Properties

Label 1008.2.q.k.625.3
Level $1008$
Weight $2$
Character 1008.625
Analytic conductor $8.049$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,2,Mod(529,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.529");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 625.3
Character \(\chi\) \(=\) 1008.625
Dual form 1008.2.q.k.529.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.34477 + 1.09160i) q^{3} +(0.918286 + 1.59052i) q^{5} +(0.361656 - 2.62092i) q^{7} +(0.616838 - 2.93590i) q^{9} +(-1.54860 + 2.68225i) q^{11} +(2.40225 - 4.16081i) q^{13} +(-2.97109 - 1.13649i) q^{15} +(1.87185 + 3.24214i) q^{17} +(2.71408 - 4.70093i) q^{19} +(2.37464 + 3.91932i) q^{21} +(-3.97914 - 6.89208i) q^{23} +(0.813503 - 1.40903i) q^{25} +(2.37531 + 4.62146i) q^{27} +(-0.325267 - 0.563379i) q^{29} -1.03668 q^{31} +(-0.845416 - 5.29746i) q^{33} +(4.50072 - 1.83153i) q^{35} +(0.873712 - 1.51331i) q^{37} +(1.31144 + 8.21764i) q^{39} +(2.52260 - 4.36927i) q^{41} +(6.09645 + 10.5594i) q^{43} +(5.23603 - 1.71490i) q^{45} +4.61383 q^{47} +(-6.73841 - 1.89574i) q^{49} +(-6.05632 - 2.31664i) q^{51} +(4.55082 + 7.88226i) q^{53} -5.68821 q^{55} +(1.48168 + 9.28438i) q^{57} +5.79727 q^{59} -4.81245 q^{61} +(-7.47167 - 2.67847i) q^{63} +8.82379 q^{65} +14.4774 q^{67} +(12.8744 + 4.92468i) q^{69} +5.00714 q^{71} +(-1.81364 - 3.14131i) q^{73} +(0.444111 + 2.78284i) q^{75} +(6.46989 + 5.02879i) q^{77} +14.3581 q^{79} +(-8.23902 - 3.62195i) q^{81} +(-3.83139 - 6.63616i) q^{83} +(-3.43778 + 5.95441i) q^{85} +(1.05239 + 0.402558i) q^{87} +(-5.76798 + 9.99043i) q^{89} +(-10.0364 - 7.80087i) q^{91} +(1.39411 - 1.13164i) q^{93} +9.96922 q^{95} +(-1.04480 - 1.80964i) q^{97} +(6.91957 + 6.20103i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 2 q^{3} + 3 q^{5} + 5 q^{7} + 10 q^{9} + 3 q^{11} - 3 q^{13} + q^{15} + 7 q^{17} + q^{19} - 2 q^{23} - 10 q^{25} + 4 q^{27} + 9 q^{29} - 8 q^{31} + 29 q^{33} - 14 q^{35} + 2 q^{37} + 16 q^{39}+ \cdots + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.34477 + 1.09160i −0.776406 + 0.630233i
\(4\) 0 0
\(5\) 0.918286 + 1.59052i 0.410670 + 0.711301i 0.994963 0.100242i \(-0.0319616\pi\)
−0.584293 + 0.811543i \(0.698628\pi\)
\(6\) 0 0
\(7\) 0.361656 2.62092i 0.136693 0.990613i
\(8\) 0 0
\(9\) 0.616838 2.93590i 0.205613 0.978633i
\(10\) 0 0
\(11\) −1.54860 + 2.68225i −0.466919 + 0.808728i −0.999286 0.0377862i \(-0.987969\pi\)
0.532367 + 0.846514i \(0.321303\pi\)
\(12\) 0 0
\(13\) 2.40225 4.16081i 0.666263 1.15400i −0.312678 0.949859i \(-0.601226\pi\)
0.978941 0.204143i \(-0.0654406\pi\)
\(14\) 0 0
\(15\) −2.97109 1.13649i −0.767132 0.293441i
\(16\) 0 0
\(17\) 1.87185 + 3.24214i 0.453990 + 0.786333i 0.998629 0.0523367i \(-0.0166669\pi\)
−0.544640 + 0.838670i \(0.683334\pi\)
\(18\) 0 0
\(19\) 2.71408 4.70093i 0.622654 1.07847i −0.366336 0.930483i \(-0.619388\pi\)
0.988990 0.147985i \(-0.0472788\pi\)
\(20\) 0 0
\(21\) 2.37464 + 3.91932i 0.518188 + 0.855267i
\(22\) 0 0
\(23\) −3.97914 6.89208i −0.829709 1.43710i −0.898267 0.439450i \(-0.855173\pi\)
0.0685581 0.997647i \(-0.478160\pi\)
\(24\) 0 0
\(25\) 0.813503 1.40903i 0.162701 0.281806i
\(26\) 0 0
\(27\) 2.37531 + 4.62146i 0.457128 + 0.889401i
\(28\) 0 0
\(29\) −0.325267 0.563379i −0.0604006 0.104617i 0.834244 0.551396i \(-0.185904\pi\)
−0.894645 + 0.446779i \(0.852571\pi\)
\(30\) 0 0
\(31\) −1.03668 −0.186194 −0.0930970 0.995657i \(-0.529677\pi\)
−0.0930970 + 0.995657i \(0.529677\pi\)
\(32\) 0 0
\(33\) −0.845416 5.29746i −0.147168 0.922169i
\(34\) 0 0
\(35\) 4.50072 1.83153i 0.760760 0.309585i
\(36\) 0 0
\(37\) 0.873712 1.51331i 0.143637 0.248787i −0.785226 0.619209i \(-0.787453\pi\)
0.928864 + 0.370422i \(0.120787\pi\)
\(38\) 0 0
\(39\) 1.31144 + 8.21764i 0.209999 + 1.31588i
\(40\) 0 0
\(41\) 2.52260 4.36927i 0.393964 0.682365i −0.599005 0.800745i \(-0.704437\pi\)
0.992968 + 0.118381i \(0.0377703\pi\)
\(42\) 0 0
\(43\) 6.09645 + 10.5594i 0.929699 + 1.61029i 0.783824 + 0.620984i \(0.213267\pi\)
0.145876 + 0.989303i \(0.453400\pi\)
\(44\) 0 0
\(45\) 5.23603 1.71490i 0.780542 0.255643i
\(46\) 0 0
\(47\) 4.61383 0.672996 0.336498 0.941684i \(-0.390757\pi\)
0.336498 + 0.941684i \(0.390757\pi\)
\(48\) 0 0
\(49\) −6.73841 1.89574i −0.962630 0.270820i
\(50\) 0 0
\(51\) −6.05632 2.31664i −0.848054 0.324395i
\(52\) 0 0
\(53\) 4.55082 + 7.88226i 0.625104 + 1.08271i 0.988521 + 0.151085i \(0.0482766\pi\)
−0.363417 + 0.931626i \(0.618390\pi\)
\(54\) 0 0
\(55\) −5.68821 −0.766998
\(56\) 0 0
\(57\) 1.48168 + 9.28438i 0.196254 + 1.22975i
\(58\) 0 0
\(59\) 5.79727 0.754740 0.377370 0.926063i \(-0.376828\pi\)
0.377370 + 0.926063i \(0.376828\pi\)
\(60\) 0 0
\(61\) −4.81245 −0.616172 −0.308086 0.951359i \(-0.599688\pi\)
−0.308086 + 0.951359i \(0.599688\pi\)
\(62\) 0 0
\(63\) −7.47167 2.67847i −0.941342 0.337455i
\(64\) 0 0
\(65\) 8.82379 1.09446
\(66\) 0 0
\(67\) 14.4774 1.76870 0.884348 0.466828i \(-0.154603\pi\)
0.884348 + 0.466828i \(0.154603\pi\)
\(68\) 0 0
\(69\) 12.8744 + 4.92468i 1.54990 + 0.592861i
\(70\) 0 0
\(71\) 5.00714 0.594238 0.297119 0.954840i \(-0.403974\pi\)
0.297119 + 0.954840i \(0.403974\pi\)
\(72\) 0 0
\(73\) −1.81364 3.14131i −0.212270 0.367662i 0.740155 0.672437i \(-0.234752\pi\)
−0.952425 + 0.304774i \(0.901419\pi\)
\(74\) 0 0
\(75\) 0.444111 + 2.78284i 0.0512816 + 0.321335i
\(76\) 0 0
\(77\) 6.46989 + 5.02879i 0.737312 + 0.573084i
\(78\) 0 0
\(79\) 14.3581 1.61541 0.807705 0.589587i \(-0.200710\pi\)
0.807705 + 0.589587i \(0.200710\pi\)
\(80\) 0 0
\(81\) −8.23902 3.62195i −0.915447 0.402439i
\(82\) 0 0
\(83\) −3.83139 6.63616i −0.420550 0.728414i 0.575443 0.817842i \(-0.304829\pi\)
−0.995993 + 0.0894279i \(0.971496\pi\)
\(84\) 0 0
\(85\) −3.43778 + 5.95441i −0.372880 + 0.645847i
\(86\) 0 0
\(87\) 1.05239 + 0.402558i 0.112828 + 0.0431587i
\(88\) 0 0
\(89\) −5.76798 + 9.99043i −0.611405 + 1.05898i 0.379599 + 0.925151i \(0.376062\pi\)
−0.991004 + 0.133833i \(0.957271\pi\)
\(90\) 0 0
\(91\) −10.0364 7.80087i −1.05210 0.817753i
\(92\) 0 0
\(93\) 1.39411 1.13164i 0.144562 0.117346i
\(94\) 0 0
\(95\) 9.96922 1.02282
\(96\) 0 0
\(97\) −1.04480 1.80964i −0.106083 0.183741i 0.808097 0.589049i \(-0.200498\pi\)
−0.914180 + 0.405308i \(0.867164\pi\)
\(98\) 0 0
\(99\) 6.91957 + 6.20103i 0.695443 + 0.623227i
\(100\) 0 0
\(101\) 8.22661 14.2489i 0.818578 1.41782i −0.0881520 0.996107i \(-0.528096\pi\)
0.906730 0.421712i \(-0.138571\pi\)
\(102\) 0 0
\(103\) −3.87346 6.70903i −0.381663 0.661060i 0.609637 0.792681i \(-0.291315\pi\)
−0.991300 + 0.131621i \(0.957982\pi\)
\(104\) 0 0
\(105\) −4.05316 + 7.37596i −0.395548 + 0.719820i
\(106\) 0 0
\(107\) −3.74746 + 6.49080i −0.362281 + 0.627489i −0.988336 0.152290i \(-0.951335\pi\)
0.626055 + 0.779779i \(0.284669\pi\)
\(108\) 0 0
\(109\) −4.30644 7.45897i −0.412482 0.714440i 0.582678 0.812703i \(-0.302005\pi\)
−0.995160 + 0.0982628i \(0.968671\pi\)
\(110\) 0 0
\(111\) 0.476981 + 2.98881i 0.0452730 + 0.283685i
\(112\) 0 0
\(113\) −1.55747 + 2.69762i −0.146514 + 0.253771i −0.929937 0.367719i \(-0.880139\pi\)
0.783422 + 0.621490i \(0.213472\pi\)
\(114\) 0 0
\(115\) 7.30798 12.6578i 0.681473 1.18035i
\(116\) 0 0
\(117\) −10.7339 9.61930i −0.992353 0.889305i
\(118\) 0 0
\(119\) 9.17433 3.73342i 0.841010 0.342242i
\(120\) 0 0
\(121\) 0.703704 + 1.21885i 0.0639731 + 0.110805i
\(122\) 0 0
\(123\) 1.37715 + 8.62934i 0.124173 + 0.778081i
\(124\) 0 0
\(125\) 12.1710 1.08860
\(126\) 0 0
\(127\) −10.8866 −0.966033 −0.483017 0.875611i \(-0.660459\pi\)
−0.483017 + 0.875611i \(0.660459\pi\)
\(128\) 0 0
\(129\) −19.7249 7.54510i −1.73668 0.664309i
\(130\) 0 0
\(131\) −8.02790 13.9047i −0.701401 1.21486i −0.967975 0.251048i \(-0.919225\pi\)
0.266574 0.963815i \(-0.414108\pi\)
\(132\) 0 0
\(133\) −11.3392 8.81351i −0.983232 0.764228i
\(134\) 0 0
\(135\) −5.16930 + 8.02179i −0.444903 + 0.690406i
\(136\) 0 0
\(137\) −6.72031 + 11.6399i −0.574155 + 0.994465i 0.421978 + 0.906606i \(0.361336\pi\)
−0.996133 + 0.0878590i \(0.971998\pi\)
\(138\) 0 0
\(139\) 4.06953 7.04863i 0.345173 0.597857i −0.640212 0.768198i \(-0.721154\pi\)
0.985385 + 0.170341i \(0.0544869\pi\)
\(140\) 0 0
\(141\) −6.20456 + 5.03644i −0.522518 + 0.424144i
\(142\) 0 0
\(143\) 7.44022 + 12.8868i 0.622182 + 1.07765i
\(144\) 0 0
\(145\) 0.597376 1.03469i 0.0496094 0.0859260i
\(146\) 0 0
\(147\) 11.1310 4.80628i 0.918071 0.396415i
\(148\) 0 0
\(149\) −3.76479 6.52081i −0.308424 0.534205i 0.669594 0.742727i \(-0.266468\pi\)
−0.978018 + 0.208522i \(0.933135\pi\)
\(150\) 0 0
\(151\) −2.83616 + 4.91237i −0.230803 + 0.399763i −0.958045 0.286619i \(-0.907469\pi\)
0.727241 + 0.686382i \(0.240802\pi\)
\(152\) 0 0
\(153\) 10.6732 3.49569i 0.862878 0.282610i
\(154\) 0 0
\(155\) −0.951973 1.64886i −0.0764643 0.132440i
\(156\) 0 0
\(157\) 0.436763 0.0348575 0.0174287 0.999848i \(-0.494452\pi\)
0.0174287 + 0.999848i \(0.494452\pi\)
\(158\) 0 0
\(159\) −14.7241 5.63220i −1.16769 0.446663i
\(160\) 0 0
\(161\) −19.5026 + 7.93644i −1.53702 + 0.625479i
\(162\) 0 0
\(163\) −9.12649 + 15.8076i −0.714842 + 1.23814i 0.248178 + 0.968714i \(0.420168\pi\)
−0.963020 + 0.269429i \(0.913165\pi\)
\(164\) 0 0
\(165\) 7.64936 6.20923i 0.595502 0.483388i
\(166\) 0 0
\(167\) −0.765108 + 1.32521i −0.0592058 + 0.102548i −0.894109 0.447849i \(-0.852190\pi\)
0.834903 + 0.550397i \(0.185523\pi\)
\(168\) 0 0
\(169\) −5.04157 8.73226i −0.387813 0.671713i
\(170\) 0 0
\(171\) −12.1273 10.8680i −0.927399 0.831096i
\(172\) 0 0
\(173\) 2.16949 0.164943 0.0824716 0.996593i \(-0.473719\pi\)
0.0824716 + 0.996593i \(0.473719\pi\)
\(174\) 0 0
\(175\) −3.39874 2.64171i −0.256921 0.199694i
\(176\) 0 0
\(177\) −7.79602 + 6.32827i −0.585985 + 0.475662i
\(178\) 0 0
\(179\) 1.08263 + 1.87517i 0.0809195 + 0.140157i 0.903645 0.428282i \(-0.140881\pi\)
−0.822726 + 0.568439i \(0.807548\pi\)
\(180\) 0 0
\(181\) 0.557838 0.0414638 0.0207319 0.999785i \(-0.493400\pi\)
0.0207319 + 0.999785i \(0.493400\pi\)
\(182\) 0 0
\(183\) 6.47167 5.25325i 0.478399 0.388332i
\(184\) 0 0
\(185\) 3.20927 0.235950
\(186\) 0 0
\(187\) −11.5949 −0.847906
\(188\) 0 0
\(189\) 12.9715 4.55411i 0.943539 0.331262i
\(190\) 0 0
\(191\) 23.9997 1.73655 0.868277 0.496079i \(-0.165227\pi\)
0.868277 + 0.496079i \(0.165227\pi\)
\(192\) 0 0
\(193\) −21.2794 −1.53172 −0.765862 0.643005i \(-0.777687\pi\)
−0.765862 + 0.643005i \(0.777687\pi\)
\(194\) 0 0
\(195\) −11.8660 + 9.63201i −0.849743 + 0.689763i
\(196\) 0 0
\(197\) −14.8768 −1.05993 −0.529964 0.848020i \(-0.677795\pi\)
−0.529964 + 0.848020i \(0.677795\pi\)
\(198\) 0 0
\(199\) −6.17884 10.7021i −0.438006 0.758649i 0.559530 0.828810i \(-0.310982\pi\)
−0.997536 + 0.0701616i \(0.977649\pi\)
\(200\) 0 0
\(201\) −19.4688 + 15.8035i −1.37323 + 1.11469i
\(202\) 0 0
\(203\) −1.59420 + 0.648749i −0.111891 + 0.0455332i
\(204\) 0 0
\(205\) 9.26586 0.647156
\(206\) 0 0
\(207\) −22.6889 + 7.43107i −1.57699 + 0.516495i
\(208\) 0 0
\(209\) 8.40604 + 14.5597i 0.581458 + 1.00711i
\(210\) 0 0
\(211\) −8.65802 + 14.9961i −0.596043 + 1.03238i 0.397356 + 0.917664i \(0.369928\pi\)
−0.993399 + 0.114712i \(0.963406\pi\)
\(212\) 0 0
\(213\) −6.73347 + 5.46577i −0.461370 + 0.374508i
\(214\) 0 0
\(215\) −11.1966 + 19.3930i −0.763599 + 1.32259i
\(216\) 0 0
\(217\) −0.374923 + 2.71706i −0.0254514 + 0.184446i
\(218\) 0 0
\(219\) 5.86797 + 2.24460i 0.396521 + 0.151676i
\(220\) 0 0
\(221\) 17.9866 1.20991
\(222\) 0 0
\(223\) −1.14489 1.98301i −0.0766677 0.132792i 0.825143 0.564925i \(-0.191095\pi\)
−0.901810 + 0.432132i \(0.857761\pi\)
\(224\) 0 0
\(225\) −3.63497 3.25751i −0.242331 0.217167i
\(226\) 0 0
\(227\) −1.78013 + 3.08328i −0.118152 + 0.204644i −0.919035 0.394176i \(-0.871030\pi\)
0.800884 + 0.598820i \(0.204364\pi\)
\(228\) 0 0
\(229\) 13.4799 + 23.3478i 0.890775 + 1.54287i 0.838949 + 0.544211i \(0.183171\pi\)
0.0518260 + 0.998656i \(0.483496\pi\)
\(230\) 0 0
\(231\) −14.1899 + 0.299909i −0.933630 + 0.0197325i
\(232\) 0 0
\(233\) 10.7321 18.5885i 0.703081 1.21777i −0.264298 0.964441i \(-0.585140\pi\)
0.967380 0.253332i \(-0.0815264\pi\)
\(234\) 0 0
\(235\) 4.23681 + 7.33837i 0.276379 + 0.478703i
\(236\) 0 0
\(237\) −19.3084 + 15.6732i −1.25421 + 1.01808i
\(238\) 0 0
\(239\) −4.65970 + 8.07083i −0.301411 + 0.522059i −0.976456 0.215718i \(-0.930791\pi\)
0.675045 + 0.737777i \(0.264124\pi\)
\(240\) 0 0
\(241\) 10.1003 17.4943i 0.650620 1.12691i −0.332353 0.943155i \(-0.607842\pi\)
0.982973 0.183752i \(-0.0588242\pi\)
\(242\) 0 0
\(243\) 15.0333 4.12297i 0.964389 0.264489i
\(244\) 0 0
\(245\) −3.17258 12.4584i −0.202689 0.795937i
\(246\) 0 0
\(247\) −13.0398 22.5856i −0.829702 1.43709i
\(248\) 0 0
\(249\) 12.3964 + 4.74182i 0.785588 + 0.300500i
\(250\) 0 0
\(251\) −27.1837 −1.71582 −0.857910 0.513800i \(-0.828238\pi\)
−0.857910 + 0.513800i \(0.828238\pi\)
\(252\) 0 0
\(253\) 24.6483 1.54963
\(254\) 0 0
\(255\) −1.87677 11.7600i −0.117528 0.736441i
\(256\) 0 0
\(257\) −14.2411 24.6662i −0.888333 1.53864i −0.841845 0.539719i \(-0.818531\pi\)
−0.0464876 0.998919i \(-0.514803\pi\)
\(258\) 0 0
\(259\) −3.65028 2.83722i −0.226818 0.176297i
\(260\) 0 0
\(261\) −1.85466 + 0.607438i −0.114801 + 0.0375995i
\(262\) 0 0
\(263\) 1.79907 3.11608i 0.110935 0.192146i −0.805212 0.592987i \(-0.797949\pi\)
0.916148 + 0.400841i \(0.131282\pi\)
\(264\) 0 0
\(265\) −8.35791 + 14.4763i −0.513422 + 0.889274i
\(266\) 0 0
\(267\) −3.14888 19.7312i −0.192708 1.20753i
\(268\) 0 0
\(269\) 11.2261 + 19.4443i 0.684470 + 1.18554i 0.973603 + 0.228248i \(0.0732997\pi\)
−0.289133 + 0.957289i \(0.593367\pi\)
\(270\) 0 0
\(271\) 14.7935 25.6231i 0.898642 1.55649i 0.0694115 0.997588i \(-0.477888\pi\)
0.829231 0.558906i \(-0.188779\pi\)
\(272\) 0 0
\(273\) 22.0120 0.465231i 1.33223 0.0281570i
\(274\) 0 0
\(275\) 2.51958 + 4.36403i 0.151936 + 0.263161i
\(276\) 0 0
\(277\) 10.1933 17.6554i 0.612459 1.06081i −0.378366 0.925656i \(-0.623514\pi\)
0.990825 0.135153i \(-0.0431527\pi\)
\(278\) 0 0
\(279\) −0.639467 + 3.04360i −0.0382839 + 0.182216i
\(280\) 0 0
\(281\) −2.23968 3.87924i −0.133608 0.231416i 0.791457 0.611225i \(-0.209323\pi\)
−0.925065 + 0.379809i \(0.875990\pi\)
\(282\) 0 0
\(283\) −2.07680 −0.123453 −0.0617264 0.998093i \(-0.519661\pi\)
−0.0617264 + 0.998093i \(0.519661\pi\)
\(284\) 0 0
\(285\) −13.4064 + 10.8824i −0.794124 + 0.644615i
\(286\) 0 0
\(287\) −10.5392 8.19169i −0.622108 0.483540i
\(288\) 0 0
\(289\) 1.49237 2.58486i 0.0877865 0.152051i
\(290\) 0 0
\(291\) 3.38041 + 1.29306i 0.198163 + 0.0758007i
\(292\) 0 0
\(293\) −0.887340 + 1.53692i −0.0518389 + 0.0897877i −0.890780 0.454434i \(-0.849842\pi\)
0.838942 + 0.544222i \(0.183175\pi\)
\(294\) 0 0
\(295\) 5.32355 + 9.22066i 0.309949 + 0.536847i
\(296\) 0 0
\(297\) −16.0743 0.785616i −0.932725 0.0455860i
\(298\) 0 0
\(299\) −38.2355 −2.21122
\(300\) 0 0
\(301\) 29.8800 12.1594i 1.72225 0.700858i
\(302\) 0 0
\(303\) 4.49111 + 28.1417i 0.258007 + 1.61670i
\(304\) 0 0
\(305\) −4.41921 7.65429i −0.253043 0.438283i
\(306\) 0 0
\(307\) −19.6315 −1.12043 −0.560215 0.828347i \(-0.689282\pi\)
−0.560215 + 0.828347i \(0.689282\pi\)
\(308\) 0 0
\(309\) 12.5325 + 4.79388i 0.712948 + 0.272714i
\(310\) 0 0
\(311\) 13.3159 0.755076 0.377538 0.925994i \(-0.376771\pi\)
0.377538 + 0.925994i \(0.376771\pi\)
\(312\) 0 0
\(313\) 4.65281 0.262992 0.131496 0.991317i \(-0.458022\pi\)
0.131496 + 0.991317i \(0.458022\pi\)
\(314\) 0 0
\(315\) −2.60098 14.3434i −0.146548 0.808160i
\(316\) 0 0
\(317\) −4.12552 −0.231713 −0.115856 0.993266i \(-0.536961\pi\)
−0.115856 + 0.993266i \(0.536961\pi\)
\(318\) 0 0
\(319\) 2.01483 0.112809
\(320\) 0 0
\(321\) −2.04583 12.8194i −0.114187 0.715508i
\(322\) 0 0
\(323\) 20.3214 1.13071
\(324\) 0 0
\(325\) −3.90847 6.76967i −0.216803 0.375514i
\(326\) 0 0
\(327\) 13.9334 + 5.32975i 0.770517 + 0.294736i
\(328\) 0 0
\(329\) 1.66862 12.0925i 0.0919939 0.666679i
\(330\) 0 0
\(331\) −0.0440594 −0.00242172 −0.00121086 0.999999i \(-0.500385\pi\)
−0.00121086 + 0.999999i \(0.500385\pi\)
\(332\) 0 0
\(333\) −3.90400 3.49860i −0.213938 0.191722i
\(334\) 0 0
\(335\) 13.2944 + 23.0266i 0.726350 + 1.25808i
\(336\) 0 0
\(337\) −13.3351 + 23.0970i −0.726407 + 1.25817i 0.231986 + 0.972719i \(0.425478\pi\)
−0.958392 + 0.285454i \(0.907856\pi\)
\(338\) 0 0
\(339\) −0.850261 5.32782i −0.0461798 0.289367i
\(340\) 0 0
\(341\) 1.60541 2.78064i 0.0869376 0.150580i
\(342\) 0 0
\(343\) −7.40556 + 16.9752i −0.399863 + 0.916575i
\(344\) 0 0
\(345\) 3.98960 + 24.9992i 0.214793 + 1.34591i
\(346\) 0 0
\(347\) −10.8252 −0.581126 −0.290563 0.956856i \(-0.593843\pi\)
−0.290563 + 0.956856i \(0.593843\pi\)
\(348\) 0 0
\(349\) −2.69555 4.66884i −0.144290 0.249917i 0.784818 0.619726i \(-0.212756\pi\)
−0.929108 + 0.369809i \(0.879423\pi\)
\(350\) 0 0
\(351\) 24.9351 + 1.21868i 1.33094 + 0.0650483i
\(352\) 0 0
\(353\) 4.47307 7.74759i 0.238078 0.412362i −0.722085 0.691804i \(-0.756816\pi\)
0.960163 + 0.279442i \(0.0901494\pi\)
\(354\) 0 0
\(355\) 4.59798 + 7.96394i 0.244036 + 0.422682i
\(356\) 0 0
\(357\) −8.26203 + 15.0353i −0.437273 + 0.795751i
\(358\) 0 0
\(359\) −1.84157 + 3.18969i −0.0971942 + 0.168345i −0.910522 0.413460i \(-0.864320\pi\)
0.813328 + 0.581805i \(0.197653\pi\)
\(360\) 0 0
\(361\) −5.23251 9.06297i −0.275395 0.476998i
\(362\) 0 0
\(363\) −2.27682 0.870920i −0.119502 0.0457114i
\(364\) 0 0
\(365\) 3.33087 5.76924i 0.174346 0.301976i
\(366\) 0 0
\(367\) −3.74988 + 6.49498i −0.195742 + 0.339035i −0.947144 0.320810i \(-0.896045\pi\)
0.751401 + 0.659845i \(0.229378\pi\)
\(368\) 0 0
\(369\) −11.2717 10.1012i −0.586781 0.525849i
\(370\) 0 0
\(371\) 22.3046 9.07666i 1.15800 0.471237i
\(372\) 0 0
\(373\) −4.11917 7.13461i −0.213282 0.369416i 0.739458 0.673203i \(-0.235082\pi\)
−0.952740 + 0.303787i \(0.901749\pi\)
\(374\) 0 0
\(375\) −16.3672 + 13.2858i −0.845199 + 0.686075i
\(376\) 0 0
\(377\) −3.12549 −0.160971
\(378\) 0 0
\(379\) 3.92853 0.201795 0.100897 0.994897i \(-0.467829\pi\)
0.100897 + 0.994897i \(0.467829\pi\)
\(380\) 0 0
\(381\) 14.6401 11.8838i 0.750034 0.608826i
\(382\) 0 0
\(383\) 11.9632 + 20.7210i 0.611293 + 1.05879i 0.991023 + 0.133694i \(0.0426838\pi\)
−0.379729 + 0.925098i \(0.623983\pi\)
\(384\) 0 0
\(385\) −2.05718 + 14.9083i −0.104843 + 0.759799i
\(386\) 0 0
\(387\) 34.7617 11.3851i 1.76704 0.578740i
\(388\) 0 0
\(389\) −6.32875 + 10.9617i −0.320881 + 0.555781i −0.980670 0.195669i \(-0.937312\pi\)
0.659789 + 0.751451i \(0.270645\pi\)
\(390\) 0 0
\(391\) 14.8967 25.8018i 0.753359 1.30486i
\(392\) 0 0
\(393\) 25.9741 + 9.93551i 1.31022 + 0.501180i
\(394\) 0 0
\(395\) 13.1848 + 22.8368i 0.663400 + 1.14904i
\(396\) 0 0
\(397\) −17.7703 + 30.7791i −0.891866 + 1.54476i −0.0542297 + 0.998528i \(0.517270\pi\)
−0.837636 + 0.546229i \(0.816063\pi\)
\(398\) 0 0
\(399\) 24.8694 0.525623i 1.24503 0.0263141i
\(400\) 0 0
\(401\) 1.66166 + 2.87808i 0.0829794 + 0.143724i 0.904528 0.426413i \(-0.140223\pi\)
−0.821549 + 0.570138i \(0.806890\pi\)
\(402\) 0 0
\(403\) −2.49037 + 4.31345i −0.124054 + 0.214868i
\(404\) 0 0
\(405\) −1.80500 16.4303i −0.0896912 0.816428i
\(406\) 0 0
\(407\) 2.70605 + 4.68702i 0.134134 + 0.232327i
\(408\) 0 0
\(409\) 22.5129 1.11319 0.556595 0.830784i \(-0.312107\pi\)
0.556595 + 0.830784i \(0.312107\pi\)
\(410\) 0 0
\(411\) −3.66878 22.9889i −0.180968 1.13396i
\(412\) 0 0
\(413\) 2.09662 15.1942i 0.103168 0.747656i
\(414\) 0 0
\(415\) 7.03662 12.1878i 0.345414 0.598275i
\(416\) 0 0
\(417\) 2.22165 + 13.9211i 0.108795 + 0.681719i
\(418\) 0 0
\(419\) 3.59772 6.23144i 0.175760 0.304426i −0.764664 0.644429i \(-0.777095\pi\)
0.940424 + 0.340004i \(0.110428\pi\)
\(420\) 0 0
\(421\) 16.8121 + 29.1193i 0.819370 + 1.41919i 0.906147 + 0.422962i \(0.139010\pi\)
−0.0867773 + 0.996228i \(0.527657\pi\)
\(422\) 0 0
\(423\) 2.84599 13.5457i 0.138377 0.658616i
\(424\) 0 0
\(425\) 6.09102 0.295458
\(426\) 0 0
\(427\) −1.74045 + 12.6130i −0.0842264 + 0.610388i
\(428\) 0 0
\(429\) −24.0726 9.20818i −1.16224 0.444575i
\(430\) 0 0
\(431\) −16.4871 28.5565i −0.794156 1.37552i −0.923373 0.383903i \(-0.874580\pi\)
0.129217 0.991616i \(-0.458754\pi\)
\(432\) 0 0
\(433\) 19.8977 0.956221 0.478110 0.878300i \(-0.341322\pi\)
0.478110 + 0.878300i \(0.341322\pi\)
\(434\) 0 0
\(435\) 0.326122 + 2.04351i 0.0156364 + 0.0979789i
\(436\) 0 0
\(437\) −43.1989 −2.06648
\(438\) 0 0
\(439\) −29.1268 −1.39015 −0.695074 0.718938i \(-0.744628\pi\)
−0.695074 + 0.718938i \(0.744628\pi\)
\(440\) 0 0
\(441\) −9.72221 + 18.6139i −0.462962 + 0.886378i
\(442\) 0 0
\(443\) −13.7663 −0.654058 −0.327029 0.945014i \(-0.606048\pi\)
−0.327029 + 0.945014i \(0.606048\pi\)
\(444\) 0 0
\(445\) −21.1866 −1.00434
\(446\) 0 0
\(447\) 12.1809 + 4.65939i 0.576136 + 0.220382i
\(448\) 0 0
\(449\) −12.0958 −0.570838 −0.285419 0.958403i \(-0.592133\pi\)
−0.285419 + 0.958403i \(0.592133\pi\)
\(450\) 0 0
\(451\) 7.81297 + 13.5325i 0.367898 + 0.637218i
\(452\) 0 0
\(453\) −1.54833 9.70197i −0.0727468 0.455838i
\(454\) 0 0
\(455\) 3.19118 23.1264i 0.149605 1.08418i
\(456\) 0 0
\(457\) −8.35476 −0.390819 −0.195410 0.980722i \(-0.562604\pi\)
−0.195410 + 0.980722i \(0.562604\pi\)
\(458\) 0 0
\(459\) −10.5372 + 16.3517i −0.491834 + 0.763234i
\(460\) 0 0
\(461\) 11.1673 + 19.3423i 0.520112 + 0.900860i 0.999727 + 0.0233807i \(0.00744299\pi\)
−0.479615 + 0.877479i \(0.659224\pi\)
\(462\) 0 0
\(463\) 0.0370790 0.0642228i 0.00172321 0.00298469i −0.865163 0.501492i \(-0.832785\pi\)
0.866886 + 0.498507i \(0.166118\pi\)
\(464\) 0 0
\(465\) 3.08008 + 1.17818i 0.142835 + 0.0546369i
\(466\) 0 0
\(467\) −14.5828 + 25.2581i −0.674810 + 1.16880i 0.301715 + 0.953398i \(0.402441\pi\)
−0.976524 + 0.215407i \(0.930892\pi\)
\(468\) 0 0
\(469\) 5.23584 37.9441i 0.241769 1.75209i
\(470\) 0 0
\(471\) −0.587348 + 0.476768i −0.0270635 + 0.0219683i
\(472\) 0 0
\(473\) −37.7637 −1.73638
\(474\) 0 0
\(475\) −4.41583 7.64845i −0.202612 0.350935i
\(476\) 0 0
\(477\) 25.9486 8.49869i 1.18811 0.389128i
\(478\) 0 0
\(479\) 13.9551 24.1710i 0.637626 1.10440i −0.348326 0.937373i \(-0.613250\pi\)
0.985952 0.167027i \(-0.0534168\pi\)
\(480\) 0 0
\(481\) −4.19774 7.27070i −0.191401 0.331515i
\(482\) 0 0
\(483\) 17.5633 31.9617i 0.799157 1.45431i
\(484\) 0 0
\(485\) 1.91884 3.32353i 0.0871301 0.150914i
\(486\) 0 0
\(487\) 2.14409 + 3.71367i 0.0971580 + 0.168283i 0.910507 0.413493i \(-0.135691\pi\)
−0.813349 + 0.581776i \(0.802358\pi\)
\(488\) 0 0
\(489\) −4.98238 31.2200i −0.225311 1.41182i
\(490\) 0 0
\(491\) 5.22215 9.04503i 0.235672 0.408196i −0.723796 0.690015i \(-0.757604\pi\)
0.959468 + 0.281818i \(0.0909375\pi\)
\(492\) 0 0
\(493\) 1.21770 2.10912i 0.0548425 0.0949900i
\(494\) 0 0
\(495\) −3.50871 + 16.7000i −0.157705 + 0.750610i
\(496\) 0 0
\(497\) 1.81086 13.1233i 0.0812282 0.588660i
\(498\) 0 0
\(499\) −3.06312 5.30548i −0.137124 0.237506i 0.789283 0.614030i \(-0.210453\pi\)
−0.926407 + 0.376524i \(0.877119\pi\)
\(500\) 0 0
\(501\) −0.417691 2.61729i −0.0186611 0.116932i
\(502\) 0 0
\(503\) 12.4469 0.554982 0.277491 0.960728i \(-0.410497\pi\)
0.277491 + 0.960728i \(0.410497\pi\)
\(504\) 0 0
\(505\) 30.2175 1.34466
\(506\) 0 0
\(507\) 16.3119 + 6.23957i 0.724436 + 0.277109i
\(508\) 0 0
\(509\) −5.90450 10.2269i −0.261712 0.453299i 0.704985 0.709222i \(-0.250954\pi\)
−0.966697 + 0.255923i \(0.917620\pi\)
\(510\) 0 0
\(511\) −8.88902 + 3.61731i −0.393227 + 0.160021i
\(512\) 0 0
\(513\) 28.1720 + 1.37688i 1.24382 + 0.0607906i
\(514\) 0 0
\(515\) 7.11388 12.3216i 0.313475 0.542955i
\(516\) 0 0
\(517\) −7.14495 + 12.3754i −0.314235 + 0.544271i
\(518\) 0 0
\(519\) −2.91748 + 2.36821i −0.128063 + 0.103953i
\(520\) 0 0
\(521\) 5.54828 + 9.60991i 0.243075 + 0.421018i 0.961589 0.274495i \(-0.0885107\pi\)
−0.718514 + 0.695513i \(0.755177\pi\)
\(522\) 0 0
\(523\) −10.6209 + 18.3960i −0.464421 + 0.804401i −0.999175 0.0406065i \(-0.987071\pi\)
0.534754 + 0.845008i \(0.320404\pi\)
\(524\) 0 0
\(525\) 7.45422 0.157547i 0.325329 0.00687592i
\(526\) 0 0
\(527\) −1.94052 3.36107i −0.0845302 0.146411i
\(528\) 0 0
\(529\) −20.1672 + 34.9305i −0.876833 + 1.51872i
\(530\) 0 0
\(531\) 3.57598 17.0202i 0.155184 0.738614i
\(532\) 0 0
\(533\) −12.1198 20.9921i −0.524967 0.909269i
\(534\) 0 0
\(535\) −13.7650 −0.595111
\(536\) 0 0
\(537\) −3.50282 1.33989i −0.151158 0.0578204i
\(538\) 0 0
\(539\) 15.5199 15.1383i 0.668490 0.652054i
\(540\) 0 0
\(541\) −6.33567 + 10.9737i −0.272392 + 0.471796i −0.969474 0.245195i \(-0.921148\pi\)
0.697082 + 0.716991i \(0.254481\pi\)
\(542\) 0 0
\(543\) −0.750167 + 0.608934i −0.0321928 + 0.0261319i
\(544\) 0 0
\(545\) 7.90908 13.6989i 0.338788 0.586798i
\(546\) 0 0
\(547\) 21.4805 + 37.2053i 0.918438 + 1.59078i 0.801788 + 0.597609i \(0.203883\pi\)
0.116651 + 0.993173i \(0.462784\pi\)
\(548\) 0 0
\(549\) −2.96850 + 14.1289i −0.126693 + 0.603006i
\(550\) 0 0
\(551\) −3.53121 −0.150435
\(552\) 0 0
\(553\) 5.19268 37.6313i 0.220815 1.60025i
\(554\) 0 0
\(555\) −4.31574 + 3.50322i −0.183193 + 0.148704i
\(556\) 0 0
\(557\) 16.5129 + 28.6012i 0.699673 + 1.21187i 0.968580 + 0.248703i \(0.0800044\pi\)
−0.268906 + 0.963166i \(0.586662\pi\)
\(558\) 0 0
\(559\) 58.5807 2.47770
\(560\) 0 0
\(561\) 15.5926 12.6570i 0.658319 0.534378i
\(562\) 0 0
\(563\) −36.8132 −1.55149 −0.775746 0.631046i \(-0.782626\pi\)
−0.775746 + 0.631046i \(0.782626\pi\)
\(564\) 0 0
\(565\) −5.72081 −0.240676
\(566\) 0 0
\(567\) −12.4725 + 20.2839i −0.523797 + 0.851843i
\(568\) 0 0
\(569\) 44.3571 1.85955 0.929774 0.368132i \(-0.120002\pi\)
0.929774 + 0.368132i \(0.120002\pi\)
\(570\) 0 0
\(571\) 42.5872 1.78222 0.891110 0.453787i \(-0.149927\pi\)
0.891110 + 0.453787i \(0.149927\pi\)
\(572\) 0 0
\(573\) −32.2741 + 26.1979i −1.34827 + 1.09443i
\(574\) 0 0
\(575\) −12.9482 −0.539977
\(576\) 0 0
\(577\) 16.3209 + 28.2687i 0.679450 + 1.17684i 0.975147 + 0.221559i \(0.0711147\pi\)
−0.295697 + 0.955282i \(0.595552\pi\)
\(578\) 0 0
\(579\) 28.6160 23.2285i 1.18924 0.965343i
\(580\) 0 0
\(581\) −18.7785 + 7.64175i −0.779063 + 0.317033i
\(582\) 0 0
\(583\) −28.1895 −1.16749
\(584\) 0 0
\(585\) 5.44285 25.9058i 0.225034 1.07107i
\(586\) 0 0
\(587\) 13.1270 + 22.7366i 0.541809 + 0.938441i 0.998800 + 0.0489701i \(0.0155939\pi\)
−0.456991 + 0.889471i \(0.651073\pi\)
\(588\) 0 0
\(589\) −2.81365 + 4.87338i −0.115934 + 0.200804i
\(590\) 0 0
\(591\) 20.0059 16.2394i 0.822934 0.668002i
\(592\) 0 0
\(593\) −2.59998 + 4.50330i −0.106768 + 0.184928i −0.914459 0.404678i \(-0.867384\pi\)
0.807691 + 0.589606i \(0.200717\pi\)
\(594\) 0 0
\(595\) 14.3627 + 11.1636i 0.588814 + 0.457663i
\(596\) 0 0
\(597\) 19.9915 + 7.64707i 0.818196 + 0.312974i
\(598\) 0 0
\(599\) −26.3675 −1.07735 −0.538673 0.842515i \(-0.681074\pi\)
−0.538673 + 0.842515i \(0.681074\pi\)
\(600\) 0 0
\(601\) −15.4505 26.7611i −0.630239 1.09161i −0.987503 0.157603i \(-0.949623\pi\)
0.357263 0.934004i \(-0.383710\pi\)
\(602\) 0 0
\(603\) 8.93021 42.5042i 0.363666 1.73091i
\(604\) 0 0
\(605\) −1.29240 + 2.23851i −0.0525436 + 0.0910082i
\(606\) 0 0
\(607\) 3.83661 + 6.64519i 0.155723 + 0.269720i 0.933322 0.359040i \(-0.116896\pi\)
−0.777599 + 0.628760i \(0.783563\pi\)
\(608\) 0 0
\(609\) 1.43568 2.61265i 0.0581765 0.105870i
\(610\) 0 0
\(611\) 11.0836 19.1973i 0.448393 0.776639i
\(612\) 0 0
\(613\) 7.97498 + 13.8131i 0.322106 + 0.557905i 0.980922 0.194399i \(-0.0622758\pi\)
−0.658816 + 0.752304i \(0.728942\pi\)
\(614\) 0 0
\(615\) −12.4605 + 10.1146i −0.502456 + 0.407859i
\(616\) 0 0
\(617\) −3.67011 + 6.35682i −0.147753 + 0.255916i −0.930397 0.366554i \(-0.880537\pi\)
0.782644 + 0.622470i \(0.213871\pi\)
\(618\) 0 0
\(619\) 10.2842 17.8127i 0.413357 0.715955i −0.581898 0.813262i \(-0.697690\pi\)
0.995254 + 0.0973072i \(0.0310229\pi\)
\(620\) 0 0
\(621\) 22.3998 34.7603i 0.898873 1.39488i
\(622\) 0 0
\(623\) 24.0981 + 18.7305i 0.965469 + 0.750421i
\(624\) 0 0
\(625\) 7.10891 + 12.3130i 0.284356 + 0.492520i
\(626\) 0 0
\(627\) −27.1975 10.4035i −1.08616 0.415476i
\(628\) 0 0
\(629\) 6.54182 0.260840
\(630\) 0 0
\(631\) 5.09394 0.202787 0.101393 0.994846i \(-0.467670\pi\)
0.101393 + 0.994846i \(0.467670\pi\)
\(632\) 0 0
\(633\) −4.72662 29.6175i −0.187866 1.17719i
\(634\) 0 0
\(635\) −9.99705 17.3154i −0.396721 0.687141i
\(636\) 0 0
\(637\) −24.0751 + 23.4832i −0.953892 + 0.930439i
\(638\) 0 0
\(639\) 3.08859 14.7005i 0.122183 0.581541i
\(640\) 0 0
\(641\) −6.31861 + 10.9442i −0.249570 + 0.432268i −0.963407 0.268044i \(-0.913623\pi\)
0.713836 + 0.700312i \(0.246956\pi\)
\(642\) 0 0
\(643\) −12.4329 + 21.5344i −0.490306 + 0.849235i −0.999938 0.0111579i \(-0.996448\pi\)
0.509632 + 0.860393i \(0.329782\pi\)
\(644\) 0 0
\(645\) −6.11247 38.3013i −0.240678 1.50811i
\(646\) 0 0
\(647\) −1.12339 1.94577i −0.0441650 0.0764960i 0.843098 0.537760i \(-0.180729\pi\)
−0.887263 + 0.461264i \(0.847396\pi\)
\(648\) 0 0
\(649\) −8.97762 + 15.5497i −0.352403 + 0.610379i
\(650\) 0 0
\(651\) −2.46175 4.06310i −0.0964835 0.159246i
\(652\) 0 0
\(653\) −1.02881 1.78195i −0.0402604 0.0697330i 0.845193 0.534461i \(-0.179485\pi\)
−0.885453 + 0.464728i \(0.846152\pi\)
\(654\) 0 0
\(655\) 14.7438 25.5370i 0.576088 0.997815i
\(656\) 0 0
\(657\) −10.3413 + 3.38697i −0.403452 + 0.132138i
\(658\) 0 0
\(659\) 4.16599 + 7.21571i 0.162284 + 0.281084i 0.935687 0.352830i \(-0.114781\pi\)
−0.773403 + 0.633914i \(0.781447\pi\)
\(660\) 0 0
\(661\) 34.0926 1.32605 0.663024 0.748598i \(-0.269273\pi\)
0.663024 + 0.748598i \(0.269273\pi\)
\(662\) 0 0
\(663\) −24.1879 + 19.6341i −0.939379 + 0.762523i
\(664\) 0 0
\(665\) 3.60543 26.1285i 0.139812 1.01322i
\(666\) 0 0
\(667\) −2.58857 + 4.48353i −0.100230 + 0.173603i
\(668\) 0 0
\(669\) 3.70427 + 1.41694i 0.143215 + 0.0547823i
\(670\) 0 0
\(671\) 7.45255 12.9082i 0.287702 0.498315i
\(672\) 0 0
\(673\) 0.571008 + 0.989016i 0.0220108 + 0.0381237i 0.876821 0.480817i \(-0.159660\pi\)
−0.854810 + 0.518941i \(0.826327\pi\)
\(674\) 0 0
\(675\) 8.44410 + 0.412697i 0.325013 + 0.0158847i
\(676\) 0 0
\(677\) 36.3812 1.39824 0.699121 0.715004i \(-0.253575\pi\)
0.699121 + 0.715004i \(0.253575\pi\)
\(678\) 0 0
\(679\) −5.12077 + 2.08386i −0.196517 + 0.0799711i
\(680\) 0 0
\(681\) −0.971817 6.08950i −0.0372401 0.233350i
\(682\) 0 0
\(683\) −3.11274 5.39142i −0.119106 0.206297i 0.800308 0.599589i \(-0.204669\pi\)
−0.919414 + 0.393292i \(0.871336\pi\)
\(684\) 0 0
\(685\) −24.6846 −0.943152
\(686\) 0 0
\(687\) −43.6138 16.6830i −1.66397 0.636496i
\(688\) 0 0
\(689\) 43.7288 1.66593
\(690\) 0 0
\(691\) 39.8259 1.51505 0.757525 0.652806i \(-0.226408\pi\)
0.757525 + 0.652806i \(0.226408\pi\)
\(692\) 0 0
\(693\) 18.7549 15.8930i 0.712440 0.603725i
\(694\) 0 0
\(695\) 14.9480 0.567008
\(696\) 0 0
\(697\) 18.8877 0.715422
\(698\) 0 0
\(699\) 5.85890 + 36.7124i 0.221604 + 1.38859i
\(700\) 0 0
\(701\) −48.3337 −1.82554 −0.912769 0.408477i \(-0.866060\pi\)
−0.912769 + 0.408477i \(0.866060\pi\)
\(702\) 0 0
\(703\) −4.74265 8.21452i −0.178873 0.309816i
\(704\) 0 0
\(705\) −13.7081 5.24357i −0.516277 0.197484i
\(706\) 0 0
\(707\) −34.3700 26.7145i −1.29262 1.00470i
\(708\) 0 0
\(709\) −16.0840 −0.604046 −0.302023 0.953301i \(-0.597662\pi\)
−0.302023 + 0.953301i \(0.597662\pi\)
\(710\) 0 0
\(711\) 8.85660 42.1539i 0.332149 1.58089i
\(712\) 0 0
\(713\) 4.12512 + 7.14491i 0.154487 + 0.267579i
\(714\) 0 0
\(715\) −13.6645 + 23.6676i −0.511023 + 0.885117i
\(716\) 0 0
\(717\) −2.54384 15.9400i −0.0950015 0.595288i
\(718\) 0 0
\(719\) −21.0734 + 36.5002i −0.785906 + 1.36123i 0.142550 + 0.989788i \(0.454470\pi\)
−0.928456 + 0.371442i \(0.878864\pi\)
\(720\) 0 0
\(721\) −18.9847 + 7.72566i −0.707026 + 0.287718i
\(722\) 0 0
\(723\) 5.51402 + 34.5514i 0.205069 + 1.28498i
\(724\) 0 0
\(725\) −1.05842 −0.0393089
\(726\) 0 0
\(727\) 12.9548 + 22.4384i 0.480467 + 0.832192i 0.999749 0.0224103i \(-0.00713401\pi\)
−0.519282 + 0.854603i \(0.673801\pi\)
\(728\) 0 0
\(729\) −15.7158 + 21.9548i −0.582068 + 0.813140i
\(730\) 0 0
\(731\) −22.8232 + 39.5310i −0.844148 + 1.46211i
\(732\) 0 0
\(733\) −10.2027 17.6716i −0.376846 0.652716i 0.613756 0.789496i \(-0.289658\pi\)
−0.990601 + 0.136780i \(0.956325\pi\)
\(734\) 0 0
\(735\) 17.8659 + 13.2906i 0.658994 + 0.490229i
\(736\) 0 0
\(737\) −22.4196 + 38.8320i −0.825838 + 1.43039i
\(738\) 0 0
\(739\) 11.8953 + 20.6033i 0.437576 + 0.757903i 0.997502 0.0706392i \(-0.0225039\pi\)
−0.559926 + 0.828542i \(0.689171\pi\)
\(740\) 0 0
\(741\) 42.1899 + 16.1383i 1.54989 + 0.592857i
\(742\) 0 0
\(743\) −21.6320 + 37.4678i −0.793603 + 1.37456i 0.130120 + 0.991498i \(0.458464\pi\)
−0.923723 + 0.383062i \(0.874870\pi\)
\(744\) 0 0
\(745\) 6.91430 11.9759i 0.253321 0.438764i
\(746\) 0 0
\(747\) −21.8465 + 7.15515i −0.799320 + 0.261793i
\(748\) 0 0
\(749\) 15.6565 + 12.1692i 0.572078 + 0.444654i
\(750\) 0 0
\(751\) −7.18465 12.4442i −0.262172 0.454095i 0.704647 0.709558i \(-0.251105\pi\)
−0.966819 + 0.255463i \(0.917772\pi\)
\(752\) 0 0
\(753\) 36.5560 29.6736i 1.33217 1.08137i
\(754\) 0 0
\(755\) −10.4176 −0.379136
\(756\) 0 0
\(757\) 39.7854 1.44603 0.723013 0.690835i \(-0.242757\pi\)
0.723013 + 0.690835i \(0.242757\pi\)
\(758\) 0 0
\(759\) −33.1465 + 26.9060i −1.20314 + 0.976626i
\(760\) 0 0
\(761\) 11.1966 + 19.3932i 0.405878 + 0.703002i 0.994423 0.105463i \(-0.0336324\pi\)
−0.588545 + 0.808464i \(0.700299\pi\)
\(762\) 0 0
\(763\) −21.1068 + 8.58924i −0.764117 + 0.310951i
\(764\) 0 0
\(765\) 15.3610 + 13.7659i 0.555378 + 0.497707i
\(766\) 0 0
\(767\) 13.9265 24.1213i 0.502856 0.870971i
\(768\) 0 0
\(769\) −1.45546 + 2.52093i −0.0524853 + 0.0909071i −0.891074 0.453857i \(-0.850048\pi\)
0.838589 + 0.544764i \(0.183381\pi\)
\(770\) 0 0
\(771\) 46.0766 + 17.6251i 1.65941 + 0.634751i
\(772\) 0 0
\(773\) −6.68612 11.5807i −0.240483 0.416529i 0.720369 0.693591i \(-0.243972\pi\)
−0.960852 + 0.277062i \(0.910639\pi\)
\(774\) 0 0
\(775\) −0.843347 + 1.46072i −0.0302939 + 0.0524706i
\(776\) 0 0
\(777\) 8.00591 0.169207i 0.287211 0.00607028i
\(778\) 0 0
\(779\) −13.6931 23.7171i −0.490606 0.849754i
\(780\) 0 0
\(781\) −7.75403 + 13.4304i −0.277461 + 0.480577i
\(782\) 0 0
\(783\) 1.83103 2.84141i 0.0654355 0.101544i
\(784\) 0 0
\(785\) 0.401073 + 0.694679i 0.0143149 + 0.0247941i
\(786\) 0 0
\(787\) 23.8528 0.850260 0.425130 0.905132i \(-0.360228\pi\)
0.425130 + 0.905132i \(0.360228\pi\)
\(788\) 0 0
\(789\) 0.982156 + 6.15428i 0.0349657 + 0.219098i
\(790\) 0 0
\(791\) 6.50696 + 5.05761i 0.231361 + 0.179828i
\(792\) 0 0
\(793\) −11.5607 + 20.0237i −0.410533 + 0.711063i
\(794\) 0 0
\(795\) −4.56279 28.5909i −0.161825 1.01401i
\(796\) 0 0
\(797\) −6.10559 + 10.5752i −0.216271 + 0.374593i −0.953665 0.300870i \(-0.902723\pi\)
0.737394 + 0.675463i \(0.236056\pi\)
\(798\) 0 0
\(799\) 8.63639 + 14.9587i 0.305533 + 0.529199i
\(800\) 0 0
\(801\) 25.7730 + 23.0967i 0.910645 + 0.816082i
\(802\) 0 0
\(803\) 11.2344 0.396452
\(804\) 0 0
\(805\) −30.5320 23.7314i −1.07611 0.836421i
\(806\) 0 0
\(807\) −36.3219 13.8937i −1.27859 0.489082i
\(808\) 0 0
\(809\) 26.7838 + 46.3910i 0.941669 + 1.63102i 0.762287 + 0.647240i \(0.224077\pi\)
0.179383 + 0.983779i \(0.442590\pi\)
\(810\) 0 0
\(811\) −1.81310 −0.0636667 −0.0318334 0.999493i \(-0.510135\pi\)
−0.0318334 + 0.999493i \(0.510135\pi\)
\(812\) 0 0
\(813\) 8.07614 + 50.6059i 0.283243 + 1.77483i
\(814\) 0 0
\(815\) −33.5229 −1.17426
\(816\) 0 0
\(817\) 66.1851 2.31552
\(818\) 0 0
\(819\) −29.0934 + 24.6539i −1.01661 + 0.861476i
\(820\) 0 0
\(821\) −39.6743 −1.38464 −0.692321 0.721590i \(-0.743412\pi\)
−0.692321 + 0.721590i \(0.743412\pi\)
\(822\) 0 0
\(823\) −16.8131 −0.586069 −0.293034 0.956102i \(-0.594665\pi\)
−0.293034 + 0.956102i \(0.594665\pi\)
\(824\) 0 0
\(825\) −8.15202 3.11828i −0.283817 0.108565i
\(826\) 0 0
\(827\) −37.2198 −1.29426 −0.647130 0.762379i \(-0.724031\pi\)
−0.647130 + 0.762379i \(0.724031\pi\)
\(828\) 0 0
\(829\) −11.4365 19.8086i −0.397206 0.687981i 0.596174 0.802855i \(-0.296687\pi\)
−0.993380 + 0.114874i \(0.963354\pi\)
\(830\) 0 0
\(831\) 5.56479 + 34.8695i 0.193041 + 1.20961i
\(832\) 0 0
\(833\) −6.46703 25.3954i −0.224069 0.879898i
\(834\) 0 0
\(835\) −2.81035 −0.0972562
\(836\) 0 0
\(837\) −2.46245 4.79100i −0.0851146 0.165601i
\(838\) 0 0
\(839\) −18.4071 31.8820i −0.635484 1.10069i −0.986412 0.164288i \(-0.947467\pi\)
0.350929 0.936402i \(-0.385866\pi\)
\(840\) 0 0
\(841\) 14.2884 24.7482i 0.492704 0.853388i
\(842\) 0 0
\(843\) 7.24643 + 2.77188i 0.249580 + 0.0954686i
\(844\) 0 0
\(845\) 9.25921 16.0374i 0.318527 0.551704i
\(846\) 0 0
\(847\) 3.44901 1.40354i 0.118509 0.0482264i
\(848\) 0 0
\(849\) 2.79282 2.26702i 0.0958495 0.0778040i
\(850\) 0 0
\(851\) −13.9065 −0.476709
\(852\) 0 0
\(853\) 6.98355 + 12.0959i 0.239112 + 0.414155i 0.960460 0.278419i \(-0.0898102\pi\)
−0.721347 + 0.692573i \(0.756477\pi\)
\(854\) 0 0
\(855\) 6.14939 29.2686i 0.210305 1.00097i
\(856\) 0 0
\(857\) −8.78386 + 15.2141i −0.300051 + 0.519703i −0.976147 0.217110i \(-0.930337\pi\)
0.676096 + 0.736813i \(0.263670\pi\)
\(858\) 0 0
\(859\) 1.42288 + 2.46451i 0.0485482 + 0.0840879i 0.889278 0.457366i \(-0.151207\pi\)
−0.840730 + 0.541454i \(0.817874\pi\)
\(860\) 0 0
\(861\) 23.1148 0.488539i 0.787751 0.0166493i
\(862\) 0 0
\(863\) 27.7115 47.9977i 0.943310 1.63386i 0.184210 0.982887i \(-0.441027\pi\)
0.759100 0.650974i \(-0.225639\pi\)
\(864\) 0 0
\(865\) 1.99221 + 3.45061i 0.0677372 + 0.117324i
\(866\) 0 0
\(867\) 0.814721 + 5.10512i 0.0276694 + 0.173379i
\(868\) 0 0
\(869\) −22.2348 + 38.5119i −0.754265 + 1.30643i
\(870\) 0 0
\(871\) 34.7783 60.2378i 1.17842 2.04108i
\(872\) 0 0
\(873\) −5.95739 + 1.95116i −0.201627 + 0.0660368i
\(874\) 0 0
\(875\) 4.40170 31.8991i 0.148805 1.07839i
\(876\) 0 0
\(877\) −27.4345 47.5179i −0.926396 1.60456i −0.789301 0.614006i \(-0.789557\pi\)
−0.137095 0.990558i \(-0.543776\pi\)
\(878\) 0 0
\(879\) −0.484420 3.03542i −0.0163391 0.102382i
\(880\) 0 0
\(881\) −51.1572 −1.72353 −0.861765 0.507307i \(-0.830641\pi\)
−0.861765 + 0.507307i \(0.830641\pi\)
\(882\) 0 0
\(883\) −38.6438 −1.30047 −0.650234 0.759734i \(-0.725329\pi\)
−0.650234 + 0.759734i \(0.725329\pi\)
\(884\) 0 0
\(885\) −17.2242 6.58854i −0.578985 0.221471i
\(886\) 0 0
\(887\) −8.92626 15.4607i −0.299714 0.519121i 0.676356 0.736575i \(-0.263558\pi\)
−0.976071 + 0.217454i \(0.930225\pi\)
\(888\) 0 0
\(889\) −3.93722 + 28.5330i −0.132050 + 0.956966i
\(890\) 0 0
\(891\) 22.4739 16.4901i 0.752903 0.552441i
\(892\) 0 0
\(893\) 12.5223 21.6893i 0.419043 0.725805i
\(894\) 0 0
\(895\) −1.98833 + 3.44388i −0.0664624 + 0.115116i
\(896\) 0 0
\(897\) 51.4182 41.7377i 1.71680 1.39358i
\(898\) 0 0
\(899\) 0.337199 + 0.584047i 0.0112462 + 0.0194790i
\(900\) 0 0
\(901\) −17.0369 + 29.5088i −0.567581 + 0.983080i
\(902\) 0 0
\(903\) −26.9087 + 48.9686i −0.895465 + 1.62957i
\(904\) 0 0
\(905\) 0.512255 + 0.887252i 0.0170279 + 0.0294932i
\(906\) 0 0
\(907\) −18.2332 + 31.5807i −0.605422 + 1.04862i 0.386563 + 0.922263i \(0.373662\pi\)
−0.991985 + 0.126358i \(0.959671\pi\)
\(908\) 0 0
\(909\) −36.7589 32.9418i −1.21921 1.09261i
\(910\) 0 0
\(911\) −18.9847 32.8825i −0.628993 1.08945i −0.987754 0.156018i \(-0.950134\pi\)
0.358762 0.933429i \(-0.383199\pi\)
\(912\) 0 0
\(913\) 23.7331 0.785451
\(914\) 0 0
\(915\) 14.2982 + 5.46931i 0.472685 + 0.180810i
\(916\) 0 0
\(917\) −39.3465 + 16.0117i −1.29934 + 0.528754i
\(918\) 0 0
\(919\) 1.21770 2.10911i 0.0401681 0.0695732i −0.845242 0.534383i \(-0.820544\pi\)
0.885411 + 0.464810i \(0.153877\pi\)
\(920\) 0 0
\(921\) 26.4000 21.4297i 0.869909 0.706132i
\(922\) 0 0
\(923\) 12.0284 20.8338i 0.395919 0.685752i
\(924\) 0 0
\(925\) −1.42153 2.46217i −0.0467398 0.0809557i
\(926\) 0 0
\(927\) −22.0863 + 7.23371i −0.725410 + 0.237586i
\(928\) 0 0
\(929\) −35.4808 −1.16409 −0.582044 0.813157i \(-0.697747\pi\)
−0.582044 + 0.813157i \(0.697747\pi\)
\(930\) 0 0
\(931\) −27.2004 + 26.5316i −0.891456 + 0.869538i
\(932\) 0 0
\(933\) −17.9069 + 14.5356i −0.586245 + 0.475874i
\(934\) 0 0
\(935\) −10.6475 18.4420i −0.348209 0.603116i
\(936\) 0 0
\(937\) −30.0427 −0.981452 −0.490726 0.871314i \(-0.663268\pi\)
−0.490726 + 0.871314i \(0.663268\pi\)
\(938\) 0 0
\(939\) −6.25698 + 5.07899i −0.204189 + 0.165746i
\(940\) 0 0
\(941\) −30.2499 −0.986119 −0.493060 0.869996i \(-0.664122\pi\)
−0.493060 + 0.869996i \(0.664122\pi\)
\(942\) 0 0
\(943\) −40.1511 −1.30750
\(944\) 0 0
\(945\) 19.1549 + 16.4494i 0.623110 + 0.535100i
\(946\) 0 0
\(947\) −33.9889 −1.10449 −0.552245 0.833682i \(-0.686229\pi\)
−0.552245 + 0.833682i \(0.686229\pi\)
\(948\) 0 0
\(949\) −17.4272 −0.565711
\(950\) 0 0
\(951\) 5.54790 4.50340i 0.179903 0.146033i
\(952\) 0 0
\(953\) −21.4324 −0.694265 −0.347132 0.937816i \(-0.612845\pi\)
−0.347132 + 0.937816i \(0.612845\pi\)
\(954\) 0 0
\(955\) 22.0385 + 38.1719i 0.713151 + 1.23521i
\(956\) 0 0
\(957\) −2.70949 + 2.19938i −0.0875854 + 0.0710958i
\(958\) 0 0
\(959\) 28.0768 + 21.8230i 0.906647 + 0.704702i
\(960\) 0 0
\(961\) −29.9253 −0.965332
\(962\) 0 0
\(963\) 16.7448 + 15.0060i 0.539592 + 0.483560i
\(964\) 0 0
\(965\) −19.5406 33.8452i −0.629033 1.08952i
\(966\) 0 0
\(967\) −12.4095 + 21.4938i −0.399061 + 0.691194i −0.993610 0.112865i \(-0.963997\pi\)
0.594549 + 0.804059i \(0.297331\pi\)
\(968\) 0 0
\(969\) −27.3277 + 22.1828i −0.877893 + 0.712613i
\(970\) 0 0
\(971\) 13.9437 24.1512i 0.447475 0.775050i −0.550746 0.834673i \(-0.685657\pi\)
0.998221 + 0.0596234i \(0.0189900\pi\)
\(972\) 0 0
\(973\) −17.0021 13.2151i −0.545062 0.423656i
\(974\) 0 0
\(975\) 12.6458 + 4.83721i 0.404988 + 0.154915i
\(976\) 0 0
\(977\) 27.2473 0.871719 0.435859 0.900015i \(-0.356445\pi\)
0.435859 + 0.900015i \(0.356445\pi\)
\(978\) 0 0
\(979\) −17.8645 30.9423i −0.570953 0.988920i
\(980\) 0 0
\(981\) −24.5552 + 8.04230i −0.783986 + 0.256771i
\(982\) 0 0
\(983\) −6.94539 + 12.0298i −0.221523 + 0.383690i −0.955271 0.295733i \(-0.904436\pi\)
0.733747 + 0.679422i \(0.237770\pi\)
\(984\) 0 0
\(985\) −13.6611 23.6618i −0.435280 0.753928i
\(986\) 0 0
\(987\) 10.9562 + 18.0831i 0.348738 + 0.575591i
\(988\) 0 0
\(989\) 48.5173 84.0344i 1.54276 2.67214i
\(990\) 0 0
\(991\) −21.3271 36.9397i −0.677479 1.17343i −0.975738 0.218942i \(-0.929739\pi\)
0.298259 0.954485i \(-0.403594\pi\)
\(992\) 0 0
\(993\) 0.0592500 0.0480950i 0.00188024 0.00152625i
\(994\) 0 0
\(995\) 11.3479 19.6551i 0.359752 0.623108i
\(996\) 0 0
\(997\) −21.5905 + 37.3959i −0.683779 + 1.18434i 0.290040 + 0.957014i \(0.406331\pi\)
−0.973819 + 0.227325i \(0.927002\pi\)
\(998\) 0 0
\(999\) 9.06905 + 0.443241i 0.286932 + 0.0140235i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.q.k.625.3 22
3.2 odd 2 3024.2.q.k.2305.4 22
4.3 odd 2 504.2.q.d.121.9 yes 22
7.4 even 3 1008.2.t.k.193.11 22
9.2 odd 6 3024.2.t.l.289.8 22
9.7 even 3 1008.2.t.k.961.11 22
12.11 even 2 1512.2.q.c.793.4 22
21.11 odd 6 3024.2.t.l.1873.8 22
28.11 odd 6 504.2.t.d.193.1 yes 22
36.7 odd 6 504.2.t.d.457.1 yes 22
36.11 even 6 1512.2.t.d.289.8 22
63.11 odd 6 3024.2.q.k.2881.4 22
63.25 even 3 inner 1008.2.q.k.529.3 22
84.11 even 6 1512.2.t.d.361.8 22
252.11 even 6 1512.2.q.c.1369.4 22
252.151 odd 6 504.2.q.d.25.9 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.q.d.25.9 22 252.151 odd 6
504.2.q.d.121.9 yes 22 4.3 odd 2
504.2.t.d.193.1 yes 22 28.11 odd 6
504.2.t.d.457.1 yes 22 36.7 odd 6
1008.2.q.k.529.3 22 63.25 even 3 inner
1008.2.q.k.625.3 22 1.1 even 1 trivial
1008.2.t.k.193.11 22 7.4 even 3
1008.2.t.k.961.11 22 9.7 even 3
1512.2.q.c.793.4 22 12.11 even 2
1512.2.q.c.1369.4 22 252.11 even 6
1512.2.t.d.289.8 22 36.11 even 6
1512.2.t.d.361.8 22 84.11 even 6
3024.2.q.k.2305.4 22 3.2 odd 2
3024.2.q.k.2881.4 22 63.11 odd 6
3024.2.t.l.289.8 22 9.2 odd 6
3024.2.t.l.1873.8 22 21.11 odd 6