L(s) = 1 | + 6·2-s − 12·4-s + 12·5-s − 42·7-s − 153·8-s + 72·10-s + 42·11-s − 78·13-s − 252·14-s − 150·16-s − 18·17-s − 228·19-s − 144·20-s + 252·22-s − 114·23-s − 687·25-s − 468·26-s + 504·28-s − 660·29-s − 708·31-s + 1.54e3·32-s − 108·34-s − 504·35-s − 354·37-s − 1.36e3·38-s − 1.83e3·40-s − 1.03e3·41-s + ⋯ |
L(s) = 1 | + 2.12·2-s − 3/2·4-s + 1.07·5-s − 2.26·7-s − 6.76·8-s + 2.27·10-s + 1.15·11-s − 1.66·13-s − 4.81·14-s − 2.34·16-s − 0.256·17-s − 2.75·19-s − 1.60·20-s + 2.44·22-s − 1.03·23-s − 5.49·25-s − 3.53·26-s + 3.40·28-s − 4.22·29-s − 4.10·31-s + 8.53·32-s − 0.544·34-s − 2.43·35-s − 1.57·37-s − 5.83·38-s − 7.25·40-s − 3.93·41-s + ⋯ |
Λ(s)=(=((372)s/2ΓC(s)12L(s)Λ(4−s)
Λ(s)=(=((372)s/2ΓC(s+3/2)12L(s)Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1−3pT+3p4T2−207T3+525pT4−3885T5+8077pT6−55377T7+201177T8−635877T9+1026261pT10−747189p3T11+2205423p3T12−747189p6T13+1026261p7T14−635877p9T15+201177p12T16−55377p15T17+8077p19T18−3885p21T19+525p25T20−207p27T21+3p34T22−3p34T23+p36T24 |
| 5 | 1−12T+831T2−18p4T3+369699T4−5062422T5+113589566T6−1473568758T7+26132727888T8−310624976034T9+4660139652948T10−49912371950148T11+654659995378509T12−49912371950148p3T13+4660139652948p6T14−310624976034p9T15+26132727888p12T16−1473568758p15T17+113589566p18T18−5062422p21T19+369699p24T20−18p31T21+831p30T22−12p33T23+p36T24 |
| 7 | 1+6pT+3036T2+101842T3+615315pT4+121274466T5+3874201291T6+94568685912T7+2503702606005T8+53969769936898T9+176352850122207pT10+23664619067852244T11+476742898558106410T12+23664619067852244p3T13+176352850122207p7T14+53969769936898p9T15+2503702606005p12T16+94568685912p15T17+3874201291p18T18+121274466p21T19+615315p25T20+101842p27T21+3036p30T22+6p34T23+p36T24 |
| 11 | 1−42T+10938T2−399708T3+57060717T4−1846526892T5+190126522637T6−5522021579286T7+457335567708237T8−12021670470373236T9+848270152906356753T10−20203589745149563296T11+12⋯18T12−20203589745149563296p3T13+848270152906356753p6T14−12021670470373236p9T15+457335567708237p12T16−5522021579286p15T17+190126522637p18T18−1846526892p21T19+57060717p24T20−399708p27T21+10938p30T22−42p33T23+p36T24 |
| 13 | 1+6pT+17598T2+1171762T3+144122232T4+8131311312T5+727323282172T6+35054502969726T7+2575226035123182T8+108478974509515420T9+7080074634468856686T10+27⋯58T11+16⋯81T12+27⋯58p3T13+7080074634468856686p6T14+108478974509515420p9T15+2575226035123182p12T16+35054502969726p15T17+727323282172p18T18+8131311312p21T19+144122232p24T20+1171762p27T21+17598p30T22+6p34T23+p36T24 |
| 17 | 1+18T+1605pT2+46188T3+378799590T4−3970670040T5+3687982052216T6−68480154333612T7+28334851651381545T8−642470064566247468T9+17⋯23T10−42⋯06T11+56⋯01pT12−42⋯06p3T13+17⋯23p6T14−642470064566247468p9T15+28334851651381545p12T16−68480154333612p15T17+3687982052216p18T18−3970670040p21T19+378799590p24T20+46188p27T21+1605p31T22+18p33T23+p36T24 |
| 19 | 1+12pT+65598T2+10557550T3+1895939457T4+244909953084T5+34002829867213T6+3727551684296016T7+433911156710034501T8+41620379928293229856T9+42⋯61T10+18⋯26pT11+32⋯50T12+18⋯26p4T13+42⋯61p6T14+41620379928293229856p9T15+433911156710034501p12T16+3727551684296016p15T17+34002829867213p18T18+244909953084p21T19+1895939457p24T20+10557550p27T21+65598p30T22+12p34T23+p36T24 |
| 23 | 1+114T+86844T2+7473096T3+3589570059T4+9934897818pT5+94603846309235T6+4216862110588992T7+1815581284007638833T8+53177452533524291454T9+27⋯97T10+55⋯06T11+36⋯98T12+55⋯06p3T13+27⋯97p6T14+53177452533524291454p9T15+1815581284007638833p12T16+4216862110588992p15T17+94603846309235p18T18+9934897818p22T19+3589570059p24T20+7473096p27T21+86844p30T22+114p33T23+p36T24 |
| 29 | 1+660T+333813T2+118267254T3+36609873711T4+9440888603268T5+2231799317094842T6+466678842948720126T7+92048488913551542102T8+16⋯54T9+28⋯88T10+47⋯52T11+75⋯57T12+47⋯52p3T13+28⋯88p6T14+16⋯54p9T15+92048488913551542102p12T16+466678842948720126p15T17+2231799317094842p18T18+9440888603268p21T19+36609873711p24T20+118267254p27T21+333813p30T22+660p33T23+p36T24 |
| 31 | 1+708T+396237T2+152780596T3+52458006351T4+15058806235008T5+4064767979251492T6+980515278323793720T7+22⋯57T8+47⋯52T9+96⋯11T10+17⋯68T11+32⋯70T12+17⋯68p3T13+96⋯11p6T14+47⋯52p9T15+22⋯57p12T16+980515278323793720p15T17+4064767979251492p18T18+15058806235008p21T19+52458006351p24T20+152780596p27T21+396237p30T22+708p33T23+p36T24 |
| 37 | 1+354T+241377T2+74455912T3+34606095729T4+9686749492272T5+3561065782685848T6+924024438254694024T7+29⋯70T8+69⋯20T9+19⋯64T10+42⋯84T11+10⋯81T12+42⋯84p3T13+19⋯64p6T14+69⋯20p9T15+29⋯70p12T16+924024438254694024p15T17+3561065782685848p18T18+9686749492272p21T19+34606095729p24T20+74455912p27T21+241377p30T22+354p33T23+p36T24 |
| 41 | 1+1032T+921684T2+562850946T3+310655218110T4+142597486514472T5+60722193909672899T6+22922842456199835774T7+81⋯35T8+26⋯24T9+81⋯62T10+23⋯34T11+63⋯91T12+23⋯34p3T13+81⋯62p6T14+26⋯24p9T15+81⋯35p12T16+22922842456199835774p15T17+60722193909672899p18T18+142597486514472p21T19+310655218110p24T20+562850946p27T21+921684p30T22+1032p33T23+p36T24 |
| 43 | 1+744T+553692T2+225937744T3+104527998066T4+33437243209776T5+14025330871137100T6+4278437402978673432T7+16⋯27T8+47⋯80T9+16⋯68T10+42⋯16T11+14⋯92T12+42⋯16p3T13+16⋯68p6T14+47⋯80p9T15+16⋯27p12T16+4278437402978673432p15T17+14025330871137100p18T18+33437243209776p21T19+104527998066p24T20+225937744p27T21+553692p30T22+744p33T23+p36T24 |
| 47 | 1−942T+1058889T2−690880410T3+471117013206T4−241228679983080T5+125419907597914160T6−53682080815284171714T7+23⋯13T8−86⋯44T9+32⋯71T10−10⋯46T11+37⋯60T12−10⋯46p3T13+32⋯71p6T14−86⋯44p9T15+23⋯13p12T16−53682080815284171714p15T17+125419907597914160p18T18−241228679983080p21T19+471117013206p24T20−690880410p27T21+1058889p30T22−942p33T23+p36T24 |
| 53 | 1+828T+1410657T2+990164700T3+926325130575T4+563788608990552T5+379915391732165060T6+20⋯52T7+10⋯85T8+52⋯16T9+23⋯59T10+10⋯92T11+40⋯58T12+10⋯92p3T13+23⋯59p6T14+52⋯16p9T15+10⋯85p12T16+20⋯52p15T17+379915391732165060p18T18+563788608990552p21T19+926325130575p24T20+990164700p27T21+1410657p30T22+828p33T23+p36T24 |
| 59 | 1+24T+1154712T2−108879264T3+654469055961T4−142630153314726T5+256843348960078295T6−79288323473587318434T7+82⋯25T8−27⋯06T9+22⋯05T10−69⋯94T11+51⋯18T12−69⋯94p3T13+22⋯05p6T14−27⋯06p9T15+82⋯25p12T16−79288323473587318434p15T17+256843348960078295p18T18−142630153314726p21T19+654469055961p24T20−108879264p27T21+1154712p30T22+24p33T23+p36T24 |
| 61 | 1+1698T+2661744T2+2733019648T3+2588156484195T4+1954552764603318T5+1384169662080875359T6+83⋯16T7+48⋯89T8+24⋯54T9+12⋯97T10+59⋯10T11+28⋯86T12+59⋯10p3T13+12⋯97p6T14+24⋯54p9T15+48⋯89p12T16+83⋯16p15T17+1384169662080875359p18T18+1954552764603318p21T19+2588156484195p24T20+2733019648p27T21+2661744p30T22+1698p33T23+p36T24 |
| 67 | 1+1266T+2242281T2+2079332890T3+2203397904414T4+1667100797153556T5+1356716020460611204T6+89⋯98T7+61⋯05T8+36⋯48T9+22⋯27T10+12⋯78T11+72⋯60T12+12⋯78p3T13+22⋯27p6T14+36⋯48p9T15+61⋯05p12T16+89⋯98p15T17+1356716020460611204p18T18+1667100797153556p21T19+2203397904414p24T20+2079332890p27T21+2242281p30T22+1266p33T23+p36T24 |
| 71 | 1−3888T+9472848T2−16698964968T3+23909532632490T4−28876815994589208T5+30580771234603876304T6−28⋯92T7+24⋯67T8−19⋯84T9+14⋯32T10−94⋯00T11+58⋯64T12−94⋯00p3T13+14⋯32p6T14−19⋯84p9T15+24⋯67p12T16−28⋯92p15T17+30580771234603876304p18T18−28876815994589208p21T19+23909532632490p24T20−16698964968p27T21+9472848p30T22−3888p33T23+p36T24 |
| 73 | 1+1164T+2863680T2+2986228324T3+4116691297176T4+3722553087241332T5+3877761578271121090T6+30⋯96T7+26⋯12T8+19⋯44T9+14⋯64T10+92⋯64T11+62⋯07T12+92⋯64p3T13+14⋯64p6T14+19⋯44p9T15+26⋯12p12T16+30⋯96p15T17+3877761578271121090p18T18+3722553087241332p21T19+4116691297176p24T20+2986228324p27T21+2863680p30T22+1164p33T23+p36T24 |
| 79 | 1+2382T+6094200T2+9584500318T3+14733487983153T4+17532778836000066T5+20236880655873465859T6+19⋯96T7+18⋯01T8+15⋯10T9+12⋯69T10+91⋯60T11+68⋯18T12+91⋯60p3T13+12⋯69p6T14+15⋯10p9T15+18⋯01p12T16+19⋯96p15T17+20236880655873465859p18T18+17532778836000066p21T19+14733487983153p24T20+9584500318p27T21+6094200p30T22+2382p33T23+p36T24 |
| 83 | 1+4008T+10837092T2+21539693052T3+35491475230593T4+49939724231864238T5+62383132568798653751T6+70⋯46T7+72⋯73T8+68⋯66T9+61⋯09T10+50⋯58T11+39⋯94T12+50⋯58p3T13+61⋯09p6T14+68⋯66p9T15+72⋯73p12T16+70⋯46p15T17+62383132568798653751p18T18+49939724231864238p21T19+35491475230593p24T20+21539693052p27T21+10837092p30T22+4008p33T23+p36T24 |
| 89 | 1+3582T+9208023T2+16371231642T3+24664465339941T4+30799525034820456T5+35164856630730158042T6+35⋯66T7+35⋯54T8+32⋯28T9+28⋯78T10+24⋯84T11+20⋯31T12+24⋯84p3T13+28⋯78p6T14+32⋯28p9T15+35⋯54p12T16+35⋯66p15T17+35164856630730158042p18T18+30799525034820456p21T19+24664465339941p24T20+16371231642p27T21+9208023p30T22+3582p33T23+p36T24 |
| 97 | 1+2958T+9267033T2+17310905872T3+32258081601246T4+45739676328280764T5+65493331632543782548T6+78⋯64T7+97⋯97T8+10⋯40T9+11⋯75T10+11⋯30T11+11⋯93T12+11⋯30p3T13+11⋯75p6T14+10⋯40p9T15+97⋯97p12T16+78⋯64p15T17+65493331632543782548p18T18+45739676328280764p21T19+32258081601246p24T20+17310905872p27T21+9267033p30T22+2958p33T23+p36T24 |
show more | |
show less | |
L(s)=p∏ j=1∏24(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.72643140414911716238558220776, −3.47462424348380558872256998770, −3.26945052042810078527952141659, −3.25705939520353925440968799603, −3.22600584278108023276443325501, −3.16243446266920373718980444075, −2.92008570822709462836105667327, −2.91807813892718232659290771780, −2.83407557656295299044692849476, −2.81923470297836521549618827018, −2.40979112975614155639652085998, −2.26803995448324742771891376022, −2.20288586631995813555794656784, −2.19000334886112457441110320148, −2.17882032403217588271096532622, −2.01479955041802058536300101394, −1.97761836059552372823874018970, −1.69902425204396565091079055537, −1.58295824211402492805990570432, −1.46998204241008621373615820452, −1.41180709003465568428466640368, −1.39926033700217762875398014362, −1.25715565248391390904987067000, −1.19888452362238080526888978821, −1.16462851993300443641191353345, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1.16462851993300443641191353345, 1.19888452362238080526888978821, 1.25715565248391390904987067000, 1.39926033700217762875398014362, 1.41180709003465568428466640368, 1.46998204241008621373615820452, 1.58295824211402492805990570432, 1.69902425204396565091079055537, 1.97761836059552372823874018970, 2.01479955041802058536300101394, 2.17882032403217588271096532622, 2.19000334886112457441110320148, 2.20288586631995813555794656784, 2.26803995448324742771891376022, 2.40979112975614155639652085998, 2.81923470297836521549618827018, 2.83407557656295299044692849476, 2.91807813892718232659290771780, 2.92008570822709462836105667327, 3.16243446266920373718980444075, 3.22600584278108023276443325501, 3.25705939520353925440968799603, 3.26945052042810078527952141659, 3.47462424348380558872256998770, 3.72643140414911716238558220776
Plot not available for L-functions of degree greater than 10.