Properties

Label 504.2.t.d.193.1
Level $504$
Weight $2$
Character 504.193
Analytic conductor $4.024$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [504,2,Mod(193,504)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(504, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("504.193");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.t (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.02446026187\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 193.1
Character \(\chi\) \(=\) 504.193
Dual form 504.2.t.d.457.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.61774 - 0.618811i) q^{3} -1.83657 q^{5} +(2.45061 + 0.997255i) q^{7} +(2.23415 + 2.00215i) q^{9} +O(q^{10})\) \(q+(-1.61774 - 0.618811i) q^{3} -1.83657 q^{5} +(2.45061 + 0.997255i) q^{7} +(2.23415 + 2.00215i) q^{9} -3.09719 q^{11} +(2.40225 - 4.16081i) q^{13} +(2.97109 + 1.13649i) q^{15} +(1.87185 - 3.24214i) q^{17} +(-2.71408 - 4.70093i) q^{19} +(-3.34733 - 3.12976i) q^{21} -7.95829 q^{23} -1.62701 q^{25} +(-2.37531 - 4.62146i) q^{27} +(-0.325267 - 0.563379i) q^{29} +(-0.518342 - 0.897795i) q^{31} +(5.01044 + 1.91658i) q^{33} +(-4.50072 - 1.83153i) q^{35} +(0.873712 + 1.51331i) q^{37} +(-6.46096 + 5.24456i) q^{39} +(2.52260 - 4.36927i) q^{41} +(-6.09645 - 10.5594i) q^{43} +(-4.10317 - 3.67709i) q^{45} +(2.30691 - 3.99569i) q^{47} +(5.01096 + 4.88776i) q^{49} +(-5.03443 + 4.08660i) q^{51} +(4.55082 - 7.88226i) q^{53} +5.68821 q^{55} +(1.48168 + 9.28438i) q^{57} +(2.89863 + 5.02058i) q^{59} +(2.40623 - 4.16771i) q^{61} +(3.47836 + 7.13449i) q^{63} +(-4.41190 + 7.64163i) q^{65} +(7.23870 + 12.5378i) q^{67} +(12.8744 + 4.92468i) q^{69} -5.00714 q^{71} +(-1.81364 + 3.14131i) q^{73} +(2.63207 + 1.00681i) q^{75} +(-7.59000 - 3.08869i) q^{77} +(7.17904 - 12.4345i) q^{79} +(0.982810 + 8.94618i) q^{81} +(3.83139 + 6.63616i) q^{83} +(-3.43778 + 5.95441i) q^{85} +(0.177571 + 1.11268i) q^{87} +(-5.76798 - 9.99043i) q^{89} +(10.0364 - 7.80087i) q^{91} +(0.282976 + 1.77315i) q^{93} +(4.98461 + 8.63360i) q^{95} +(-1.04480 - 1.80964i) q^{97} +(-6.91957 - 6.20103i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q + 2 q^{3} - 6 q^{5} + 7 q^{7} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 22 q + 2 q^{3} - 6 q^{5} + 7 q^{7} - 8 q^{9} + 6 q^{11} - 3 q^{13} - q^{15} + 7 q^{17} - q^{19} - 15 q^{21} - 4 q^{23} + 20 q^{25} - 4 q^{27} + 9 q^{29} - 4 q^{31} - 31 q^{33} + 14 q^{35} + 2 q^{37} + 8 q^{39} + 16 q^{41} + 22 q^{45} + 5 q^{47} - 15 q^{49} + 7 q^{51} + 11 q^{53} + 22 q^{55} + 7 q^{57} - 19 q^{59} - 13 q^{61} + 21 q^{63} + 13 q^{65} + 26 q^{67} - 4 q^{69} - 48 q^{71} - 35 q^{73} - 8 q^{75} - 4 q^{77} + 10 q^{79} - 8 q^{81} - 28 q^{83} - 20 q^{85} + 9 q^{87} + 6 q^{89} - 37 q^{91} - 32 q^{93} + 12 q^{95} - 29 q^{97} - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.61774 0.618811i −0.934001 0.357271i
\(4\) 0 0
\(5\) −1.83657 −0.821340 −0.410670 0.911784i \(-0.634705\pi\)
−0.410670 + 0.911784i \(0.634705\pi\)
\(6\) 0 0
\(7\) 2.45061 + 0.997255i 0.926243 + 0.376927i
\(8\) 0 0
\(9\) 2.23415 + 2.00215i 0.744715 + 0.667383i
\(10\) 0 0
\(11\) −3.09719 −0.933838 −0.466919 0.884300i \(-0.654636\pi\)
−0.466919 + 0.884300i \(0.654636\pi\)
\(12\) 0 0
\(13\) 2.40225 4.16081i 0.666263 1.15400i −0.312678 0.949859i \(-0.601226\pi\)
0.978941 0.204143i \(-0.0654406\pi\)
\(14\) 0 0
\(15\) 2.97109 + 1.13649i 0.767132 + 0.293441i
\(16\) 0 0
\(17\) 1.87185 3.24214i 0.453990 0.786333i −0.544640 0.838670i \(-0.683334\pi\)
0.998629 + 0.0523367i \(0.0166669\pi\)
\(18\) 0 0
\(19\) −2.71408 4.70093i −0.622654 1.07847i −0.988990 0.147985i \(-0.952721\pi\)
0.366336 0.930483i \(-0.380612\pi\)
\(20\) 0 0
\(21\) −3.34733 3.12976i −0.730447 0.682970i
\(22\) 0 0
\(23\) −7.95829 −1.65942 −0.829709 0.558197i \(-0.811493\pi\)
−0.829709 + 0.558197i \(0.811493\pi\)
\(24\) 0 0
\(25\) −1.62701 −0.325401
\(26\) 0 0
\(27\) −2.37531 4.62146i −0.457128 0.889401i
\(28\) 0 0
\(29\) −0.325267 0.563379i −0.0604006 0.104617i 0.834244 0.551396i \(-0.185904\pi\)
−0.894645 + 0.446779i \(0.852571\pi\)
\(30\) 0 0
\(31\) −0.518342 0.897795i −0.0930970 0.161249i 0.815716 0.578453i \(-0.196343\pi\)
−0.908813 + 0.417204i \(0.863010\pi\)
\(32\) 0 0
\(33\) 5.01044 + 1.91658i 0.872206 + 0.333633i
\(34\) 0 0
\(35\) −4.50072 1.83153i −0.760760 0.309585i
\(36\) 0 0
\(37\) 0.873712 + 1.51331i 0.143637 + 0.248787i 0.928864 0.370422i \(-0.120787\pi\)
−0.785226 + 0.619209i \(0.787453\pi\)
\(38\) 0 0
\(39\) −6.46096 + 5.24456i −1.03458 + 0.839802i
\(40\) 0 0
\(41\) 2.52260 4.36927i 0.393964 0.682365i −0.599005 0.800745i \(-0.704437\pi\)
0.992968 + 0.118381i \(0.0377703\pi\)
\(42\) 0 0
\(43\) −6.09645 10.5594i −0.929699 1.61029i −0.783824 0.620984i \(-0.786733\pi\)
−0.145876 0.989303i \(-0.546600\pi\)
\(44\) 0 0
\(45\) −4.10317 3.67709i −0.611664 0.548148i
\(46\) 0 0
\(47\) 2.30691 3.99569i 0.336498 0.582832i −0.647273 0.762258i \(-0.724091\pi\)
0.983771 + 0.179426i \(0.0574241\pi\)
\(48\) 0 0
\(49\) 5.01096 + 4.88776i 0.715852 + 0.698252i
\(50\) 0 0
\(51\) −5.03443 + 4.08660i −0.704961 + 0.572239i
\(52\) 0 0
\(53\) 4.55082 7.88226i 0.625104 1.08271i −0.363417 0.931626i \(-0.618390\pi\)
0.988521 0.151085i \(-0.0482766\pi\)
\(54\) 0 0
\(55\) 5.68821 0.766998
\(56\) 0 0
\(57\) 1.48168 + 9.28438i 0.196254 + 1.22975i
\(58\) 0 0
\(59\) 2.89863 + 5.02058i 0.377370 + 0.653624i 0.990679 0.136219i \(-0.0434952\pi\)
−0.613309 + 0.789843i \(0.710162\pi\)
\(60\) 0 0
\(61\) 2.40623 4.16771i 0.308086 0.533620i −0.669858 0.742489i \(-0.733645\pi\)
0.977944 + 0.208869i \(0.0669783\pi\)
\(62\) 0 0
\(63\) 3.47836 + 7.13449i 0.438233 + 0.898862i
\(64\) 0 0
\(65\) −4.41190 + 7.64163i −0.547228 + 0.947827i
\(66\) 0 0
\(67\) 7.23870 + 12.5378i 0.884348 + 1.53174i 0.846459 + 0.532454i \(0.178730\pi\)
0.0378895 + 0.999282i \(0.487937\pi\)
\(68\) 0 0
\(69\) 12.8744 + 4.92468i 1.54990 + 0.592861i
\(70\) 0 0
\(71\) −5.00714 −0.594238 −0.297119 0.954840i \(-0.596026\pi\)
−0.297119 + 0.954840i \(0.596026\pi\)
\(72\) 0 0
\(73\) −1.81364 + 3.14131i −0.212270 + 0.367662i −0.952425 0.304774i \(-0.901419\pi\)
0.740155 + 0.672437i \(0.234752\pi\)
\(74\) 0 0
\(75\) 2.63207 + 1.00681i 0.303925 + 0.116256i
\(76\) 0 0
\(77\) −7.59000 3.08869i −0.864961 0.351989i
\(78\) 0 0
\(79\) 7.17904 12.4345i 0.807705 1.39899i −0.106745 0.994286i \(-0.534043\pi\)
0.914450 0.404699i \(-0.132624\pi\)
\(80\) 0 0
\(81\) 0.982810 + 8.94618i 0.109201 + 0.994020i
\(82\) 0 0
\(83\) 3.83139 + 6.63616i 0.420550 + 0.728414i 0.995993 0.0894279i \(-0.0285038\pi\)
−0.575443 + 0.817842i \(0.695171\pi\)
\(84\) 0 0
\(85\) −3.43778 + 5.95441i −0.372880 + 0.645847i
\(86\) 0 0
\(87\) 0.177571 + 1.11268i 0.0190376 + 0.119292i
\(88\) 0 0
\(89\) −5.76798 9.99043i −0.611405 1.05898i −0.991004 0.133833i \(-0.957271\pi\)
0.379599 0.925151i \(-0.376062\pi\)
\(90\) 0 0
\(91\) 10.0364 7.80087i 1.05210 0.817753i
\(92\) 0 0
\(93\) 0.282976 + 1.77315i 0.0293432 + 0.183867i
\(94\) 0 0
\(95\) 4.98461 + 8.63360i 0.511410 + 0.885788i
\(96\) 0 0
\(97\) −1.04480 1.80964i −0.106083 0.183741i 0.808097 0.589049i \(-0.200498\pi\)
−0.914180 + 0.405308i \(0.867164\pi\)
\(98\) 0 0
\(99\) −6.91957 6.20103i −0.695443 0.623227i
\(100\) 0 0
\(101\) −16.4532 −1.63716 −0.818578 0.574395i \(-0.805237\pi\)
−0.818578 + 0.574395i \(0.805237\pi\)
\(102\) 0 0
\(103\) −7.74692 −0.763327 −0.381663 0.924301i \(-0.624649\pi\)
−0.381663 + 0.924301i \(0.624649\pi\)
\(104\) 0 0
\(105\) 6.14760 + 5.74803i 0.599945 + 0.560950i
\(106\) 0 0
\(107\) 3.74746 + 6.49080i 0.362281 + 0.627489i 0.988336 0.152290i \(-0.0486647\pi\)
−0.626055 + 0.779779i \(0.715331\pi\)
\(108\) 0 0
\(109\) −4.30644 + 7.45897i −0.412482 + 0.714440i −0.995160 0.0982628i \(-0.968671\pi\)
0.582678 + 0.812703i \(0.302005\pi\)
\(110\) 0 0
\(111\) −0.476981 2.98881i −0.0452730 0.283685i
\(112\) 0 0
\(113\) −1.55747 + 2.69762i −0.146514 + 0.253771i −0.929937 0.367719i \(-0.880139\pi\)
0.783422 + 0.621490i \(0.213472\pi\)
\(114\) 0 0
\(115\) 14.6160 1.36295
\(116\) 0 0
\(117\) 13.6975 4.48621i 1.26634 0.414750i
\(118\) 0 0
\(119\) 7.82040 6.07850i 0.716895 0.557215i
\(120\) 0 0
\(121\) −1.40741 −0.127946
\(122\) 0 0
\(123\) −6.78465 + 5.50731i −0.611751 + 0.496578i
\(124\) 0 0
\(125\) 12.1710 1.08860
\(126\) 0 0
\(127\) 10.8866 0.966033 0.483017 0.875611i \(-0.339541\pi\)
0.483017 + 0.875611i \(0.339541\pi\)
\(128\) 0 0
\(129\) 3.32820 + 20.8548i 0.293032 + 1.83616i
\(130\) 0 0
\(131\) −16.0558 −1.40280 −0.701401 0.712767i \(-0.747442\pi\)
−0.701401 + 0.712767i \(0.747442\pi\)
\(132\) 0 0
\(133\) −1.96313 14.2268i −0.170225 1.23362i
\(134\) 0 0
\(135\) 4.36242 + 8.48764i 0.375457 + 0.730500i
\(136\) 0 0
\(137\) 13.4406 1.14831 0.574155 0.818747i \(-0.305331\pi\)
0.574155 + 0.818747i \(0.305331\pi\)
\(138\) 0 0
\(139\) −4.06953 + 7.04863i −0.345173 + 0.597857i −0.985385 0.170341i \(-0.945513\pi\)
0.640212 + 0.768198i \(0.278846\pi\)
\(140\) 0 0
\(141\) −6.20456 + 5.03644i −0.522518 + 0.424144i
\(142\) 0 0
\(143\) −7.44022 + 12.8868i −0.622182 + 1.07765i
\(144\) 0 0
\(145\) 0.597376 + 1.03469i 0.0496094 + 0.0859260i
\(146\) 0 0
\(147\) −5.08182 11.0080i −0.419141 0.907921i
\(148\) 0 0
\(149\) 7.52958 0.616847 0.308424 0.951249i \(-0.400199\pi\)
0.308424 + 0.951249i \(0.400199\pi\)
\(150\) 0 0
\(151\) −5.67232 −0.461607 −0.230803 0.973000i \(-0.574135\pi\)
−0.230803 + 0.973000i \(0.574135\pi\)
\(152\) 0 0
\(153\) 10.6732 3.49569i 0.862878 0.282610i
\(154\) 0 0
\(155\) 0.951973 + 1.64886i 0.0764643 + 0.132440i
\(156\) 0 0
\(157\) −0.218381 0.378248i −0.0174287 0.0301875i 0.857179 0.515018i \(-0.172215\pi\)
−0.874608 + 0.484830i \(0.838881\pi\)
\(158\) 0 0
\(159\) −12.2397 + 9.93532i −0.970668 + 0.787922i
\(160\) 0 0
\(161\) −19.5026 7.93644i −1.53702 0.625479i
\(162\) 0 0
\(163\) 9.12649 + 15.8076i 0.714842 + 1.23814i 0.963020 + 0.269429i \(0.0868348\pi\)
−0.248178 + 0.968714i \(0.579832\pi\)
\(164\) 0 0
\(165\) −9.20203 3.51993i −0.716377 0.274026i
\(166\) 0 0
\(167\) 0.765108 1.32521i 0.0592058 0.102548i −0.834903 0.550397i \(-0.814477\pi\)
0.894109 + 0.447849i \(0.147810\pi\)
\(168\) 0 0
\(169\) −5.04157 8.73226i −0.387813 0.671713i
\(170\) 0 0
\(171\) 3.34830 15.9366i 0.256051 1.21870i
\(172\) 0 0
\(173\) −1.08474 + 1.87883i −0.0824716 + 0.142845i −0.904311 0.426874i \(-0.859615\pi\)
0.821839 + 0.569719i \(0.192948\pi\)
\(174\) 0 0
\(175\) −3.98716 1.62254i −0.301401 0.122653i
\(176\) 0 0
\(177\) −1.58244 9.91569i −0.118943 0.745309i
\(178\) 0 0
\(179\) −1.08263 + 1.87517i −0.0809195 + 0.140157i −0.903645 0.428282i \(-0.859119\pi\)
0.822726 + 0.568439i \(0.192452\pi\)
\(180\) 0 0
\(181\) 0.557838 0.0414638 0.0207319 0.999785i \(-0.493400\pi\)
0.0207319 + 0.999785i \(0.493400\pi\)
\(182\) 0 0
\(183\) −6.47167 + 5.25325i −0.478399 + 0.388332i
\(184\) 0 0
\(185\) −1.60463 2.77931i −0.117975 0.204339i
\(186\) 0 0
\(187\) −5.79747 + 10.0415i −0.423953 + 0.734308i
\(188\) 0 0
\(189\) −1.21217 13.6942i −0.0881725 0.996105i
\(190\) 0 0
\(191\) 11.9998 20.7843i 0.868277 1.50390i 0.00452179 0.999990i \(-0.498561\pi\)
0.863756 0.503911i \(-0.168106\pi\)
\(192\) 0 0
\(193\) 10.6397 + 18.4285i 0.765862 + 1.32651i 0.939790 + 0.341753i \(0.111021\pi\)
−0.173928 + 0.984758i \(0.555646\pi\)
\(194\) 0 0
\(195\) 11.8660 9.63201i 0.849743 0.689763i
\(196\) 0 0
\(197\) −14.8768 −1.05993 −0.529964 0.848020i \(-0.677795\pi\)
−0.529964 + 0.848020i \(0.677795\pi\)
\(198\) 0 0
\(199\) 6.17884 10.7021i 0.438006 0.758649i −0.559530 0.828810i \(-0.689018\pi\)
0.997536 + 0.0701616i \(0.0223515\pi\)
\(200\) 0 0
\(201\) −3.95178 24.7623i −0.278737 1.74659i
\(202\) 0 0
\(203\) −0.235270 1.70500i −0.0165127 0.119667i
\(204\) 0 0
\(205\) −4.63293 + 8.02447i −0.323578 + 0.560453i
\(206\) 0 0
\(207\) −17.7800 15.9337i −1.23579 1.10747i
\(208\) 0 0
\(209\) 8.40604 + 14.5597i 0.581458 + 1.00711i
\(210\) 0 0
\(211\) 8.65802 14.9961i 0.596043 1.03238i −0.397356 0.917664i \(-0.630072\pi\)
0.993399 0.114712i \(-0.0365944\pi\)
\(212\) 0 0
\(213\) 8.10023 + 3.09847i 0.555019 + 0.212304i
\(214\) 0 0
\(215\) 11.1966 + 19.3930i 0.763599 + 1.32259i
\(216\) 0 0
\(217\) −0.374923 2.71706i −0.0254514 0.184446i
\(218\) 0 0
\(219\) 4.87786 3.95951i 0.329615 0.267559i
\(220\) 0 0
\(221\) −8.99328 15.5768i −0.604953 1.04781i
\(222\) 0 0
\(223\) 1.14489 + 1.98301i 0.0766677 + 0.132792i 0.901810 0.432132i \(-0.142239\pi\)
−0.825143 + 0.564925i \(0.808905\pi\)
\(224\) 0 0
\(225\) −3.63497 3.25751i −0.242331 0.217167i
\(226\) 0 0
\(227\) −3.56026 −0.236303 −0.118152 0.992996i \(-0.537697\pi\)
−0.118152 + 0.992996i \(0.537697\pi\)
\(228\) 0 0
\(229\) −26.9597 −1.78155 −0.890775 0.454445i \(-0.849837\pi\)
−0.890775 + 0.454445i \(0.849837\pi\)
\(230\) 0 0
\(231\) 10.3673 + 9.69347i 0.682119 + 0.637783i
\(232\) 0 0
\(233\) 10.7321 + 18.5885i 0.703081 + 1.21777i 0.967380 + 0.253332i \(0.0815264\pi\)
−0.264298 + 0.964441i \(0.585140\pi\)
\(234\) 0 0
\(235\) −4.23681 + 7.33837i −0.276379 + 0.478703i
\(236\) 0 0
\(237\) −19.3084 + 15.6732i −1.25421 + 1.01808i
\(238\) 0 0
\(239\) 4.65970 8.07083i 0.301411 0.522059i −0.675045 0.737777i \(-0.735876\pi\)
0.976456 + 0.215718i \(0.0692091\pi\)
\(240\) 0 0
\(241\) −20.2007 −1.30124 −0.650620 0.759404i \(-0.725491\pi\)
−0.650620 + 0.759404i \(0.725491\pi\)
\(242\) 0 0
\(243\) 3.94607 15.0807i 0.253140 0.967430i
\(244\) 0 0
\(245\) −9.20299 8.97673i −0.587958 0.573502i
\(246\) 0 0
\(247\) −26.0796 −1.65940
\(248\) 0 0
\(249\) −2.09165 13.1065i −0.132553 0.830589i
\(250\) 0 0
\(251\) 27.1837 1.71582 0.857910 0.513800i \(-0.171762\pi\)
0.857910 + 0.513800i \(0.171762\pi\)
\(252\) 0 0
\(253\) 24.6483 1.54963
\(254\) 0 0
\(255\) 9.24608 7.50534i 0.579012 0.470002i
\(256\) 0 0
\(257\) 28.4821 1.77667 0.888333 0.459200i \(-0.151864\pi\)
0.888333 + 0.459200i \(0.151864\pi\)
\(258\) 0 0
\(259\) 0.631966 + 4.57985i 0.0392685 + 0.284578i
\(260\) 0 0
\(261\) 0.401274 1.90990i 0.0248383 0.118220i
\(262\) 0 0
\(263\) 3.59814 0.221871 0.110935 0.993828i \(-0.464615\pi\)
0.110935 + 0.993828i \(0.464615\pi\)
\(264\) 0 0
\(265\) −8.35791 + 14.4763i −0.513422 + 0.889274i
\(266\) 0 0
\(267\) 3.14888 + 19.7312i 0.192708 + 1.20753i
\(268\) 0 0
\(269\) 11.2261 19.4443i 0.684470 1.18554i −0.289133 0.957289i \(-0.593367\pi\)
0.973603 0.228248i \(-0.0732997\pi\)
\(270\) 0 0
\(271\) −14.7935 25.6231i −0.898642 1.55649i −0.829231 0.558906i \(-0.811221\pi\)
−0.0694115 0.997588i \(-0.522112\pi\)
\(272\) 0 0
\(273\) −21.0635 + 6.40914i −1.27482 + 0.387899i
\(274\) 0 0
\(275\) 5.03915 0.303872
\(276\) 0 0
\(277\) −20.3867 −1.22492 −0.612459 0.790503i \(-0.709819\pi\)
−0.612459 + 0.790503i \(0.709819\pi\)
\(278\) 0 0
\(279\) 0.639467 3.04360i 0.0382839 0.182216i
\(280\) 0 0
\(281\) −2.23968 3.87924i −0.133608 0.231416i 0.791457 0.611225i \(-0.209323\pi\)
−0.925065 + 0.379809i \(0.875990\pi\)
\(282\) 0 0
\(283\) −1.03840 1.79856i −0.0617264 0.106913i 0.833511 0.552503i \(-0.186327\pi\)
−0.895237 + 0.445590i \(0.852994\pi\)
\(284\) 0 0
\(285\) −2.72122 17.0514i −0.161191 1.01004i
\(286\) 0 0
\(287\) 10.5392 8.19169i 0.622108 0.483540i
\(288\) 0 0
\(289\) 1.49237 + 2.58486i 0.0877865 + 0.152051i
\(290\) 0 0
\(291\) 0.570380 + 3.57405i 0.0334362 + 0.209515i
\(292\) 0 0
\(293\) −0.887340 + 1.53692i −0.0518389 + 0.0897877i −0.890780 0.454434i \(-0.849842\pi\)
0.838942 + 0.544222i \(0.183175\pi\)
\(294\) 0 0
\(295\) −5.32355 9.22066i −0.309949 0.536847i
\(296\) 0 0
\(297\) 7.35678 + 14.3136i 0.426884 + 0.830556i
\(298\) 0 0
\(299\) −19.1178 + 33.1129i −1.10561 + 1.91497i
\(300\) 0 0
\(301\) −4.40963 31.9566i −0.254167 1.84195i
\(302\) 0 0
\(303\) 26.6170 + 10.1814i 1.52911 + 0.584908i
\(304\) 0 0
\(305\) −4.41921 + 7.65429i −0.253043 + 0.438283i
\(306\) 0 0
\(307\) 19.6315 1.12043 0.560215 0.828347i \(-0.310718\pi\)
0.560215 + 0.828347i \(0.310718\pi\)
\(308\) 0 0
\(309\) 12.5325 + 4.79388i 0.712948 + 0.272714i
\(310\) 0 0
\(311\) 6.65795 + 11.5319i 0.377538 + 0.653915i 0.990703 0.136040i \(-0.0434375\pi\)
−0.613166 + 0.789954i \(0.710104\pi\)
\(312\) 0 0
\(313\) −2.32641 + 4.02945i −0.131496 + 0.227758i −0.924254 0.381779i \(-0.875311\pi\)
0.792757 + 0.609537i \(0.208645\pi\)
\(314\) 0 0
\(315\) −6.38826 13.1030i −0.359938 0.738271i
\(316\) 0 0
\(317\) 2.06276 3.57281i 0.115856 0.200669i −0.802265 0.596967i \(-0.796372\pi\)
0.918122 + 0.396299i \(0.129705\pi\)
\(318\) 0 0
\(319\) 1.00741 + 1.74489i 0.0564044 + 0.0976953i
\(320\) 0 0
\(321\) −2.04583 12.8194i −0.114187 0.715508i
\(322\) 0 0
\(323\) −20.3214 −1.13071
\(324\) 0 0
\(325\) −3.90847 + 6.76967i −0.216803 + 0.375514i
\(326\) 0 0
\(327\) 11.5824 9.40178i 0.640507 0.519920i
\(328\) 0 0
\(329\) 9.63807 7.49130i 0.531364 0.413009i
\(330\) 0 0
\(331\) −0.0220297 + 0.0381566i −0.00121086 + 0.00209727i −0.866630 0.498951i \(-0.833719\pi\)
0.865419 + 0.501048i \(0.167052\pi\)
\(332\) 0 0
\(333\) −1.07788 + 5.13026i −0.0590673 + 0.281137i
\(334\) 0 0
\(335\) −13.2944 23.0266i −0.726350 1.25808i
\(336\) 0 0
\(337\) −13.3351 + 23.0970i −0.726407 + 1.25817i 0.231986 + 0.972719i \(0.425478\pi\)
−0.958392 + 0.285454i \(0.907856\pi\)
\(338\) 0 0
\(339\) 4.18889 3.40026i 0.227509 0.184677i
\(340\) 0 0
\(341\) 1.60541 + 2.78064i 0.0869376 + 0.150580i
\(342\) 0 0
\(343\) 7.40556 + 16.9752i 0.399863 + 0.916575i
\(344\) 0 0
\(345\) −23.6448 9.04452i −1.27299 0.486941i
\(346\) 0 0
\(347\) −5.41259 9.37488i −0.290563 0.503270i 0.683380 0.730063i \(-0.260509\pi\)
−0.973943 + 0.226793i \(0.927176\pi\)
\(348\) 0 0
\(349\) −2.69555 4.66884i −0.144290 0.249917i 0.784818 0.619726i \(-0.212756\pi\)
−0.929108 + 0.369809i \(0.879423\pi\)
\(350\) 0 0
\(351\) −24.9351 1.21868i −1.33094 0.0650483i
\(352\) 0 0
\(353\) −8.94614 −0.476155 −0.238078 0.971246i \(-0.576517\pi\)
−0.238078 + 0.971246i \(0.576517\pi\)
\(354\) 0 0
\(355\) 9.19596 0.488071
\(356\) 0 0
\(357\) −16.4128 + 4.99405i −0.868657 + 0.264313i
\(358\) 0 0
\(359\) 1.84157 + 3.18969i 0.0971942 + 0.168345i 0.910522 0.413460i \(-0.135680\pi\)
−0.813328 + 0.581805i \(0.802347\pi\)
\(360\) 0 0
\(361\) −5.23251 + 9.06297i −0.275395 + 0.476998i
\(362\) 0 0
\(363\) 2.27682 + 0.870920i 0.119502 + 0.0457114i
\(364\) 0 0
\(365\) 3.33087 5.76924i 0.174346 0.301976i
\(366\) 0 0
\(367\) −7.49976 −0.391484 −0.195742 0.980655i \(-0.562712\pi\)
−0.195742 + 0.980655i \(0.562712\pi\)
\(368\) 0 0
\(369\) 14.3838 4.71096i 0.748789 0.245243i
\(370\) 0 0
\(371\) 19.0129 14.7780i 0.987101 0.767235i
\(372\) 0 0
\(373\) 8.23833 0.426565 0.213282 0.976991i \(-0.431585\pi\)
0.213282 + 0.976991i \(0.431585\pi\)
\(374\) 0 0
\(375\) −19.6894 7.53153i −1.01676 0.388927i
\(376\) 0 0
\(377\) −3.12549 −0.160971
\(378\) 0 0
\(379\) −3.92853 −0.201795 −0.100897 0.994897i \(-0.532171\pi\)
−0.100897 + 0.994897i \(0.532171\pi\)
\(380\) 0 0
\(381\) −17.6117 6.73678i −0.902276 0.345136i
\(382\) 0 0
\(383\) 23.9265 1.22259 0.611293 0.791404i \(-0.290650\pi\)
0.611293 + 0.791404i \(0.290650\pi\)
\(384\) 0 0
\(385\) 13.9396 + 5.67260i 0.710427 + 0.289102i
\(386\) 0 0
\(387\) 7.52104 35.7971i 0.382316 1.81967i
\(388\) 0 0
\(389\) 12.6575 0.641761 0.320881 0.947120i \(-0.396021\pi\)
0.320881 + 0.947120i \(0.396021\pi\)
\(390\) 0 0
\(391\) −14.8967 + 25.8018i −0.753359 + 1.30486i
\(392\) 0 0
\(393\) 25.9741 + 9.93551i 1.31022 + 0.501180i
\(394\) 0 0
\(395\) −13.1848 + 22.8368i −0.663400 + 1.14904i
\(396\) 0 0
\(397\) −17.7703 30.7791i −0.891866 1.54476i −0.837636 0.546229i \(-0.816063\pi\)
−0.0542297 0.998528i \(-0.517270\pi\)
\(398\) 0 0
\(399\) −5.62786 + 24.2300i −0.281746 + 1.21302i
\(400\) 0 0
\(401\) −3.32332 −0.165959 −0.0829794 0.996551i \(-0.526444\pi\)
−0.0829794 + 0.996551i \(0.526444\pi\)
\(402\) 0 0
\(403\) −4.98074 −0.248109
\(404\) 0 0
\(405\) −1.80500 16.4303i −0.0896912 0.816428i
\(406\) 0 0
\(407\) −2.70605 4.68702i −0.134134 0.232327i
\(408\) 0 0
\(409\) −11.2564 19.4967i −0.556595 0.964051i −0.997777 0.0666338i \(-0.978774\pi\)
0.441182 0.897418i \(-0.354559\pi\)
\(410\) 0 0
\(411\) −21.7434 8.31720i −1.07252 0.410257i
\(412\) 0 0
\(413\) 2.09662 + 15.1942i 0.103168 + 0.747656i
\(414\) 0 0
\(415\) −7.03662 12.1878i −0.345414 0.598275i
\(416\) 0 0
\(417\) 10.9452 8.88456i 0.535989 0.435079i
\(418\) 0 0
\(419\) −3.59772 + 6.23144i −0.175760 + 0.304426i −0.940424 0.340004i \(-0.889572\pi\)
0.764664 + 0.644429i \(0.222905\pi\)
\(420\) 0 0
\(421\) 16.8121 + 29.1193i 0.819370 + 1.41919i 0.906147 + 0.422962i \(0.139010\pi\)
−0.0867773 + 0.996228i \(0.527657\pi\)
\(422\) 0 0
\(423\) 13.1539 4.30818i 0.639567 0.209471i
\(424\) 0 0
\(425\) −3.04551 + 5.27498i −0.147729 + 0.255874i
\(426\) 0 0
\(427\) 10.0530 7.81380i 0.486498 0.378136i
\(428\) 0 0
\(429\) 20.0108 16.2434i 0.966132 0.784239i
\(430\) 0 0
\(431\) 16.4871 28.5565i 0.794156 1.37552i −0.129217 0.991616i \(-0.541246\pi\)
0.923373 0.383903i \(-0.125420\pi\)
\(432\) 0 0
\(433\) 19.8977 0.956221 0.478110 0.878300i \(-0.341322\pi\)
0.478110 + 0.878300i \(0.341322\pi\)
\(434\) 0 0
\(435\) −0.326122 2.04351i −0.0156364 0.0979789i
\(436\) 0 0
\(437\) 21.5995 + 37.4114i 1.03324 + 1.78963i
\(438\) 0 0
\(439\) −14.5634 + 25.2246i −0.695074 + 1.20390i 0.275082 + 0.961421i \(0.411295\pi\)
−0.970156 + 0.242482i \(0.922038\pi\)
\(440\) 0 0
\(441\) 1.40920 + 20.9527i 0.0671046 + 0.997746i
\(442\) 0 0
\(443\) −6.88317 + 11.9220i −0.327029 + 0.566431i −0.981921 0.189292i \(-0.939381\pi\)
0.654892 + 0.755723i \(0.272714\pi\)
\(444\) 0 0
\(445\) 10.5933 + 18.3481i 0.502171 + 0.869785i
\(446\) 0 0
\(447\) −12.1809 4.65939i −0.576136 0.220382i
\(448\) 0 0
\(449\) −12.0958 −0.570838 −0.285419 0.958403i \(-0.592133\pi\)
−0.285419 + 0.958403i \(0.592133\pi\)
\(450\) 0 0
\(451\) −7.81297 + 13.5325i −0.367898 + 0.637218i
\(452\) 0 0
\(453\) 9.17632 + 3.51009i 0.431141 + 0.164919i
\(454\) 0 0
\(455\) −18.4325 + 14.3269i −0.864128 + 0.671653i
\(456\) 0 0
\(457\) 4.17738 7.23544i 0.195410 0.338459i −0.751625 0.659591i \(-0.770730\pi\)
0.947035 + 0.321131i \(0.104063\pi\)
\(458\) 0 0
\(459\) −19.4296 0.949604i −0.906897 0.0443237i
\(460\) 0 0
\(461\) 11.1673 + 19.3423i 0.520112 + 0.900860i 0.999727 + 0.0233807i \(0.00744299\pi\)
−0.479615 + 0.877479i \(0.659224\pi\)
\(462\) 0 0
\(463\) −0.0370790 + 0.0642228i −0.00172321 + 0.00298469i −0.866886 0.498507i \(-0.833882\pi\)
0.865163 + 0.501492i \(0.167215\pi\)
\(464\) 0 0
\(465\) −0.519705 3.25652i −0.0241007 0.151018i
\(466\) 0 0
\(467\) 14.5828 + 25.2581i 0.674810 + 1.16880i 0.976524 + 0.215407i \(0.0691077\pi\)
−0.301715 + 0.953398i \(0.597559\pi\)
\(468\) 0 0
\(469\) 5.23584 + 37.9441i 0.241769 + 1.75209i
\(470\) 0 0
\(471\) 0.119220 + 0.747042i 0.00549336 + 0.0344219i
\(472\) 0 0
\(473\) 18.8819 + 32.7043i 0.868189 + 1.50375i
\(474\) 0 0
\(475\) 4.41583 + 7.64845i 0.202612 + 0.350935i
\(476\) 0 0
\(477\) 25.9486 8.49869i 1.18811 0.389128i
\(478\) 0 0
\(479\) 27.9103 1.27525 0.637626 0.770346i \(-0.279917\pi\)
0.637626 + 0.770346i \(0.279917\pi\)
\(480\) 0 0
\(481\) 8.39548 0.382801
\(482\) 0 0
\(483\) 26.6390 + 24.9075i 1.21212 + 1.13333i
\(484\) 0 0
\(485\) 1.91884 + 3.32353i 0.0871301 + 0.150914i
\(486\) 0 0
\(487\) −2.14409 + 3.71367i −0.0971580 + 0.168283i −0.910507 0.413493i \(-0.864309\pi\)
0.813349 + 0.581776i \(0.197642\pi\)
\(488\) 0 0
\(489\) −4.98238 31.2200i −0.225311 1.41182i
\(490\) 0 0
\(491\) −5.22215 + 9.04503i −0.235672 + 0.408196i −0.959468 0.281818i \(-0.909063\pi\)
0.723796 + 0.690015i \(0.242396\pi\)
\(492\) 0 0
\(493\) −2.43540 −0.109685
\(494\) 0 0
\(495\) 12.7083 + 11.3886i 0.571195 + 0.511881i
\(496\) 0 0
\(497\) −12.2705 4.99339i −0.550409 0.223984i
\(498\) 0 0
\(499\) −6.12624 −0.274248 −0.137124 0.990554i \(-0.543786\pi\)
−0.137124 + 0.990554i \(0.543786\pi\)
\(500\) 0 0
\(501\) −2.05780 + 1.67038i −0.0919355 + 0.0746270i
\(502\) 0 0
\(503\) −12.4469 −0.554982 −0.277491 0.960728i \(-0.589503\pi\)
−0.277491 + 0.960728i \(0.589503\pi\)
\(504\) 0 0
\(505\) 30.2175 1.34466
\(506\) 0 0
\(507\) 2.75232 + 17.2463i 0.122235 + 0.765935i
\(508\) 0 0
\(509\) 11.8090 0.523425 0.261712 0.965146i \(-0.415713\pi\)
0.261712 + 0.965146i \(0.415713\pi\)
\(510\) 0 0
\(511\) −7.57720 + 5.88946i −0.335195 + 0.260534i
\(512\) 0 0
\(513\) −15.2784 + 23.7092i −0.674558 + 1.04679i
\(514\) 0 0
\(515\) 14.2278 0.626950
\(516\) 0 0
\(517\) −7.14495 + 12.3754i −0.314235 + 0.544271i
\(518\) 0 0
\(519\) 2.91748 2.36821i 0.128063 0.103953i
\(520\) 0 0
\(521\) 5.54828 9.60991i 0.243075 0.421018i −0.718514 0.695513i \(-0.755177\pi\)
0.961589 + 0.274495i \(0.0885107\pi\)
\(522\) 0 0
\(523\) 10.6209 + 18.3960i 0.464421 + 0.804401i 0.999175 0.0406065i \(-0.0129290\pi\)
−0.534754 + 0.845008i \(0.679596\pi\)
\(524\) 0 0
\(525\) 5.44612 + 5.09214i 0.237688 + 0.222239i
\(526\) 0 0
\(527\) −3.88103 −0.169060
\(528\) 0 0
\(529\) 40.3343 1.75367
\(530\) 0 0
\(531\) −3.57598 + 17.0202i −0.155184 + 0.738614i
\(532\) 0 0
\(533\) −12.1198 20.9921i −0.524967 0.909269i
\(534\) 0 0
\(535\) −6.88248 11.9208i −0.297556 0.515382i
\(536\) 0 0
\(537\) 2.91178 2.36359i 0.125653 0.101996i
\(538\) 0 0
\(539\) −15.5199 15.1383i −0.668490 0.652054i
\(540\) 0 0
\(541\) −6.33567 10.9737i −0.272392 0.471796i 0.697082 0.716991i \(-0.254481\pi\)
−0.969474 + 0.245195i \(0.921148\pi\)
\(542\) 0 0
\(543\) −0.902436 0.345197i −0.0387272 0.0148138i
\(544\) 0 0
\(545\) 7.90908 13.6989i 0.338788 0.586798i
\(546\) 0 0
\(547\) −21.4805 37.2053i −0.918438 1.59078i −0.801788 0.597609i \(-0.796117\pi\)
−0.116651 0.993173i \(-0.537216\pi\)
\(548\) 0 0
\(549\) 13.7202 4.49364i 0.585565 0.191784i
\(550\) 0 0
\(551\) −1.76560 + 3.05812i −0.0752173 + 0.130280i
\(552\) 0 0
\(553\) 29.9933 23.3126i 1.27545 0.991355i
\(554\) 0 0
\(555\) 0.876009 + 5.48915i 0.0371845 + 0.233002i
\(556\) 0 0
\(557\) 16.5129 28.6012i 0.699673 1.21187i −0.268906 0.963166i \(-0.586662\pi\)
0.968580 0.248703i \(-0.0800044\pi\)
\(558\) 0 0
\(559\) −58.5807 −2.47770
\(560\) 0 0
\(561\) 15.5926 12.6570i 0.658319 0.534378i
\(562\) 0 0
\(563\) −18.4066 31.8812i −0.775746 1.34363i −0.934374 0.356293i \(-0.884041\pi\)
0.158629 0.987338i \(-0.449293\pi\)
\(564\) 0 0
\(565\) 2.86040 4.95437i 0.120338 0.208432i
\(566\) 0 0
\(567\) −6.51314 + 22.9037i −0.273526 + 0.961865i
\(568\) 0 0
\(569\) −22.1786 + 38.4144i −0.929774 + 1.61042i −0.146075 + 0.989273i \(0.546664\pi\)
−0.783698 + 0.621142i \(0.786669\pi\)
\(570\) 0 0
\(571\) 21.2936 + 36.8816i 0.891110 + 1.54345i 0.838546 + 0.544831i \(0.183406\pi\)
0.0525644 + 0.998618i \(0.483261\pi\)
\(572\) 0 0
\(573\) −32.2741 + 26.1979i −1.34827 + 1.09443i
\(574\) 0 0
\(575\) 12.9482 0.539977
\(576\) 0 0
\(577\) 16.3209 28.2687i 0.679450 1.17684i −0.295697 0.955282i \(-0.595552\pi\)
0.975147 0.221559i \(-0.0711147\pi\)
\(578\) 0 0
\(579\) −5.80847 36.3964i −0.241392 1.51258i
\(580\) 0 0
\(581\) 2.77129 + 20.0835i 0.114973 + 0.833205i
\(582\) 0 0
\(583\) −14.0948 + 24.4129i −0.583746 + 1.01108i
\(584\) 0 0
\(585\) −25.1565 + 8.23924i −1.04009 + 0.340651i
\(586\) 0 0
\(587\) −13.1270 22.7366i −0.541809 0.938441i −0.998800 0.0489701i \(-0.984406\pi\)
0.456991 0.889471i \(-0.348927\pi\)
\(588\) 0 0
\(589\) −2.81365 + 4.87338i −0.115934 + 0.200804i
\(590\) 0 0
\(591\) 24.0667 + 9.20593i 0.989974 + 0.378681i
\(592\) 0 0
\(593\) −2.59998 4.50330i −0.106768 0.184928i 0.807691 0.589606i \(-0.200717\pi\)
−0.914459 + 0.404678i \(0.867384\pi\)
\(594\) 0 0
\(595\) −14.3627 + 11.1636i −0.588814 + 0.457663i
\(596\) 0 0
\(597\) −16.6183 + 13.4896i −0.680141 + 0.552092i
\(598\) 0 0
\(599\) −13.1837 22.8349i −0.538673 0.933008i −0.998976 0.0452465i \(-0.985593\pi\)
0.460303 0.887762i \(-0.347741\pi\)
\(600\) 0 0
\(601\) −15.4505 26.7611i −0.630239 1.09161i −0.987503 0.157603i \(-0.949623\pi\)
0.357263 0.934004i \(-0.383710\pi\)
\(602\) 0 0
\(603\) −8.93021 + 42.5042i −0.363666 + 1.73091i
\(604\) 0 0
\(605\) 2.58480 0.105087
\(606\) 0 0
\(607\) 7.67321 0.311446 0.155723 0.987801i \(-0.450229\pi\)
0.155723 + 0.987801i \(0.450229\pi\)
\(608\) 0 0
\(609\) −0.674467 + 2.90382i −0.0273308 + 0.117669i
\(610\) 0 0
\(611\) −11.0836 19.1973i −0.448393 0.776639i
\(612\) 0 0
\(613\) 7.97498 13.8131i 0.322106 0.557905i −0.658816 0.752304i \(-0.728942\pi\)
0.980922 + 0.194399i \(0.0622758\pi\)
\(614\) 0 0
\(615\) 12.4605 10.1146i 0.502456 0.407859i
\(616\) 0 0
\(617\) −3.67011 + 6.35682i −0.147753 + 0.255916i −0.930397 0.366554i \(-0.880537\pi\)
0.782644 + 0.622470i \(0.213871\pi\)
\(618\) 0 0
\(619\) 20.5684 0.826713 0.413357 0.910569i \(-0.364356\pi\)
0.413357 + 0.910569i \(0.364356\pi\)
\(620\) 0 0
\(621\) 18.9034 + 36.7789i 0.758566 + 1.47589i
\(622\) 0 0
\(623\) −4.17205 30.2348i −0.167150 1.21133i
\(624\) 0 0
\(625\) −14.2178 −0.568713
\(626\) 0 0
\(627\) −4.58906 28.7555i −0.183269 1.14838i
\(628\) 0 0
\(629\) 6.54182 0.260840
\(630\) 0 0
\(631\) −5.09394 −0.202787 −0.101393 0.994846i \(-0.532330\pi\)
−0.101393 + 0.994846i \(0.532330\pi\)
\(632\) 0 0
\(633\) −23.2862 + 18.9021i −0.925542 + 0.751292i
\(634\) 0 0
\(635\) −19.9941 −0.793442
\(636\) 0 0
\(637\) 32.3746 9.10807i 1.28273 0.360875i
\(638\) 0 0
\(639\) −11.1867 10.0250i −0.442538 0.396584i
\(640\) 0 0
\(641\) 12.6372 0.499140 0.249570 0.968357i \(-0.419711\pi\)
0.249570 + 0.968357i \(0.419711\pi\)
\(642\) 0 0
\(643\) 12.4329 21.5344i 0.490306 0.849235i −0.509632 0.860393i \(-0.670218\pi\)
0.999938 + 0.0111579i \(0.00355174\pi\)
\(644\) 0 0
\(645\) −6.11247 38.3013i −0.240678 1.50811i
\(646\) 0 0
\(647\) 1.12339 1.94577i 0.0441650 0.0764960i −0.843098 0.537760i \(-0.819271\pi\)
0.887263 + 0.461264i \(0.152604\pi\)
\(648\) 0 0
\(649\) −8.97762 15.5497i −0.352403 0.610379i
\(650\) 0 0
\(651\) −1.07482 + 4.62750i −0.0421256 + 0.181366i
\(652\) 0 0
\(653\) 2.05762 0.0805207 0.0402604 0.999189i \(-0.487181\pi\)
0.0402604 + 0.999189i \(0.487181\pi\)
\(654\) 0 0
\(655\) 29.4876 1.15218
\(656\) 0 0
\(657\) −10.3413 + 3.38697i −0.403452 + 0.132138i
\(658\) 0 0
\(659\) −4.16599 7.21571i −0.162284 0.281084i 0.773403 0.633914i \(-0.218553\pi\)
−0.935687 + 0.352830i \(0.885219\pi\)
\(660\) 0 0
\(661\) −17.0463 29.5251i −0.663024 1.14839i −0.979817 0.199897i \(-0.935939\pi\)
0.316793 0.948495i \(-0.397394\pi\)
\(662\) 0 0
\(663\) 4.90965 + 30.7643i 0.190675 + 1.19479i
\(664\) 0 0
\(665\) 3.60543 + 26.1285i 0.139812 + 1.01322i
\(666\) 0 0
\(667\) 2.58857 + 4.48353i 0.100230 + 0.173603i
\(668\) 0 0
\(669\) −0.625025 3.91646i −0.0241649 0.151419i
\(670\) 0 0
\(671\) −7.45255 + 12.9082i −0.287702 + 0.498315i
\(672\) 0 0
\(673\) 0.571008 + 0.989016i 0.0220108 + 0.0381237i 0.876821 0.480817i \(-0.159660\pi\)
−0.854810 + 0.518941i \(0.826327\pi\)
\(674\) 0 0
\(675\) 3.86464 + 7.51915i 0.148750 + 0.289412i
\(676\) 0 0
\(677\) −18.1906 + 31.5070i −0.699121 + 1.21091i 0.269651 + 0.962958i \(0.413092\pi\)
−0.968772 + 0.247955i \(0.920242\pi\)
\(678\) 0 0
\(679\) −0.755713 5.47665i −0.0290016 0.210174i
\(680\) 0 0
\(681\) 5.75957 + 2.20313i 0.220707 + 0.0844242i
\(682\) 0 0
\(683\) 3.11274 5.39142i 0.119106 0.206297i −0.800308 0.599589i \(-0.795331\pi\)
0.919414 + 0.393292i \(0.128664\pi\)
\(684\) 0 0
\(685\) −24.6846 −0.943152
\(686\) 0 0
\(687\) 43.6138 + 16.6830i 1.66397 + 0.636496i
\(688\) 0 0
\(689\) −21.8644 37.8702i −0.832967 1.44274i
\(690\) 0 0
\(691\) 19.9130 34.4903i 0.757525 1.31207i −0.186584 0.982439i \(-0.559742\pi\)
0.944109 0.329633i \(-0.106925\pi\)
\(692\) 0 0
\(693\) −10.7732 22.0969i −0.409238 0.839391i
\(694\) 0 0
\(695\) 7.47398 12.9453i 0.283504 0.491044i
\(696\) 0 0
\(697\) −9.44384 16.3572i −0.357711 0.619573i
\(698\) 0 0
\(699\) −5.85890 36.7124i −0.221604 1.38859i
\(700\) 0 0
\(701\) −48.3337 −1.82554 −0.912769 0.408477i \(-0.866060\pi\)
−0.912769 + 0.408477i \(0.866060\pi\)
\(702\) 0 0
\(703\) 4.74265 8.21452i 0.178873 0.309816i
\(704\) 0 0
\(705\) 11.3951 9.24977i 0.429165 0.348367i
\(706\) 0 0
\(707\) −40.3204 16.4081i −1.51640 0.617088i
\(708\) 0 0
\(709\) 8.04198 13.9291i 0.302023 0.523119i −0.674571 0.738210i \(-0.735671\pi\)
0.976594 + 0.215091i \(0.0690048\pi\)
\(710\) 0 0
\(711\) 40.9346 13.4069i 1.53517 0.502798i
\(712\) 0 0
\(713\) 4.12512 + 7.14491i 0.154487 + 0.267579i
\(714\) 0 0
\(715\) 13.6645 23.6676i 0.511023 0.885117i
\(716\) 0 0
\(717\) −12.5325 + 10.1730i −0.468034 + 0.379918i
\(718\) 0 0
\(719\) 21.0734 + 36.5002i 0.785906 + 1.36123i 0.928456 + 0.371442i \(0.121136\pi\)
−0.142550 + 0.989788i \(0.545530\pi\)
\(720\) 0 0
\(721\) −18.9847 7.72566i −0.707026 0.287718i
\(722\) 0 0
\(723\) 32.6794 + 12.5004i 1.21536 + 0.464895i
\(724\) 0 0
\(725\) 0.529212 + 0.916622i 0.0196544 + 0.0340425i
\(726\) 0 0
\(727\) −12.9548 22.4384i −0.480467 0.832192i 0.519282 0.854603i \(-0.326199\pi\)
−0.999749 + 0.0224103i \(0.992866\pi\)
\(728\) 0 0
\(729\) −15.7158 + 21.9548i −0.582068 + 0.813140i
\(730\) 0 0
\(731\) −45.6465 −1.68830
\(732\) 0 0
\(733\) 20.4054 0.753692 0.376846 0.926276i \(-0.377009\pi\)
0.376846 + 0.926276i \(0.377009\pi\)
\(734\) 0 0
\(735\) 9.33312 + 20.2169i 0.344257 + 0.745711i
\(736\) 0 0
\(737\) −22.4196 38.8320i −0.825838 1.43039i
\(738\) 0 0
\(739\) −11.8953 + 20.6033i −0.437576 + 0.757903i −0.997502 0.0706392i \(-0.977496\pi\)
0.559926 + 0.828542i \(0.310829\pi\)
\(740\) 0 0
\(741\) 42.1899 + 16.1383i 1.54989 + 0.592857i
\(742\) 0 0
\(743\) 21.6320 37.4678i 0.793603 1.37456i −0.130120 0.991498i \(-0.541536\pi\)
0.923723 0.383062i \(-0.125130\pi\)
\(744\) 0 0
\(745\) −13.8286 −0.506641
\(746\) 0 0
\(747\) −4.72670 + 22.4972i −0.172941 + 0.823128i
\(748\) 0 0
\(749\) 2.71058 + 19.6436i 0.0990426 + 0.717761i
\(750\) 0 0
\(751\) −14.3693 −0.524343 −0.262172 0.965021i \(-0.584439\pi\)
−0.262172 + 0.965021i \(0.584439\pi\)
\(752\) 0 0
\(753\) −43.9761 16.8216i −1.60258 0.613013i
\(754\) 0 0
\(755\) 10.4176 0.379136
\(756\) 0 0
\(757\) 39.7854 1.44603 0.723013 0.690835i \(-0.242757\pi\)
0.723013 + 0.690835i \(0.242757\pi\)
\(758\) 0 0
\(759\) −39.8745 15.2527i −1.44735 0.553637i
\(760\) 0 0
\(761\) −22.3933 −0.811756 −0.405878 0.913927i \(-0.633034\pi\)
−0.405878 + 0.913927i \(0.633034\pi\)
\(762\) 0 0
\(763\) −17.9919 + 13.9844i −0.651350 + 0.506269i
\(764\) 0 0
\(765\) −19.6021 + 6.42008i −0.708716 + 0.232118i
\(766\) 0 0
\(767\) 27.8529 1.00571
\(768\) 0 0
\(769\) −1.45546 + 2.52093i −0.0524853 + 0.0909071i −0.891074 0.453857i \(-0.850048\pi\)
0.838589 + 0.544764i \(0.183381\pi\)
\(770\) 0 0
\(771\) −46.0766 17.6251i −1.65941 0.634751i
\(772\) 0 0
\(773\) −6.68612 + 11.5807i −0.240483 + 0.416529i −0.960852 0.277062i \(-0.910639\pi\)
0.720369 + 0.693591i \(0.243972\pi\)
\(774\) 0 0
\(775\) 0.843347 + 1.46072i 0.0302939 + 0.0524706i
\(776\) 0 0
\(777\) 1.81171 7.80006i 0.0649947 0.279826i
\(778\) 0 0
\(779\) −27.3862 −0.981211
\(780\) 0 0
\(781\) 15.5081 0.554922
\(782\) 0 0
\(783\) −1.83103 + 2.84141i −0.0654355 + 0.101544i
\(784\) 0 0
\(785\) 0.401073 + 0.694679i 0.0143149 + 0.0247941i
\(786\) 0 0
\(787\) 11.9264 + 20.6571i 0.425130 + 0.736347i 0.996433 0.0843925i \(-0.0268950\pi\)
−0.571302 + 0.820740i \(0.693562\pi\)
\(788\) 0 0
\(789\) −5.82084 2.22657i −0.207228 0.0792680i
\(790\) 0 0
\(791\) −6.50696 + 5.05761i −0.231361 + 0.179828i
\(792\) 0 0
\(793\) −11.5607 20.0237i −0.410533 0.711063i
\(794\) 0 0
\(795\) 22.4790 18.2469i 0.797248 0.647151i
\(796\) 0 0
\(797\) −6.10559 + 10.5752i −0.216271 + 0.374593i −0.953665 0.300870i \(-0.902723\pi\)
0.737394 + 0.675463i \(0.236056\pi\)
\(798\) 0 0
\(799\) −8.63639 14.9587i −0.305533 0.529199i
\(800\) 0 0
\(801\) 7.11582 33.8684i 0.251425 1.19668i
\(802\) 0 0
\(803\) 5.61718 9.72923i 0.198226 0.343337i
\(804\) 0 0
\(805\) 35.8180 + 14.5758i 1.26242 + 0.513731i
\(806\) 0 0
\(807\) −30.1933 + 24.5088i −1.06285 + 0.862751i
\(808\) 0 0
\(809\) 26.7838 46.3910i 0.941669 1.63102i 0.179383 0.983779i \(-0.442590\pi\)
0.762287 0.647240i \(-0.224077\pi\)
\(810\) 0 0
\(811\) 1.81310 0.0636667 0.0318334 0.999493i \(-0.489865\pi\)
0.0318334 + 0.999493i \(0.489865\pi\)
\(812\) 0 0
\(813\) 8.07614 + 50.6059i 0.283243 + 1.77483i
\(814\) 0 0
\(815\) −16.7615 29.0317i −0.587128 1.01694i
\(816\) 0 0
\(817\) −33.0925 + 57.3180i −1.15776 + 2.00530i
\(818\) 0 0
\(819\) 38.0412 + 2.66599i 1.32927 + 0.0931573i
\(820\) 0 0
\(821\) 19.8371 34.3589i 0.692321 1.19913i −0.278755 0.960362i \(-0.589922\pi\)
0.971076 0.238772i \(-0.0767450\pi\)
\(822\) 0 0
\(823\) −8.40656 14.5606i −0.293034 0.507550i 0.681491 0.731826i \(-0.261332\pi\)
−0.974526 + 0.224276i \(0.927998\pi\)
\(824\) 0 0
\(825\) −8.15202 3.11828i −0.283817 0.108565i
\(826\) 0 0
\(827\) 37.2198 1.29426 0.647130 0.762379i \(-0.275969\pi\)
0.647130 + 0.762379i \(0.275969\pi\)
\(828\) 0 0
\(829\) −11.4365 + 19.8086i −0.397206 + 0.687981i −0.993380 0.114874i \(-0.963354\pi\)
0.596174 + 0.802855i \(0.296687\pi\)
\(830\) 0 0
\(831\) 32.9803 + 12.6155i 1.14407 + 0.437627i
\(832\) 0 0
\(833\) 25.2266 7.09707i 0.874048 0.245899i
\(834\) 0 0
\(835\) −1.40518 + 2.43384i −0.0486281 + 0.0842263i
\(836\) 0 0
\(837\) −2.91790 + 4.52804i −0.100858 + 0.156512i
\(838\) 0 0
\(839\) 18.4071 + 31.8820i 0.635484 + 1.10069i 0.986412 + 0.164288i \(0.0525326\pi\)
−0.350929 + 0.936402i \(0.614134\pi\)
\(840\) 0 0
\(841\) 14.2884 24.7482i 0.492704 0.853388i
\(842\) 0 0
\(843\) 1.22270 + 7.66153i 0.0421119 + 0.263877i
\(844\) 0 0
\(845\) 9.25921 + 16.0374i 0.318527 + 0.551704i
\(846\) 0 0
\(847\) −3.44901 1.40354i −0.118509 0.0482264i
\(848\) 0 0
\(849\) 0.566887 + 3.55217i 0.0194555 + 0.121910i
\(850\) 0 0
\(851\) −6.95325 12.0434i −0.238354 0.412842i
\(852\) 0 0
\(853\) 6.98355 + 12.0959i 0.239112 + 0.414155i 0.960460 0.278419i \(-0.0898102\pi\)
−0.721347 + 0.692573i \(0.756477\pi\)
\(854\) 0 0
\(855\) −6.14939 + 29.2686i −0.210305 + 1.00097i
\(856\) 0 0
\(857\) 17.5677 0.600102 0.300051 0.953923i \(-0.402996\pi\)
0.300051 + 0.953923i \(0.402996\pi\)
\(858\) 0 0
\(859\) 2.84577 0.0970963 0.0485482 0.998821i \(-0.484541\pi\)
0.0485482 + 0.998821i \(0.484541\pi\)
\(860\) 0 0
\(861\) −22.1187 + 6.73024i −0.753804 + 0.229366i
\(862\) 0 0
\(863\) −27.7115 47.9977i −0.943310 1.63386i −0.759100 0.650974i \(-0.774361\pi\)
−0.184210 0.982887i \(-0.558973\pi\)
\(864\) 0 0
\(865\) 1.99221 3.45061i 0.0677372 0.117324i
\(866\) 0 0
\(867\) −0.814721 5.10512i −0.0276694 0.173379i
\(868\) 0 0
\(869\) −22.2348 + 38.5119i −0.754265 + 1.30643i
\(870\) 0 0
\(871\) 69.5566 2.35684
\(872\) 0 0
\(873\) 1.28894 6.13483i 0.0436240 0.207633i
\(874\) 0 0
\(875\) 29.8263 + 12.1376i 1.00831 + 0.410324i
\(876\) 0 0
\(877\) 54.8689 1.85279 0.926396 0.376552i \(-0.122890\pi\)
0.926396 + 0.376552i \(0.122890\pi\)
\(878\) 0 0
\(879\) 2.38654 1.93723i 0.0804961 0.0653412i
\(880\) 0 0
\(881\) −51.1572 −1.72353 −0.861765 0.507307i \(-0.830641\pi\)
−0.861765 + 0.507307i \(0.830641\pi\)
\(882\) 0 0
\(883\) 38.6438 1.30047 0.650234 0.759734i \(-0.274671\pi\)
0.650234 + 0.759734i \(0.274671\pi\)
\(884\) 0 0
\(885\) 2.90625 + 18.2109i 0.0976927 + 0.612152i
\(886\) 0 0
\(887\) −17.8525 −0.599429 −0.299714 0.954029i \(-0.596891\pi\)
−0.299714 + 0.954029i \(0.596891\pi\)
\(888\) 0 0
\(889\) 26.6789 + 10.8568i 0.894782 + 0.364124i
\(890\) 0 0
\(891\) −3.04395 27.7080i −0.101976 0.928254i
\(892\) 0 0
\(893\) −25.0446 −0.838087
\(894\) 0 0
\(895\) 1.98833 3.44388i 0.0664624 0.115116i
\(896\) 0 0
\(897\) 51.4182 41.7377i 1.71680 1.39358i
\(898\) 0 0
\(899\) −0.337199 + 0.584047i −0.0112462 + 0.0194790i
\(900\) 0 0
\(901\) −17.0369 29.5088i −0.567581 0.983080i
\(902\) 0 0
\(903\) −12.6415 + 54.4260i −0.420681 + 1.81118i
\(904\) 0 0
\(905\) −1.02451 −0.0340559
\(906\) 0 0
\(907\) −36.4663 −1.21084 −0.605422 0.795905i \(-0.706996\pi\)
−0.605422 + 0.795905i \(0.706996\pi\)
\(908\) 0 0
\(909\) −36.7589 32.9418i −1.21921 1.09261i
\(910\) 0 0
\(911\) 18.9847 + 32.8825i 0.628993 + 1.08945i 0.987754 + 0.156018i \(0.0498658\pi\)
−0.358762 + 0.933429i \(0.616801\pi\)
\(912\) 0 0
\(913\) −11.8666 20.5535i −0.392726 0.680221i
\(914\) 0 0
\(915\) 11.8857 9.64797i 0.392928 0.318952i
\(916\) 0 0
\(917\) −39.3465 16.0117i −1.29934 0.528754i
\(918\) 0 0
\(919\) −1.21770 2.10911i −0.0401681 0.0695732i 0.845242 0.534383i \(-0.179456\pi\)
−0.885411 + 0.464810i \(0.846123\pi\)
\(920\) 0 0
\(921\) −31.7586 12.1482i −1.04648 0.400297i
\(922\) 0 0
\(923\) −12.0284 + 20.8338i −0.395919 + 0.685752i
\(924\) 0 0
\(925\) −1.42153 2.46217i −0.0467398 0.0809557i
\(926\) 0 0
\(927\) −17.3077 15.5105i −0.568461 0.509431i
\(928\) 0 0
\(929\) 17.7404 30.7273i 0.582044 1.00813i −0.413193 0.910644i \(-0.635586\pi\)
0.995237 0.0974863i \(-0.0310802\pi\)
\(930\) 0 0
\(931\) 9.37687 36.8220i 0.307314 1.20679i
\(932\) 0 0
\(933\) −3.63474 22.7756i −0.118996 0.745640i
\(934\) 0 0
\(935\) 10.6475 18.4420i 0.348209 0.603116i
\(936\) 0 0
\(937\) −30.0427 −0.981452 −0.490726 0.871314i \(-0.663268\pi\)
−0.490726 + 0.871314i \(0.663268\pi\)
\(938\) 0 0
\(939\) 6.25698 5.07899i 0.204189 0.165746i
\(940\) 0 0
\(941\) 15.1250 + 26.1972i 0.493060 + 0.854004i 0.999968 0.00799565i \(-0.00254512\pi\)
−0.506908 + 0.862000i \(0.669212\pi\)
\(942\) 0 0
\(943\) −20.0756 + 34.7719i −0.653750 + 1.13233i
\(944\) 0 0
\(945\) 2.22624 + 25.1503i 0.0724196 + 0.818141i
\(946\) 0 0
\(947\) −16.9944 + 29.4352i −0.552245 + 0.956516i 0.445868 + 0.895099i \(0.352895\pi\)
−0.998112 + 0.0614168i \(0.980438\pi\)
\(948\) 0 0
\(949\) 8.71360 + 15.0924i 0.282855 + 0.489920i
\(950\) 0 0
\(951\) −5.54790 + 4.50340i −0.179903 + 0.146033i
\(952\) 0 0
\(953\) −21.4324 −0.694265 −0.347132 0.937816i \(-0.612845\pi\)
−0.347132 + 0.937816i \(0.612845\pi\)
\(954\) 0 0
\(955\) −22.0385 + 38.1719i −0.713151 + 1.23521i
\(956\) 0 0
\(957\) −0.549972 3.44618i −0.0177781 0.111399i
\(958\) 0 0
\(959\) 32.9377 + 13.4037i 1.06361 + 0.432829i
\(960\) 0 0
\(961\) 14.9626 25.9161i 0.482666 0.836002i
\(962\) 0 0
\(963\) −4.62316 + 22.0044i −0.148979 + 0.709081i
\(964\) 0 0
\(965\) −19.5406 33.8452i −0.629033 1.08952i
\(966\) 0 0
\(967\) 12.4095 21.4938i 0.399061 0.691194i −0.594549 0.804059i \(-0.702669\pi\)
0.993610 + 0.112865i \(0.0360028\pi\)
\(968\) 0 0
\(969\) 32.8747 + 12.5751i 1.05609 + 0.403971i
\(970\) 0 0
\(971\) −13.9437 24.1512i −0.447475 0.775050i 0.550746 0.834673i \(-0.314343\pi\)
−0.998221 + 0.0596234i \(0.981010\pi\)
\(972\) 0 0
\(973\) −17.0021 + 13.2151i −0.545062 + 0.423656i
\(974\) 0 0
\(975\) 10.5120 8.53294i 0.336654 0.273273i
\(976\) 0 0
\(977\) −13.6237 23.5969i −0.435859 0.754930i 0.561506 0.827473i \(-0.310222\pi\)
−0.997365 + 0.0725422i \(0.976889\pi\)
\(978\) 0 0
\(979\) 17.8645 + 30.9423i 0.570953 + 0.988920i
\(980\) 0 0
\(981\) −24.5552 + 8.04230i −0.783986 + 0.256771i
\(982\) 0 0
\(983\) −13.8908 −0.443047 −0.221523 0.975155i \(-0.571103\pi\)
−0.221523 + 0.975155i \(0.571103\pi\)
\(984\) 0 0
\(985\) 27.3223 0.870561
\(986\) 0 0
\(987\) −20.2276 + 6.15480i −0.643850 + 0.195909i
\(988\) 0 0
\(989\) 48.5173 + 84.0344i 1.54276 + 2.67214i
\(990\) 0 0
\(991\) 21.3271 36.9397i 0.677479 1.17343i −0.298259 0.954485i \(-0.596406\pi\)
0.975738 0.218942i \(-0.0702607\pi\)
\(992\) 0 0
\(993\) 0.0592500 0.0480950i 0.00188024 0.00152625i
\(994\) 0 0
\(995\) −11.3479 + 19.6551i −0.359752 + 0.623108i
\(996\) 0 0
\(997\) 43.1810 1.36756 0.683779 0.729690i \(-0.260335\pi\)
0.683779 + 0.729690i \(0.260335\pi\)
\(998\) 0 0
\(999\) 4.91839 7.63241i 0.155611 0.241479i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.2.t.d.193.1 yes 22
3.2 odd 2 1512.2.t.d.361.8 22
4.3 odd 2 1008.2.t.k.193.11 22
7.2 even 3 504.2.q.d.121.9 yes 22
9.2 odd 6 1512.2.q.c.1369.4 22
9.7 even 3 504.2.q.d.25.9 22
12.11 even 2 3024.2.t.l.1873.8 22
21.2 odd 6 1512.2.q.c.793.4 22
28.23 odd 6 1008.2.q.k.625.3 22
36.7 odd 6 1008.2.q.k.529.3 22
36.11 even 6 3024.2.q.k.2881.4 22
63.2 odd 6 1512.2.t.d.289.8 22
63.16 even 3 inner 504.2.t.d.457.1 yes 22
84.23 even 6 3024.2.q.k.2305.4 22
252.79 odd 6 1008.2.t.k.961.11 22
252.191 even 6 3024.2.t.l.289.8 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.q.d.25.9 22 9.7 even 3
504.2.q.d.121.9 yes 22 7.2 even 3
504.2.t.d.193.1 yes 22 1.1 even 1 trivial
504.2.t.d.457.1 yes 22 63.16 even 3 inner
1008.2.q.k.529.3 22 36.7 odd 6
1008.2.q.k.625.3 22 28.23 odd 6
1008.2.t.k.193.11 22 4.3 odd 2
1008.2.t.k.961.11 22 252.79 odd 6
1512.2.q.c.793.4 22 21.2 odd 6
1512.2.q.c.1369.4 22 9.2 odd 6
1512.2.t.d.289.8 22 63.2 odd 6
1512.2.t.d.361.8 22 3.2 odd 2
3024.2.q.k.2305.4 22 84.23 even 6
3024.2.q.k.2881.4 22 36.11 even 6
3024.2.t.l.289.8 22 252.191 even 6
3024.2.t.l.1873.8 22 12.11 even 2