Properties

Label 24-3e72-1.1-c3e12-0-1
Degree $24$
Conductor $2.253\times 10^{34}$
Sign $1$
Analytic cond. $4.00980\times 10^{19}$
Root an. cond. $6.55838$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $12$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·2-s − 12·4-s + 12·5-s − 42·7-s − 153·8-s + 72·10-s + 42·11-s − 78·13-s − 252·14-s − 150·16-s − 18·17-s − 228·19-s − 144·20-s + 252·22-s − 114·23-s − 687·25-s − 468·26-s + 504·28-s − 660·29-s − 708·31-s + 1.54e3·32-s − 108·34-s − 504·35-s − 354·37-s − 1.36e3·38-s − 1.83e3·40-s − 1.03e3·41-s + ⋯
L(s)  = 1  + 2.12·2-s − 3/2·4-s + 1.07·5-s − 2.26·7-s − 6.76·8-s + 2.27·10-s + 1.15·11-s − 1.66·13-s − 4.81·14-s − 2.34·16-s − 0.256·17-s − 2.75·19-s − 1.60·20-s + 2.44·22-s − 1.03·23-s − 5.49·25-s − 3.53·26-s + 3.40·28-s − 4.22·29-s − 4.10·31-s + 8.53·32-s − 0.544·34-s − 2.43·35-s − 1.57·37-s − 5.83·38-s − 7.25·40-s − 3.93·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{72}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{72}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(24\)
Conductor: \(3^{72}\)
Sign: $1$
Analytic conductor: \(4.00980\times 10^{19}\)
Root analytic conductor: \(6.55838\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(12\)
Selberg data: \((24,\ 3^{72} ,\ ( \ : [3/2]^{12} ),\ 1 )\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 - 3 p T + 3 p^{4} T^{2} - 207 T^{3} + 525 p T^{4} - 3885 T^{5} + 8077 p T^{6} - 55377 T^{7} + 201177 T^{8} - 635877 T^{9} + 1026261 p T^{10} - 747189 p^{3} T^{11} + 2205423 p^{3} T^{12} - 747189 p^{6} T^{13} + 1026261 p^{7} T^{14} - 635877 p^{9} T^{15} + 201177 p^{12} T^{16} - 55377 p^{15} T^{17} + 8077 p^{19} T^{18} - 3885 p^{21} T^{19} + 525 p^{25} T^{20} - 207 p^{27} T^{21} + 3 p^{34} T^{22} - 3 p^{34} T^{23} + p^{36} T^{24} \)
5 \( 1 - 12 T + 831 T^{2} - 18 p^{4} T^{3} + 369699 T^{4} - 5062422 T^{5} + 113589566 T^{6} - 1473568758 T^{7} + 26132727888 T^{8} - 310624976034 T^{9} + 4660139652948 T^{10} - 49912371950148 T^{11} + 654659995378509 T^{12} - 49912371950148 p^{3} T^{13} + 4660139652948 p^{6} T^{14} - 310624976034 p^{9} T^{15} + 26132727888 p^{12} T^{16} - 1473568758 p^{15} T^{17} + 113589566 p^{18} T^{18} - 5062422 p^{21} T^{19} + 369699 p^{24} T^{20} - 18 p^{31} T^{21} + 831 p^{30} T^{22} - 12 p^{33} T^{23} + p^{36} T^{24} \)
7 \( 1 + 6 p T + 3036 T^{2} + 101842 T^{3} + 615315 p T^{4} + 121274466 T^{5} + 3874201291 T^{6} + 94568685912 T^{7} + 2503702606005 T^{8} + 53969769936898 T^{9} + 176352850122207 p T^{10} + 23664619067852244 T^{11} + 476742898558106410 T^{12} + 23664619067852244 p^{3} T^{13} + 176352850122207 p^{7} T^{14} + 53969769936898 p^{9} T^{15} + 2503702606005 p^{12} T^{16} + 94568685912 p^{15} T^{17} + 3874201291 p^{18} T^{18} + 121274466 p^{21} T^{19} + 615315 p^{25} T^{20} + 101842 p^{27} T^{21} + 3036 p^{30} T^{22} + 6 p^{34} T^{23} + p^{36} T^{24} \)
11 \( 1 - 42 T + 10938 T^{2} - 399708 T^{3} + 57060717 T^{4} - 1846526892 T^{5} + 190126522637 T^{6} - 5522021579286 T^{7} + 457335567708237 T^{8} - 12021670470373236 T^{9} + 848270152906356753 T^{10} - 20203589745149563296 T^{11} + \)\(12\!\cdots\!18\)\( T^{12} - 20203589745149563296 p^{3} T^{13} + 848270152906356753 p^{6} T^{14} - 12021670470373236 p^{9} T^{15} + 457335567708237 p^{12} T^{16} - 5522021579286 p^{15} T^{17} + 190126522637 p^{18} T^{18} - 1846526892 p^{21} T^{19} + 57060717 p^{24} T^{20} - 399708 p^{27} T^{21} + 10938 p^{30} T^{22} - 42 p^{33} T^{23} + p^{36} T^{24} \)
13 \( 1 + 6 p T + 17598 T^{2} + 1171762 T^{3} + 144122232 T^{4} + 8131311312 T^{5} + 727323282172 T^{6} + 35054502969726 T^{7} + 2575226035123182 T^{8} + 108478974509515420 T^{9} + 7080074634468856686 T^{10} + \)\(27\!\cdots\!58\)\( T^{11} + \)\(16\!\cdots\!81\)\( T^{12} + \)\(27\!\cdots\!58\)\( p^{3} T^{13} + 7080074634468856686 p^{6} T^{14} + 108478974509515420 p^{9} T^{15} + 2575226035123182 p^{12} T^{16} + 35054502969726 p^{15} T^{17} + 727323282172 p^{18} T^{18} + 8131311312 p^{21} T^{19} + 144122232 p^{24} T^{20} + 1171762 p^{27} T^{21} + 17598 p^{30} T^{22} + 6 p^{34} T^{23} + p^{36} T^{24} \)
17 \( 1 + 18 T + 1605 p T^{2} + 46188 T^{3} + 378799590 T^{4} - 3970670040 T^{5} + 3687982052216 T^{6} - 68480154333612 T^{7} + 28334851651381545 T^{8} - 642470064566247468 T^{9} + \)\(17\!\cdots\!23\)\( T^{10} - \)\(42\!\cdots\!06\)\( T^{11} + \)\(56\!\cdots\!01\)\( p T^{12} - \)\(42\!\cdots\!06\)\( p^{3} T^{13} + \)\(17\!\cdots\!23\)\( p^{6} T^{14} - 642470064566247468 p^{9} T^{15} + 28334851651381545 p^{12} T^{16} - 68480154333612 p^{15} T^{17} + 3687982052216 p^{18} T^{18} - 3970670040 p^{21} T^{19} + 378799590 p^{24} T^{20} + 46188 p^{27} T^{21} + 1605 p^{31} T^{22} + 18 p^{33} T^{23} + p^{36} T^{24} \)
19 \( 1 + 12 p T + 65598 T^{2} + 10557550 T^{3} + 1895939457 T^{4} + 244909953084 T^{5} + 34002829867213 T^{6} + 3727551684296016 T^{7} + 433911156710034501 T^{8} + 41620379928293229856 T^{9} + \)\(42\!\cdots\!61\)\( T^{10} + \)\(18\!\cdots\!26\)\( p T^{11} + \)\(32\!\cdots\!50\)\( T^{12} + \)\(18\!\cdots\!26\)\( p^{4} T^{13} + \)\(42\!\cdots\!61\)\( p^{6} T^{14} + 41620379928293229856 p^{9} T^{15} + 433911156710034501 p^{12} T^{16} + 3727551684296016 p^{15} T^{17} + 34002829867213 p^{18} T^{18} + 244909953084 p^{21} T^{19} + 1895939457 p^{24} T^{20} + 10557550 p^{27} T^{21} + 65598 p^{30} T^{22} + 12 p^{34} T^{23} + p^{36} T^{24} \)
23 \( 1 + 114 T + 86844 T^{2} + 7473096 T^{3} + 3589570059 T^{4} + 9934897818 p T^{5} + 94603846309235 T^{6} + 4216862110588992 T^{7} + 1815581284007638833 T^{8} + 53177452533524291454 T^{9} + \)\(27\!\cdots\!97\)\( T^{10} + \)\(55\!\cdots\!06\)\( T^{11} + \)\(36\!\cdots\!98\)\( T^{12} + \)\(55\!\cdots\!06\)\( p^{3} T^{13} + \)\(27\!\cdots\!97\)\( p^{6} T^{14} + 53177452533524291454 p^{9} T^{15} + 1815581284007638833 p^{12} T^{16} + 4216862110588992 p^{15} T^{17} + 94603846309235 p^{18} T^{18} + 9934897818 p^{22} T^{19} + 3589570059 p^{24} T^{20} + 7473096 p^{27} T^{21} + 86844 p^{30} T^{22} + 114 p^{33} T^{23} + p^{36} T^{24} \)
29 \( 1 + 660 T + 333813 T^{2} + 118267254 T^{3} + 36609873711 T^{4} + 9440888603268 T^{5} + 2231799317094842 T^{6} + 466678842948720126 T^{7} + 92048488913551542102 T^{8} + \)\(16\!\cdots\!54\)\( T^{9} + \)\(28\!\cdots\!88\)\( T^{10} + \)\(47\!\cdots\!52\)\( T^{11} + \)\(75\!\cdots\!57\)\( T^{12} + \)\(47\!\cdots\!52\)\( p^{3} T^{13} + \)\(28\!\cdots\!88\)\( p^{6} T^{14} + \)\(16\!\cdots\!54\)\( p^{9} T^{15} + 92048488913551542102 p^{12} T^{16} + 466678842948720126 p^{15} T^{17} + 2231799317094842 p^{18} T^{18} + 9440888603268 p^{21} T^{19} + 36609873711 p^{24} T^{20} + 118267254 p^{27} T^{21} + 333813 p^{30} T^{22} + 660 p^{33} T^{23} + p^{36} T^{24} \)
31 \( 1 + 708 T + 396237 T^{2} + 152780596 T^{3} + 52458006351 T^{4} + 15058806235008 T^{5} + 4064767979251492 T^{6} + 980515278323793720 T^{7} + \)\(22\!\cdots\!57\)\( T^{8} + \)\(47\!\cdots\!52\)\( T^{9} + \)\(96\!\cdots\!11\)\( T^{10} + \)\(17\!\cdots\!68\)\( T^{11} + \)\(32\!\cdots\!70\)\( T^{12} + \)\(17\!\cdots\!68\)\( p^{3} T^{13} + \)\(96\!\cdots\!11\)\( p^{6} T^{14} + \)\(47\!\cdots\!52\)\( p^{9} T^{15} + \)\(22\!\cdots\!57\)\( p^{12} T^{16} + 980515278323793720 p^{15} T^{17} + 4064767979251492 p^{18} T^{18} + 15058806235008 p^{21} T^{19} + 52458006351 p^{24} T^{20} + 152780596 p^{27} T^{21} + 396237 p^{30} T^{22} + 708 p^{33} T^{23} + p^{36} T^{24} \)
37 \( 1 + 354 T + 241377 T^{2} + 74455912 T^{3} + 34606095729 T^{4} + 9686749492272 T^{5} + 3561065782685848 T^{6} + 924024438254694024 T^{7} + \)\(29\!\cdots\!70\)\( T^{8} + \)\(69\!\cdots\!20\)\( T^{9} + \)\(19\!\cdots\!64\)\( T^{10} + \)\(42\!\cdots\!84\)\( T^{11} + \)\(10\!\cdots\!81\)\( T^{12} + \)\(42\!\cdots\!84\)\( p^{3} T^{13} + \)\(19\!\cdots\!64\)\( p^{6} T^{14} + \)\(69\!\cdots\!20\)\( p^{9} T^{15} + \)\(29\!\cdots\!70\)\( p^{12} T^{16} + 924024438254694024 p^{15} T^{17} + 3561065782685848 p^{18} T^{18} + 9686749492272 p^{21} T^{19} + 34606095729 p^{24} T^{20} + 74455912 p^{27} T^{21} + 241377 p^{30} T^{22} + 354 p^{33} T^{23} + p^{36} T^{24} \)
41 \( 1 + 1032 T + 921684 T^{2} + 562850946 T^{3} + 310655218110 T^{4} + 142597486514472 T^{5} + 60722193909672899 T^{6} + 22922842456199835774 T^{7} + \)\(81\!\cdots\!35\)\( T^{8} + \)\(26\!\cdots\!24\)\( T^{9} + \)\(81\!\cdots\!62\)\( T^{10} + \)\(23\!\cdots\!34\)\( T^{11} + \)\(63\!\cdots\!91\)\( T^{12} + \)\(23\!\cdots\!34\)\( p^{3} T^{13} + \)\(81\!\cdots\!62\)\( p^{6} T^{14} + \)\(26\!\cdots\!24\)\( p^{9} T^{15} + \)\(81\!\cdots\!35\)\( p^{12} T^{16} + 22922842456199835774 p^{15} T^{17} + 60722193909672899 p^{18} T^{18} + 142597486514472 p^{21} T^{19} + 310655218110 p^{24} T^{20} + 562850946 p^{27} T^{21} + 921684 p^{30} T^{22} + 1032 p^{33} T^{23} + p^{36} T^{24} \)
43 \( 1 + 744 T + 553692 T^{2} + 225937744 T^{3} + 104527998066 T^{4} + 33437243209776 T^{5} + 14025330871137100 T^{6} + 4278437402978673432 T^{7} + \)\(16\!\cdots\!27\)\( T^{8} + \)\(47\!\cdots\!80\)\( T^{9} + \)\(16\!\cdots\!68\)\( T^{10} + \)\(42\!\cdots\!16\)\( T^{11} + \)\(14\!\cdots\!92\)\( T^{12} + \)\(42\!\cdots\!16\)\( p^{3} T^{13} + \)\(16\!\cdots\!68\)\( p^{6} T^{14} + \)\(47\!\cdots\!80\)\( p^{9} T^{15} + \)\(16\!\cdots\!27\)\( p^{12} T^{16} + 4278437402978673432 p^{15} T^{17} + 14025330871137100 p^{18} T^{18} + 33437243209776 p^{21} T^{19} + 104527998066 p^{24} T^{20} + 225937744 p^{27} T^{21} + 553692 p^{30} T^{22} + 744 p^{33} T^{23} + p^{36} T^{24} \)
47 \( 1 - 942 T + 1058889 T^{2} - 690880410 T^{3} + 471117013206 T^{4} - 241228679983080 T^{5} + 125419907597914160 T^{6} - 53682080815284171714 T^{7} + \)\(23\!\cdots\!13\)\( T^{8} - \)\(86\!\cdots\!44\)\( T^{9} + \)\(32\!\cdots\!71\)\( T^{10} - \)\(10\!\cdots\!46\)\( T^{11} + \)\(37\!\cdots\!60\)\( T^{12} - \)\(10\!\cdots\!46\)\( p^{3} T^{13} + \)\(32\!\cdots\!71\)\( p^{6} T^{14} - \)\(86\!\cdots\!44\)\( p^{9} T^{15} + \)\(23\!\cdots\!13\)\( p^{12} T^{16} - 53682080815284171714 p^{15} T^{17} + 125419907597914160 p^{18} T^{18} - 241228679983080 p^{21} T^{19} + 471117013206 p^{24} T^{20} - 690880410 p^{27} T^{21} + 1058889 p^{30} T^{22} - 942 p^{33} T^{23} + p^{36} T^{24} \)
53 \( 1 + 828 T + 1410657 T^{2} + 990164700 T^{3} + 926325130575 T^{4} + 563788608990552 T^{5} + 379915391732165060 T^{6} + \)\(20\!\cdots\!52\)\( T^{7} + \)\(10\!\cdots\!85\)\( T^{8} + \)\(52\!\cdots\!16\)\( T^{9} + \)\(23\!\cdots\!59\)\( T^{10} + \)\(10\!\cdots\!92\)\( T^{11} + \)\(40\!\cdots\!58\)\( T^{12} + \)\(10\!\cdots\!92\)\( p^{3} T^{13} + \)\(23\!\cdots\!59\)\( p^{6} T^{14} + \)\(52\!\cdots\!16\)\( p^{9} T^{15} + \)\(10\!\cdots\!85\)\( p^{12} T^{16} + \)\(20\!\cdots\!52\)\( p^{15} T^{17} + 379915391732165060 p^{18} T^{18} + 563788608990552 p^{21} T^{19} + 926325130575 p^{24} T^{20} + 990164700 p^{27} T^{21} + 1410657 p^{30} T^{22} + 828 p^{33} T^{23} + p^{36} T^{24} \)
59 \( 1 + 24 T + 1154712 T^{2} - 108879264 T^{3} + 654469055961 T^{4} - 142630153314726 T^{5} + 256843348960078295 T^{6} - 79288323473587318434 T^{7} + \)\(82\!\cdots\!25\)\( T^{8} - \)\(27\!\cdots\!06\)\( T^{9} + \)\(22\!\cdots\!05\)\( T^{10} - \)\(69\!\cdots\!94\)\( T^{11} + \)\(51\!\cdots\!18\)\( T^{12} - \)\(69\!\cdots\!94\)\( p^{3} T^{13} + \)\(22\!\cdots\!05\)\( p^{6} T^{14} - \)\(27\!\cdots\!06\)\( p^{9} T^{15} + \)\(82\!\cdots\!25\)\( p^{12} T^{16} - 79288323473587318434 p^{15} T^{17} + 256843348960078295 p^{18} T^{18} - 142630153314726 p^{21} T^{19} + 654469055961 p^{24} T^{20} - 108879264 p^{27} T^{21} + 1154712 p^{30} T^{22} + 24 p^{33} T^{23} + p^{36} T^{24} \)
61 \( 1 + 1698 T + 2661744 T^{2} + 2733019648 T^{3} + 2588156484195 T^{4} + 1954552764603318 T^{5} + 1384169662080875359 T^{6} + \)\(83\!\cdots\!16\)\( T^{7} + \)\(48\!\cdots\!89\)\( T^{8} + \)\(24\!\cdots\!54\)\( T^{9} + \)\(12\!\cdots\!97\)\( T^{10} + \)\(59\!\cdots\!10\)\( T^{11} + \)\(28\!\cdots\!86\)\( T^{12} + \)\(59\!\cdots\!10\)\( p^{3} T^{13} + \)\(12\!\cdots\!97\)\( p^{6} T^{14} + \)\(24\!\cdots\!54\)\( p^{9} T^{15} + \)\(48\!\cdots\!89\)\( p^{12} T^{16} + \)\(83\!\cdots\!16\)\( p^{15} T^{17} + 1384169662080875359 p^{18} T^{18} + 1954552764603318 p^{21} T^{19} + 2588156484195 p^{24} T^{20} + 2733019648 p^{27} T^{21} + 2661744 p^{30} T^{22} + 1698 p^{33} T^{23} + p^{36} T^{24} \)
67 \( 1 + 1266 T + 2242281 T^{2} + 2079332890 T^{3} + 2203397904414 T^{4} + 1667100797153556 T^{5} + 1356716020460611204 T^{6} + \)\(89\!\cdots\!98\)\( T^{7} + \)\(61\!\cdots\!05\)\( T^{8} + \)\(36\!\cdots\!48\)\( T^{9} + \)\(22\!\cdots\!27\)\( T^{10} + \)\(12\!\cdots\!78\)\( T^{11} + \)\(72\!\cdots\!60\)\( T^{12} + \)\(12\!\cdots\!78\)\( p^{3} T^{13} + \)\(22\!\cdots\!27\)\( p^{6} T^{14} + \)\(36\!\cdots\!48\)\( p^{9} T^{15} + \)\(61\!\cdots\!05\)\( p^{12} T^{16} + \)\(89\!\cdots\!98\)\( p^{15} T^{17} + 1356716020460611204 p^{18} T^{18} + 1667100797153556 p^{21} T^{19} + 2203397904414 p^{24} T^{20} + 2079332890 p^{27} T^{21} + 2242281 p^{30} T^{22} + 1266 p^{33} T^{23} + p^{36} T^{24} \)
71 \( 1 - 3888 T + 9472848 T^{2} - 16698964968 T^{3} + 23909532632490 T^{4} - 28876815994589208 T^{5} + 30580771234603876304 T^{6} - \)\(28\!\cdots\!92\)\( T^{7} + \)\(24\!\cdots\!67\)\( T^{8} - \)\(19\!\cdots\!84\)\( T^{9} + \)\(14\!\cdots\!32\)\( T^{10} - \)\(94\!\cdots\!00\)\( T^{11} + \)\(58\!\cdots\!64\)\( T^{12} - \)\(94\!\cdots\!00\)\( p^{3} T^{13} + \)\(14\!\cdots\!32\)\( p^{6} T^{14} - \)\(19\!\cdots\!84\)\( p^{9} T^{15} + \)\(24\!\cdots\!67\)\( p^{12} T^{16} - \)\(28\!\cdots\!92\)\( p^{15} T^{17} + 30580771234603876304 p^{18} T^{18} - 28876815994589208 p^{21} T^{19} + 23909532632490 p^{24} T^{20} - 16698964968 p^{27} T^{21} + 9472848 p^{30} T^{22} - 3888 p^{33} T^{23} + p^{36} T^{24} \)
73 \( 1 + 1164 T + 2863680 T^{2} + 2986228324 T^{3} + 4116691297176 T^{4} + 3722553087241332 T^{5} + 3877761578271121090 T^{6} + \)\(30\!\cdots\!96\)\( T^{7} + \)\(26\!\cdots\!12\)\( T^{8} + \)\(19\!\cdots\!44\)\( T^{9} + \)\(14\!\cdots\!64\)\( T^{10} + \)\(92\!\cdots\!64\)\( T^{11} + \)\(62\!\cdots\!07\)\( T^{12} + \)\(92\!\cdots\!64\)\( p^{3} T^{13} + \)\(14\!\cdots\!64\)\( p^{6} T^{14} + \)\(19\!\cdots\!44\)\( p^{9} T^{15} + \)\(26\!\cdots\!12\)\( p^{12} T^{16} + \)\(30\!\cdots\!96\)\( p^{15} T^{17} + 3877761578271121090 p^{18} T^{18} + 3722553087241332 p^{21} T^{19} + 4116691297176 p^{24} T^{20} + 2986228324 p^{27} T^{21} + 2863680 p^{30} T^{22} + 1164 p^{33} T^{23} + p^{36} T^{24} \)
79 \( 1 + 2382 T + 6094200 T^{2} + 9584500318 T^{3} + 14733487983153 T^{4} + 17532778836000066 T^{5} + 20236880655873465859 T^{6} + \)\(19\!\cdots\!96\)\( T^{7} + \)\(18\!\cdots\!01\)\( T^{8} + \)\(15\!\cdots\!10\)\( T^{9} + \)\(12\!\cdots\!69\)\( T^{10} + \)\(91\!\cdots\!60\)\( T^{11} + \)\(68\!\cdots\!18\)\( T^{12} + \)\(91\!\cdots\!60\)\( p^{3} T^{13} + \)\(12\!\cdots\!69\)\( p^{6} T^{14} + \)\(15\!\cdots\!10\)\( p^{9} T^{15} + \)\(18\!\cdots\!01\)\( p^{12} T^{16} + \)\(19\!\cdots\!96\)\( p^{15} T^{17} + 20236880655873465859 p^{18} T^{18} + 17532778836000066 p^{21} T^{19} + 14733487983153 p^{24} T^{20} + 9584500318 p^{27} T^{21} + 6094200 p^{30} T^{22} + 2382 p^{33} T^{23} + p^{36} T^{24} \)
83 \( 1 + 4008 T + 10837092 T^{2} + 21539693052 T^{3} + 35491475230593 T^{4} + 49939724231864238 T^{5} + 62383132568798653751 T^{6} + \)\(70\!\cdots\!46\)\( T^{7} + \)\(72\!\cdots\!73\)\( T^{8} + \)\(68\!\cdots\!66\)\( T^{9} + \)\(61\!\cdots\!09\)\( T^{10} + \)\(50\!\cdots\!58\)\( T^{11} + \)\(39\!\cdots\!94\)\( T^{12} + \)\(50\!\cdots\!58\)\( p^{3} T^{13} + \)\(61\!\cdots\!09\)\( p^{6} T^{14} + \)\(68\!\cdots\!66\)\( p^{9} T^{15} + \)\(72\!\cdots\!73\)\( p^{12} T^{16} + \)\(70\!\cdots\!46\)\( p^{15} T^{17} + 62383132568798653751 p^{18} T^{18} + 49939724231864238 p^{21} T^{19} + 35491475230593 p^{24} T^{20} + 21539693052 p^{27} T^{21} + 10837092 p^{30} T^{22} + 4008 p^{33} T^{23} + p^{36} T^{24} \)
89 \( 1 + 3582 T + 9208023 T^{2} + 16371231642 T^{3} + 24664465339941 T^{4} + 30799525034820456 T^{5} + 35164856630730158042 T^{6} + \)\(35\!\cdots\!66\)\( T^{7} + \)\(35\!\cdots\!54\)\( T^{8} + \)\(32\!\cdots\!28\)\( T^{9} + \)\(28\!\cdots\!78\)\( T^{10} + \)\(24\!\cdots\!84\)\( T^{11} + \)\(20\!\cdots\!31\)\( T^{12} + \)\(24\!\cdots\!84\)\( p^{3} T^{13} + \)\(28\!\cdots\!78\)\( p^{6} T^{14} + \)\(32\!\cdots\!28\)\( p^{9} T^{15} + \)\(35\!\cdots\!54\)\( p^{12} T^{16} + \)\(35\!\cdots\!66\)\( p^{15} T^{17} + 35164856630730158042 p^{18} T^{18} + 30799525034820456 p^{21} T^{19} + 24664465339941 p^{24} T^{20} + 16371231642 p^{27} T^{21} + 9208023 p^{30} T^{22} + 3582 p^{33} T^{23} + p^{36} T^{24} \)
97 \( 1 + 2958 T + 9267033 T^{2} + 17310905872 T^{3} + 32258081601246 T^{4} + 45739676328280764 T^{5} + 65493331632543782548 T^{6} + \)\(78\!\cdots\!64\)\( T^{7} + \)\(97\!\cdots\!97\)\( T^{8} + \)\(10\!\cdots\!40\)\( T^{9} + \)\(11\!\cdots\!75\)\( T^{10} + \)\(11\!\cdots\!30\)\( T^{11} + \)\(11\!\cdots\!93\)\( T^{12} + \)\(11\!\cdots\!30\)\( p^{3} T^{13} + \)\(11\!\cdots\!75\)\( p^{6} T^{14} + \)\(10\!\cdots\!40\)\( p^{9} T^{15} + \)\(97\!\cdots\!97\)\( p^{12} T^{16} + \)\(78\!\cdots\!64\)\( p^{15} T^{17} + 65493331632543782548 p^{18} T^{18} + 45739676328280764 p^{21} T^{19} + 32258081601246 p^{24} T^{20} + 17310905872 p^{27} T^{21} + 9267033 p^{30} T^{22} + 2958 p^{33} T^{23} + p^{36} T^{24} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{24} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.72643140414911716238558220776, −3.47462424348380558872256998770, −3.26945052042810078527952141659, −3.25705939520353925440968799603, −3.22600584278108023276443325501, −3.16243446266920373718980444075, −2.92008570822709462836105667327, −2.91807813892718232659290771780, −2.83407557656295299044692849476, −2.81923470297836521549618827018, −2.40979112975614155639652085998, −2.26803995448324742771891376022, −2.20288586631995813555794656784, −2.19000334886112457441110320148, −2.17882032403217588271096532622, −2.01479955041802058536300101394, −1.97761836059552372823874018970, −1.69902425204396565091079055537, −1.58295824211402492805990570432, −1.46998204241008621373615820452, −1.41180709003465568428466640368, −1.39926033700217762875398014362, −1.25715565248391390904987067000, −1.19888452362238080526888978821, −1.16462851993300443641191353345, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.16462851993300443641191353345, 1.19888452362238080526888978821, 1.25715565248391390904987067000, 1.39926033700217762875398014362, 1.41180709003465568428466640368, 1.46998204241008621373615820452, 1.58295824211402492805990570432, 1.69902425204396565091079055537, 1.97761836059552372823874018970, 2.01479955041802058536300101394, 2.17882032403217588271096532622, 2.19000334886112457441110320148, 2.20288586631995813555794656784, 2.26803995448324742771891376022, 2.40979112975614155639652085998, 2.81923470297836521549618827018, 2.83407557656295299044692849476, 2.91807813892718232659290771780, 2.92008570822709462836105667327, 3.16243446266920373718980444075, 3.22600584278108023276443325501, 3.25705939520353925440968799603, 3.26945052042810078527952141659, 3.47462424348380558872256998770, 3.72643140414911716238558220776

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.