Properties

Label 32-728e16-1.1-c1e16-0-2
Degree $32$
Conductor $6.224\times 10^{45}$
Sign $1$
Analytic cond. $1.70034\times 10^{12}$
Root an. cond. $2.41103$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s + 32·4-s − 96·8-s − 4·9-s + 264·16-s + 32·18-s − 672·32-s − 128·36-s + 1.53e3·64-s + 16·71-s + 384·72-s − 192·79-s + 8·81-s + 80·113-s + 127-s − 3.26e3·128-s + 131-s + 137-s + 139-s − 128·142-s − 1.05e3·144-s + 149-s + 151-s + 157-s + 1.53e3·158-s − 64·162-s + 163-s + ⋯
L(s)  = 1  − 5.65·2-s + 16·4-s − 33.9·8-s − 4/3·9-s + 66·16-s + 7.54·18-s − 118.·32-s − 21.3·36-s + 192·64-s + 1.89·71-s + 45.2·72-s − 21.6·79-s + 8/9·81-s + 7.52·113-s + 0.0887·127-s − 288.·128-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 10.7·142-s − 88·144-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 122.·158-s − 5.02·162-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 7^{16} \cdot 13^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{16} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 7^{16} \cdot 13^{16}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{16} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(32\)
Conductor: \(2^{48} \cdot 7^{16} \cdot 13^{16}\)
Sign: $1$
Analytic conductor: \(1.70034\times 10^{12}\)
Root analytic conductor: \(2.41103\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((32,\ 2^{48} \cdot 7^{16} \cdot 13^{16} ,\ ( \ : [1/2]^{16} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.02703802446\)
\(L(\frac12)\) \(\approx\) \(0.02703802446\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 + p T + p T^{2} + p^{2} T^{3} + p^{2} T^{4} )^{4} \)
7 \( ( 1 - p^{2} T^{4} + p^{4} T^{8} )^{2} \)
13 \( 1 - 36 T^{2} + 648 T^{4} - 11160 T^{6} + 172319 T^{8} - 11160 p^{2} T^{10} + 648 p^{4} T^{12} - 36 p^{6} T^{14} + p^{8} T^{16} \)
good3 \( ( 1 + 4 T^{2} + 8 T^{4} + 4 p^{2} T^{6} + p^{4} T^{8} )^{2}( 1 - 4 T^{2} + 8 T^{4} + 40 T^{6} - 161 T^{8} + 40 p^{2} T^{10} + 8 p^{4} T^{12} - 4 p^{6} T^{14} + p^{8} T^{16} ) \)
5 \( ( 1 - 12 T^{2} + 72 T^{4} - 264 T^{6} + 959 T^{8} - 264 p^{2} T^{10} + 72 p^{4} T^{12} - 12 p^{6} T^{14} + p^{8} T^{16} )( 1 + 12 T^{2} + 72 T^{4} + 264 T^{6} + 959 T^{8} + 264 p^{2} T^{10} + 72 p^{4} T^{12} + 12 p^{6} T^{14} + p^{8} T^{16} ) \)
11 \( ( 1 - p^{2} T^{4} + p^{4} T^{8} )^{4} \)
17 \( ( 1 - p T^{2} + p^{2} T^{4} )^{8} \)
19 \( ( 1 - 12 T^{2} + 72 T^{4} + 7800 T^{6} - 177121 T^{8} + 7800 p^{2} T^{10} + 72 p^{4} T^{12} - 12 p^{6} T^{14} + p^{8} T^{16} )( 1 + 12 T^{2} + 72 T^{4} - 7800 T^{6} - 177121 T^{8} - 7800 p^{2} T^{10} + 72 p^{4} T^{12} + 12 p^{6} T^{14} + p^{8} T^{16} ) \)
23 \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{4}( 1 + 10 T^{2} - 429 T^{4} + 10 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
29 \( ( 1 + p T^{2} + p^{2} T^{4} )^{8} \)
31 \( ( 1 + p^{2} T^{4} )^{8} \)
37 \( ( 1 - p^{2} T^{4} + p^{4} T^{8} )^{4} \)
41 \( ( 1 - p^{2} T^{4} + p^{4} T^{8} )^{4} \)
43 \( ( 1 - p T^{2} + p^{2} T^{4} )^{8} \)
47 \( ( 1 + p^{2} T^{4} )^{8} \)
53 \( ( 1 - p T^{2} )^{16} \)
59 \( ( 1 - 108 T^{2} + 5832 T^{4} - 108 p^{2} T^{6} + p^{4} T^{8} )^{2}( 1 - 108 T^{2} + 5832 T^{4} + 122040 T^{6} - 18707521 T^{8} + 122040 p^{2} T^{10} + 5832 p^{4} T^{12} - 108 p^{6} T^{14} + p^{8} T^{16} ) \)
61 \( ( 1 + 12 T^{2} + 72 T^{4} + 12 p^{2} T^{6} + p^{4} T^{8} )^{2}( 1 - 12 T^{2} + 72 T^{4} + 88440 T^{6} - 14376481 T^{8} + 88440 p^{2} T^{10} + 72 p^{4} T^{12} - 12 p^{6} T^{14} + p^{8} T^{16} ) \)
67 \( ( 1 - p^{2} T^{4} + p^{4} T^{8} )^{4} \)
71 \( ( 1 - 8 T + 32 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{4}( 1 + 8 T + 32 T^{2} - 880 T^{3} - 8561 T^{4} - 880 p T^{5} + 32 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
73 \( ( 1 + p^{2} T^{4} )^{8} \)
79 \( ( 1 + 24 T + 288 T^{2} + 24 p T^{3} + p^{2} T^{4} )^{8} \)
83 \( ( 1 - 36 T^{2} + 648 T^{4} - 36 p^{2} T^{6} + p^{4} T^{8} )^{2}( 1 + 36 T^{2} + 648 T^{4} + 36 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
89 \( ( 1 - p^{2} T^{4} + p^{4} T^{8} )^{4} \)
97 \( ( 1 - p^{2} T^{4} + p^{4} T^{8} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{32} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−2.71836531834098202005329723779, −2.67421396722663073100672536086, −2.60968123829473431152909448280, −2.52087730527314128946957976178, −2.51378736494528842433819439276, −2.33965303724404413388445460091, −2.19637690766803017755701670651, −2.17127448941241412634470675879, −2.11799542841338198229186388407, −1.79467098541729424316744075302, −1.69850954734213929687556131329, −1.53729074663556180885445615894, −1.49635076727650602350991668897, −1.45341881383639260930659190888, −1.35798945278540687277917260104, −1.35442331619770142722822551241, −1.28125056705659874287775770418, −1.15558051332144011479313603234, −1.11229364334182168439007777725, −0.880839735395319041732578724811, −0.43609385515291496791811942954, −0.42519192493479483170907744846, −0.31789703509482493269608046225, −0.26517568709651692271876127707, −0.21367467882191829416472010603, 0.21367467882191829416472010603, 0.26517568709651692271876127707, 0.31789703509482493269608046225, 0.42519192493479483170907744846, 0.43609385515291496791811942954, 0.880839735395319041732578724811, 1.11229364334182168439007777725, 1.15558051332144011479313603234, 1.28125056705659874287775770418, 1.35442331619770142722822551241, 1.35798945278540687277917260104, 1.45341881383639260930659190888, 1.49635076727650602350991668897, 1.53729074663556180885445615894, 1.69850954734213929687556131329, 1.79467098541729424316744075302, 2.11799542841338198229186388407, 2.17127448941241412634470675879, 2.19637690766803017755701670651, 2.33965303724404413388445460091, 2.51378736494528842433819439276, 2.52087730527314128946957976178, 2.60968123829473431152909448280, 2.67421396722663073100672536086, 2.71836531834098202005329723779

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.