x^5 - 5x^4 + 4x^3 - x$ |
688.a.704512.2 |
688.a |
\( 2^{4} \cdot 43 \) |
\( - 2^{14} \cdot 43 \) |
$0$ |
$1$ |
$\Z/10\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 5 \) |
\(1.000000\) |
\(6.426825\) |
\(0.321341\) |
$[464,-248,-39602,-86]$ |
$[1856,146176,15688704,1937702912,-704512]$ |
$[-1344218660864/43,-57041383424/43,-3298550016/43]$ |
$y^2 = 2x^5 - 7x^4 - 8x^3 + 2x^2 + 4x + 1$ |
688.a.704512.1 |
688.a |
\( 2^{4} \cdot 43 \) |
\( 2^{14} \cdot 43 \) |
$0$ |
$1$ |
$\Z/10\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$3$ |
$1$ |
2.60.1 |
✓ |
✓ |
$1$ |
\( 5 \) |
\(1.000000\) |
\(6.426825\) |
\(0.321341\) |
$[128,532,26830,86]$ |
$[512,5248,-408576,-59183104,704512]$ |
$[2147483648/43,42991616/43,-6537216/43]$ |
$y^2 = 2x^5 + 4x^3 + x^2 + 2x + 1$ |
691.a.691.1 |
691.a |
\( 691 \) |
\( -691 \) |
$0$ |
$1$ |
$\Z/8\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(18.812569\) |
\(0.293946\) |
$[104,-824,-20333,-2764]$ |
$[52,250,601,-7812,-691]$ |
$[-380204032/691,-35152000/691,-1625104/691]$ |
$y^2 + (x + 1)y = x^5 - x^3 - x^2$ |
704.a.45056.1 |
704.a |
\( 2^{6} \cdot 11 \) |
\( - 2^{12} \cdot 11 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/6\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,3$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$5$ |
$3$ |
2.120.3, 3.80.1 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(11.976027\) |
\(0.332667\) |
$[134,-464,-15328,-176]$ |
$[268,4230,61444,-356477,-45056]$ |
$[-1350125107/44,-636113745/352,-68955529/704]$ |
$y^2 + y = 4x^5 + 4x^4 - x^3 - 2x^2$ |
708.a.2832.1 |
708.a |
\( 2^{2} \cdot 3 \cdot 59 \) |
\( 2^{4} \cdot 3 \cdot 59 \) |
$0$ |
$1$ |
$\Z/10\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$3$ |
$1$ |
2.60.1 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(16.267181\) |
\(0.325344\) |
$[148,2065,76361,362496]$ |
$[37,-29,-59,-756,2832]$ |
$[69343957/2832,-1468937/2832,-1369/48]$ |
$y^2 + (x^2 + x + 1)y = x^5$ |
708.a.19116.1 |
708.a |
\( 2^{2} \cdot 3 \cdot 59 \) |
\( - 2^{2} \cdot 3^{4} \cdot 59 \) |
$0$ |
$1$ |
$\Z/10\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(16.267181\) |
\(0.325344\) |
$[908,-132815,8426215,2446848]$ |
$[227,7681,-438901,-39657072,19116]$ |
$[602738989907/19116,89845294523/19116,-383324231/324]$ |
$y^2 + (x^3 + 1)y = -x^5 + 4x^2 + 4x - 1$ |
708.a.181248.1 |
708.a |
\( 2^{2} \cdot 3 \cdot 59 \) |
\( - 2^{10} \cdot 3 \cdot 59 \) |
$0$ |
$3$ |
$\Z/2\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$0$ |
$0$ |
2.15.1 |
✓ |
✓ |
$4$ |
\( 1 \) |
\(1.000000\) |
\(0.325344\) |
\(0.325344\) |
$[234100,3468879025,202585466081177,-23199744]$ |
$[58525,-1820975,60952909,62829762150,-181248]$ |
$[-686605237334059580078125/181248,365029741228054296875/181248,-208774418179643125/181248]$ |
$y^2 + (x^3 + 1)y = -x^6 - 4x^5 + 9x^4 + 48x^3 - 41x^2 - 98x - 36$ |
709.a.709.1 |
709.a |
\( 709 \) |
\( 709 \) |
$0$ |
$1$ |
$\Z/8\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(18.361162\) |
\(0.286893\) |
$[160,-1280,-42089,2836]$ |
$[80,480,1121,-35180,709]$ |
$[3276800000/709,245760000/709,7174400/709]$ |
$y^2 + xy = x^5 - 2x^2 + x$ |
713.a.713.1 |
713.a |
\( 23 \cdot 31 \) |
\( 23 \cdot 31 \) |
$1$ |
$1$ |
$\mathsf{trivial}$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$8$ |
$0$ |
2.20.2 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(0.004592\) |
\(27.957889\) |
\(0.128395\) |
$[36,1305,-2547,91264]$ |
$[9,-51,173,-261,713]$ |
$[59049/713,-37179/713,14013/713]$ |
$y^2 + (x^3 + x + 1)y = -x^5 - x$ |
713.b.713.1 |
713.b |
\( 23 \cdot 31 \) |
\( 23 \cdot 31 \) |
$0$ |
$0$ |
$\Z/9\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,3$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$0$ |
2.20.2, 3.80.1 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(23.149881\) |
\(0.285801\) |
$[92,73,6379,-91264]$ |
$[23,19,-41,-326,-713]$ |
$[-279841/31,-10051/31,943/31]$ |
$y^2 + (x^3 + x + 1)y = -x^4$ |
720.a.6480.1 |
720.a |
\( 2^{4} \cdot 3^{2} \cdot 5 \) |
\( - 2^{4} \cdot 3^{4} \cdot 5 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$0$ |
2.180.7, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(9.444268\) |
\(0.295133\) |
$[2360,11992,9047820,25920]$ |
$[1180,56018,3453120,234166319,6480]$ |
$[28596971960000/81,1150492082200/81,6677950400/9]$ |
$y^2 + (x^3 + x)y = 2x^4 + 7x^2 + 5$ |
720.b.116640.1 |
720.b |
\( 2^{4} \cdot 3^{2} \cdot 5 \) |
\( 2^{5} \cdot 3^{6} \cdot 5 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/12\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.180.3, 3.720.4 |
✓ |
✓ |
$1$ |
\( 2^{2} \cdot 3 \) |
\(1.000000\) |
\(14.457058\) |
\(0.301189\) |
$[35416,45688,537039964,466560]$ |
$[17708,13057938,12831384960,14177105014959,116640]$ |
$[54412363190235229024/3645,251762275020280012/405,310461362928064/9]$ |
$y^2 + (x^3 + x)y = -6x^4 + 39x^2 - 90$ |
726.a.1452.1 |
726.a |
\( 2 \cdot 3 \cdot 11^{2} \) |
\( - 2^{2} \cdot 3 \cdot 11^{2} \) |
$0$ |
$1$ |
$\Z/10\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2$ |
$C_2$ |
$3$ |
$1$ |
2.60.1, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(15.124086\) |
\(0.302482\) |
$[760,-69236,-16142609,-5808]$ |
$[380,17556,702601,-10306189,-1452]$ |
$[-1980879200000/363,-7297976000/11,-25363896100/363]$ |
$y^2 + (x^2 + 1)y = 2x^5 + 2x^4 + 6x^3 - 2x^2 - x$ |
731.a.12427.1 |
731.a |
\( 17 \cdot 43 \) |
\( - 17^{2} \cdot 43 \) |
$0$ |
$1$ |
$\Z/10\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(14.926779\) |
\(0.298536\) |
$[480,-21564,-3373785,-49708]$ |
$[240,5994,167265,1053891,-12427]$ |
$[-796262400000/12427,-82861056000/12427,-9634464000/12427]$ |
$y^2 + (x^3 + x^2)y = x^5 + 2x^4 - x - 3$ |
741.a.28899.1 |
741.a |
\( 3 \cdot 13 \cdot 19 \) |
\( - 3^{2} \cdot 13^{2} \cdot 19 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/8\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$5$ |
$3$ |
2.120.3 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(18.756843\) |
\(0.293076\) |
$[576,-840,740385,115596]$ |
$[288,3596,-38169,-5980972,28899]$ |
$[220150628352/3211,9544531968/3211,-351765504/3211]$ |
$y^2 + (x + 1)y = -3x^5 - x^4 + 2x^2 + x$ |
743.a.743.1 |
743.a |
\( 743 \) |
\( -743 \) |
$1$ |
$1$ |
$\mathsf{trivial}$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
|
✓ |
✓ |
$C_2$ |
$C_2$ |
$8$ |
$0$ |
|
✓ |
✓ |
$1$ |
\( 1 \) |
\(0.004577\) |
\(28.765391\) |
\(0.131656\) |
$[28,1945,15219,95104]$ |
$[7,-79,-53,-1653,743]$ |
$[16807/743,-27097/743,-2597/743]$ |
$y^2 + (x^3 + x + 1)y = -x^4 + x^2$ |
745.a.745.1 |
745.a |
\( 5 \cdot 149 \) |
\( - 5 \cdot 149 \) |
$0$ |
$0$ |
$\Z/9\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,3$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$0$ |
2.10.1, 3.80.1 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(24.572840\) |
\(0.303368\) |
$[124,1417,38763,95360]$ |
$[31,-19,39,212,745]$ |
$[28629151/745,-566029/745,37479/745]$ |
$y^2 + (x^3 + x + 1)y = -x$ |
762.a.3048.1 |
762.a |
\( 2 \cdot 3 \cdot 127 \) |
\( - 2^{3} \cdot 3 \cdot 127 \) |
$0$ |
$1$ |
$\Z/12\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,3$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$0$ |
2.15.1, 3.80.1 |
✓ |
✓ |
$1$ |
\( 3 \) |
\(1.000000\) |
\(16.733449\) |
\(0.348614\) |
$[428,3169,355487,390144]$ |
$[107,345,1823,19009,3048]$ |
$[14025517307/3048,140879945/1016,20871527/3048]$ |
$y^2 + (x^3 + x^2 + x)y = x^2 + x + 1$ |