Properties

Label 3024.2.q.k.2881.4
Level $3024$
Weight $2$
Character 3024.2881
Analytic conductor $24.147$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3024,2,Mod(2305,3024)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3024, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3024.2305");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2881.4
Character \(\chi\) \(=\) 3024.2881
Dual form 3024.2.q.k.2305.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.918286 + 1.59052i) q^{5} +(0.361656 + 2.62092i) q^{7} +O(q^{10})\) \(q+(-0.918286 + 1.59052i) q^{5} +(0.361656 + 2.62092i) q^{7} +(1.54860 + 2.68225i) q^{11} +(2.40225 + 4.16081i) q^{13} +(-1.87185 + 3.24214i) q^{17} +(2.71408 + 4.70093i) q^{19} +(3.97914 - 6.89208i) q^{23} +(0.813503 + 1.40903i) q^{25} +(0.325267 - 0.563379i) q^{29} -1.03668 q^{31} +(-4.50072 - 1.83153i) q^{35} +(0.873712 + 1.51331i) q^{37} +(-2.52260 - 4.36927i) q^{41} +(6.09645 - 10.5594i) q^{43} -4.61383 q^{47} +(-6.73841 + 1.89574i) q^{49} +(-4.55082 + 7.88226i) q^{53} -5.68821 q^{55} -5.79727 q^{59} -4.81245 q^{61} -8.82379 q^{65} +14.4774 q^{67} -5.00714 q^{71} +(-1.81364 + 3.14131i) q^{73} +(-6.46989 + 5.02879i) q^{77} +14.3581 q^{79} +(3.83139 - 6.63616i) q^{83} +(-3.43778 - 5.95441i) q^{85} +(5.76798 + 9.99043i) q^{89} +(-10.0364 + 7.80087i) q^{91} -9.96922 q^{95} +(-1.04480 + 1.80964i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 3 q^{5} + 5 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 22 q - 3 q^{5} + 5 q^{7} - 3 q^{11} - 3 q^{13} - 7 q^{17} + q^{19} + 2 q^{23} - 10 q^{25} - 9 q^{29} - 8 q^{31} + 14 q^{35} + 2 q^{37} - 16 q^{41} - 10 q^{47} + 15 q^{49} - 11 q^{53} - 22 q^{55} + 38 q^{59} + 26 q^{61} + 26 q^{65} + 52 q^{67} - 48 q^{71} - 35 q^{73} - 17 q^{77} + 20 q^{79} - 28 q^{83} - 20 q^{85} - 6 q^{89} + 37 q^{91} - 24 q^{95} - 29 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.918286 + 1.59052i −0.410670 + 0.711301i −0.994963 0.100242i \(-0.968038\pi\)
0.584293 + 0.811543i \(0.301372\pi\)
\(6\) 0 0
\(7\) 0.361656 + 2.62092i 0.136693 + 0.990613i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.54860 + 2.68225i 0.466919 + 0.808728i 0.999286 0.0377862i \(-0.0120306\pi\)
−0.532367 + 0.846514i \(0.678697\pi\)
\(12\) 0 0
\(13\) 2.40225 + 4.16081i 0.666263 + 1.15400i 0.978941 + 0.204143i \(0.0654406\pi\)
−0.312678 + 0.949859i \(0.601226\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.87185 + 3.24214i −0.453990 + 0.786333i −0.998629 0.0523367i \(-0.983333\pi\)
0.544640 + 0.838670i \(0.316666\pi\)
\(18\) 0 0
\(19\) 2.71408 + 4.70093i 0.622654 + 1.07847i 0.988990 + 0.147985i \(0.0472788\pi\)
−0.366336 + 0.930483i \(0.619388\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.97914 6.89208i 0.829709 1.43710i −0.0685581 0.997647i \(-0.521840\pi\)
0.898267 0.439450i \(-0.144827\pi\)
\(24\) 0 0
\(25\) 0.813503 + 1.40903i 0.162701 + 0.281806i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.325267 0.563379i 0.0604006 0.104617i −0.834244 0.551396i \(-0.814096\pi\)
0.894645 + 0.446779i \(0.147429\pi\)
\(30\) 0 0
\(31\) −1.03668 −0.186194 −0.0930970 0.995657i \(-0.529677\pi\)
−0.0930970 + 0.995657i \(0.529677\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.50072 1.83153i −0.760760 0.309585i
\(36\) 0 0
\(37\) 0.873712 + 1.51331i 0.143637 + 0.248787i 0.928864 0.370422i \(-0.120787\pi\)
−0.785226 + 0.619209i \(0.787453\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.52260 4.36927i −0.393964 0.682365i 0.599005 0.800745i \(-0.295563\pi\)
−0.992968 + 0.118381i \(0.962230\pi\)
\(42\) 0 0
\(43\) 6.09645 10.5594i 0.929699 1.61029i 0.145876 0.989303i \(-0.453400\pi\)
0.783824 0.620984i \(-0.213267\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.61383 −0.672996 −0.336498 0.941684i \(-0.609243\pi\)
−0.336498 + 0.941684i \(0.609243\pi\)
\(48\) 0 0
\(49\) −6.73841 + 1.89574i −0.962630 + 0.270820i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.55082 + 7.88226i −0.625104 + 1.08271i 0.363417 + 0.931626i \(0.381610\pi\)
−0.988521 + 0.151085i \(0.951723\pi\)
\(54\) 0 0
\(55\) −5.68821 −0.766998
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5.79727 −0.754740 −0.377370 0.926063i \(-0.623172\pi\)
−0.377370 + 0.926063i \(0.623172\pi\)
\(60\) 0 0
\(61\) −4.81245 −0.616172 −0.308086 0.951359i \(-0.599688\pi\)
−0.308086 + 0.951359i \(0.599688\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −8.82379 −1.09446
\(66\) 0 0
\(67\) 14.4774 1.76870 0.884348 0.466828i \(-0.154603\pi\)
0.884348 + 0.466828i \(0.154603\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −5.00714 −0.594238 −0.297119 0.954840i \(-0.596026\pi\)
−0.297119 + 0.954840i \(0.596026\pi\)
\(72\) 0 0
\(73\) −1.81364 + 3.14131i −0.212270 + 0.367662i −0.952425 0.304774i \(-0.901419\pi\)
0.740155 + 0.672437i \(0.234752\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −6.46989 + 5.02879i −0.737312 + 0.573084i
\(78\) 0 0
\(79\) 14.3581 1.61541 0.807705 0.589587i \(-0.200710\pi\)
0.807705 + 0.589587i \(0.200710\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.83139 6.63616i 0.420550 0.728414i −0.575443 0.817842i \(-0.695171\pi\)
0.995993 + 0.0894279i \(0.0285038\pi\)
\(84\) 0 0
\(85\) −3.43778 5.95441i −0.372880 0.645847i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.76798 + 9.99043i 0.611405 + 1.05898i 0.991004 + 0.133833i \(0.0427286\pi\)
−0.379599 + 0.925151i \(0.623938\pi\)
\(90\) 0 0
\(91\) −10.0364 + 7.80087i −1.05210 + 0.817753i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −9.96922 −1.02282
\(96\) 0 0
\(97\) −1.04480 + 1.80964i −0.106083 + 0.183741i −0.914180 0.405308i \(-0.867164\pi\)
0.808097 + 0.589049i \(0.200498\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −8.22661 14.2489i −0.818578 1.41782i −0.906730 0.421712i \(-0.861429\pi\)
0.0881520 0.996107i \(-0.471904\pi\)
\(102\) 0 0
\(103\) −3.87346 + 6.70903i −0.381663 + 0.661060i −0.991300 0.131621i \(-0.957982\pi\)
0.609637 + 0.792681i \(0.291315\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.74746 + 6.49080i 0.362281 + 0.627489i 0.988336 0.152290i \(-0.0486647\pi\)
−0.626055 + 0.779779i \(0.715331\pi\)
\(108\) 0 0
\(109\) −4.30644 + 7.45897i −0.412482 + 0.714440i −0.995160 0.0982628i \(-0.968671\pi\)
0.582678 + 0.812703i \(0.302005\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.55747 + 2.69762i 0.146514 + 0.253771i 0.929937 0.367719i \(-0.119861\pi\)
−0.783422 + 0.621490i \(0.786528\pi\)
\(114\) 0 0
\(115\) 7.30798 + 12.6578i 0.681473 + 1.18035i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −9.17433 3.73342i −0.841010 0.342242i
\(120\) 0 0
\(121\) 0.703704 1.21885i 0.0639731 0.110805i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −12.1710 −1.08860
\(126\) 0 0
\(127\) −10.8866 −0.966033 −0.483017 0.875611i \(-0.660459\pi\)
−0.483017 + 0.875611i \(0.660459\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.02790 13.9047i 0.701401 1.21486i −0.266574 0.963815i \(-0.585892\pi\)
0.967975 0.251048i \(-0.0807751\pi\)
\(132\) 0 0
\(133\) −11.3392 + 8.81351i −0.983232 + 0.764228i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.72031 + 11.6399i 0.574155 + 0.994465i 0.996133 + 0.0878590i \(0.0280025\pi\)
−0.421978 + 0.906606i \(0.638664\pi\)
\(138\) 0 0
\(139\) 4.06953 + 7.04863i 0.345173 + 0.597857i 0.985385 0.170341i \(-0.0544869\pi\)
−0.640212 + 0.768198i \(0.721154\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −7.44022 + 12.8868i −0.622182 + 1.07765i
\(144\) 0 0
\(145\) 0.597376 + 1.03469i 0.0496094 + 0.0859260i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.76479 6.52081i 0.308424 0.534205i −0.669594 0.742727i \(-0.733532\pi\)
0.978018 + 0.208522i \(0.0668652\pi\)
\(150\) 0 0
\(151\) −2.83616 4.91237i −0.230803 0.399763i 0.727241 0.686382i \(-0.240802\pi\)
−0.958045 + 0.286619i \(0.907469\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.951973 1.64886i 0.0764643 0.132440i
\(156\) 0 0
\(157\) 0.436763 0.0348575 0.0174287 0.999848i \(-0.494452\pi\)
0.0174287 + 0.999848i \(0.494452\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 19.5026 + 7.93644i 1.53702 + 0.625479i
\(162\) 0 0
\(163\) −9.12649 15.8076i −0.714842 1.23814i −0.963020 0.269429i \(-0.913165\pi\)
0.248178 0.968714i \(-0.420168\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.765108 + 1.32521i 0.0592058 + 0.102548i 0.894109 0.447849i \(-0.147810\pi\)
−0.834903 + 0.550397i \(0.814477\pi\)
\(168\) 0 0
\(169\) −5.04157 + 8.73226i −0.387813 + 0.671713i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2.16949 −0.164943 −0.0824716 0.996593i \(-0.526281\pi\)
−0.0824716 + 0.996593i \(0.526281\pi\)
\(174\) 0 0
\(175\) −3.39874 + 2.64171i −0.256921 + 0.199694i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.08263 + 1.87517i −0.0809195 + 0.140157i −0.903645 0.428282i \(-0.859119\pi\)
0.822726 + 0.568439i \(0.192452\pi\)
\(180\) 0 0
\(181\) 0.557838 0.0414638 0.0207319 0.999785i \(-0.493400\pi\)
0.0207319 + 0.999785i \(0.493400\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.20927 −0.235950
\(186\) 0 0
\(187\) −11.5949 −0.847906
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −23.9997 −1.73655 −0.868277 0.496079i \(-0.834773\pi\)
−0.868277 + 0.496079i \(0.834773\pi\)
\(192\) 0 0
\(193\) −21.2794 −1.53172 −0.765862 0.643005i \(-0.777687\pi\)
−0.765862 + 0.643005i \(0.777687\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 14.8768 1.05993 0.529964 0.848020i \(-0.322205\pi\)
0.529964 + 0.848020i \(0.322205\pi\)
\(198\) 0 0
\(199\) −6.17884 + 10.7021i −0.438006 + 0.758649i −0.997536 0.0701616i \(-0.977649\pi\)
0.559530 + 0.828810i \(0.310982\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.59420 + 0.648749i 0.111891 + 0.0455332i
\(204\) 0 0
\(205\) 9.26586 0.647156
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −8.40604 + 14.5597i −0.581458 + 1.00711i
\(210\) 0 0
\(211\) −8.65802 14.9961i −0.596043 1.03238i −0.993399 0.114712i \(-0.963406\pi\)
0.397356 0.917664i \(-0.369928\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 11.1966 + 19.3930i 0.763599 + 1.32259i
\(216\) 0 0
\(217\) −0.374923 2.71706i −0.0254514 0.184446i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −17.9866 −1.20991
\(222\) 0 0
\(223\) −1.14489 + 1.98301i −0.0766677 + 0.132792i −0.901810 0.432132i \(-0.857761\pi\)
0.825143 + 0.564925i \(0.191095\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.78013 + 3.08328i 0.118152 + 0.204644i 0.919035 0.394176i \(-0.128970\pi\)
−0.800884 + 0.598820i \(0.795636\pi\)
\(228\) 0 0
\(229\) 13.4799 23.3478i 0.890775 1.54287i 0.0518260 0.998656i \(-0.483496\pi\)
0.838949 0.544211i \(-0.183171\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −10.7321 18.5885i −0.703081 1.21777i −0.967380 0.253332i \(-0.918474\pi\)
0.264298 0.964441i \(-0.414860\pi\)
\(234\) 0 0
\(235\) 4.23681 7.33837i 0.276379 0.478703i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4.65970 + 8.07083i 0.301411 + 0.522059i 0.976456 0.215718i \(-0.0692091\pi\)
−0.675045 + 0.737777i \(0.735876\pi\)
\(240\) 0 0
\(241\) 10.1003 + 17.4943i 0.650620 + 1.12691i 0.982973 + 0.183752i \(0.0588242\pi\)
−0.332353 + 0.943155i \(0.607842\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3.17258 12.4584i 0.202689 0.795937i
\(246\) 0 0
\(247\) −13.0398 + 22.5856i −0.829702 + 1.43709i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 27.1837 1.71582 0.857910 0.513800i \(-0.171762\pi\)
0.857910 + 0.513800i \(0.171762\pi\)
\(252\) 0 0
\(253\) 24.6483 1.54963
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 14.2411 24.6662i 0.888333 1.53864i 0.0464876 0.998919i \(-0.485197\pi\)
0.841845 0.539719i \(-0.181469\pi\)
\(258\) 0 0
\(259\) −3.65028 + 2.83722i −0.226818 + 0.176297i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1.79907 3.11608i −0.110935 0.192146i 0.805212 0.592987i \(-0.202051\pi\)
−0.916148 + 0.400841i \(0.868718\pi\)
\(264\) 0 0
\(265\) −8.35791 14.4763i −0.513422 0.889274i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −11.2261 + 19.4443i −0.684470 + 1.18554i 0.289133 + 0.957289i \(0.406633\pi\)
−0.973603 + 0.228248i \(0.926700\pi\)
\(270\) 0 0
\(271\) 14.7935 + 25.6231i 0.898642 + 1.55649i 0.829231 + 0.558906i \(0.188779\pi\)
0.0694115 + 0.997588i \(0.477888\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.51958 + 4.36403i −0.151936 + 0.263161i
\(276\) 0 0
\(277\) 10.1933 + 17.6554i 0.612459 + 1.06081i 0.990825 + 0.135153i \(0.0431527\pi\)
−0.378366 + 0.925656i \(0.623514\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.23968 3.87924i 0.133608 0.231416i −0.791457 0.611225i \(-0.790677\pi\)
0.925065 + 0.379809i \(0.124010\pi\)
\(282\) 0 0
\(283\) −2.07680 −0.123453 −0.0617264 0.998093i \(-0.519661\pi\)
−0.0617264 + 0.998093i \(0.519661\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 10.5392 8.19169i 0.622108 0.483540i
\(288\) 0 0
\(289\) 1.49237 + 2.58486i 0.0877865 + 0.152051i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0.887340 + 1.53692i 0.0518389 + 0.0897877i 0.890780 0.454434i \(-0.150158\pi\)
−0.838942 + 0.544222i \(0.816825\pi\)
\(294\) 0 0
\(295\) 5.32355 9.22066i 0.309949 0.536847i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 38.2355 2.21122
\(300\) 0 0
\(301\) 29.8800 + 12.1594i 1.72225 + 0.700858i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4.41921 7.65429i 0.253043 0.438283i
\(306\) 0 0
\(307\) −19.6315 −1.12043 −0.560215 0.828347i \(-0.689282\pi\)
−0.560215 + 0.828347i \(0.689282\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −13.3159 −0.755076 −0.377538 0.925994i \(-0.623229\pi\)
−0.377538 + 0.925994i \(0.623229\pi\)
\(312\) 0 0
\(313\) 4.65281 0.262992 0.131496 0.991317i \(-0.458022\pi\)
0.131496 + 0.991317i \(0.458022\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4.12552 0.231713 0.115856 0.993266i \(-0.463039\pi\)
0.115856 + 0.993266i \(0.463039\pi\)
\(318\) 0 0
\(319\) 2.01483 0.112809
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −20.3214 −1.13071
\(324\) 0 0
\(325\) −3.90847 + 6.76967i −0.216803 + 0.375514i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.66862 12.0925i −0.0919939 0.666679i
\(330\) 0 0
\(331\) −0.0440594 −0.00242172 −0.00121086 0.999999i \(-0.500385\pi\)
−0.00121086 + 0.999999i \(0.500385\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −13.2944 + 23.0266i −0.726350 + 1.25808i
\(336\) 0 0
\(337\) −13.3351 23.0970i −0.726407 1.25817i −0.958392 0.285454i \(-0.907856\pi\)
0.231986 0.972719i \(-0.425478\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.60541 2.78064i −0.0869376 0.150580i
\(342\) 0 0
\(343\) −7.40556 16.9752i −0.399863 0.916575i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10.8252 0.581126 0.290563 0.956856i \(-0.406157\pi\)
0.290563 + 0.956856i \(0.406157\pi\)
\(348\) 0 0
\(349\) −2.69555 + 4.66884i −0.144290 + 0.249917i −0.929108 0.369809i \(-0.879423\pi\)
0.784818 + 0.619726i \(0.212756\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −4.47307 7.74759i −0.238078 0.412362i 0.722085 0.691804i \(-0.243184\pi\)
−0.960163 + 0.279442i \(0.909851\pi\)
\(354\) 0 0
\(355\) 4.59798 7.96394i 0.244036 0.422682i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.84157 + 3.18969i 0.0971942 + 0.168345i 0.910522 0.413460i \(-0.135680\pi\)
−0.813328 + 0.581805i \(0.802347\pi\)
\(360\) 0 0
\(361\) −5.23251 + 9.06297i −0.275395 + 0.476998i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3.33087 5.76924i −0.174346 0.301976i
\(366\) 0 0
\(367\) −3.74988 6.49498i −0.195742 0.339035i 0.751401 0.659845i \(-0.229378\pi\)
−0.947144 + 0.320810i \(0.896045\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −22.3046 9.07666i −1.15800 0.471237i
\(372\) 0 0
\(373\) −4.11917 + 7.13461i −0.213282 + 0.369416i −0.952740 0.303787i \(-0.901749\pi\)
0.739458 + 0.673203i \(0.235082\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.12549 0.160971
\(378\) 0 0
\(379\) 3.92853 0.201795 0.100897 0.994897i \(-0.467829\pi\)
0.100897 + 0.994897i \(0.467829\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −11.9632 + 20.7210i −0.611293 + 1.05879i 0.379729 + 0.925098i \(0.376017\pi\)
−0.991023 + 0.133694i \(0.957316\pi\)
\(384\) 0 0
\(385\) −2.05718 14.9083i −0.104843 0.759799i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6.32875 + 10.9617i 0.320881 + 0.555781i 0.980670 0.195669i \(-0.0626879\pi\)
−0.659789 + 0.751451i \(0.729355\pi\)
\(390\) 0 0
\(391\) 14.8967 + 25.8018i 0.753359 + 1.30486i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −13.1848 + 22.8368i −0.663400 + 1.14904i
\(396\) 0 0
\(397\) −17.7703 30.7791i −0.891866 1.54476i −0.837636 0.546229i \(-0.816063\pi\)
−0.0542297 0.998528i \(-0.517270\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.66166 + 2.87808i −0.0829794 + 0.143724i −0.904528 0.426413i \(-0.859777\pi\)
0.821549 + 0.570138i \(0.193110\pi\)
\(402\) 0 0
\(403\) −2.49037 4.31345i −0.124054 0.214868i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −2.70605 + 4.68702i −0.134134 + 0.232327i
\(408\) 0 0
\(409\) 22.5129 1.11319 0.556595 0.830784i \(-0.312107\pi\)
0.556595 + 0.830784i \(0.312107\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2.09662 15.1942i −0.103168 0.747656i
\(414\) 0 0
\(415\) 7.03662 + 12.1878i 0.345414 + 0.598275i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −3.59772 6.23144i −0.175760 0.304426i 0.764664 0.644429i \(-0.222905\pi\)
−0.940424 + 0.340004i \(0.889572\pi\)
\(420\) 0 0
\(421\) 16.8121 29.1193i 0.819370 1.41919i −0.0867773 0.996228i \(-0.527657\pi\)
0.906147 0.422962i \(-0.139010\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −6.09102 −0.295458
\(426\) 0 0
\(427\) −1.74045 12.6130i −0.0842264 0.610388i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 16.4871 28.5565i 0.794156 1.37552i −0.129217 0.991616i \(-0.541246\pi\)
0.923373 0.383903i \(-0.125420\pi\)
\(432\) 0 0
\(433\) 19.8977 0.956221 0.478110 0.878300i \(-0.341322\pi\)
0.478110 + 0.878300i \(0.341322\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 43.1989 2.06648
\(438\) 0 0
\(439\) −29.1268 −1.39015 −0.695074 0.718938i \(-0.744628\pi\)
−0.695074 + 0.718938i \(0.744628\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 13.7663 0.654058 0.327029 0.945014i \(-0.393952\pi\)
0.327029 + 0.945014i \(0.393952\pi\)
\(444\) 0 0
\(445\) −21.1866 −1.00434
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 12.0958 0.570838 0.285419 0.958403i \(-0.407867\pi\)
0.285419 + 0.958403i \(0.407867\pi\)
\(450\) 0 0
\(451\) 7.81297 13.5325i 0.367898 0.637218i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −3.19118 23.1264i −0.149605 1.08418i
\(456\) 0 0
\(457\) −8.35476 −0.390819 −0.195410 0.980722i \(-0.562604\pi\)
−0.195410 + 0.980722i \(0.562604\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −11.1673 + 19.3423i −0.520112 + 0.900860i 0.479615 + 0.877479i \(0.340776\pi\)
−0.999727 + 0.0233807i \(0.992557\pi\)
\(462\) 0 0
\(463\) 0.0370790 + 0.0642228i 0.00172321 + 0.00298469i 0.866886 0.498507i \(-0.166118\pi\)
−0.865163 + 0.501492i \(0.832785\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 14.5828 + 25.2581i 0.674810 + 1.16880i 0.976524 + 0.215407i \(0.0691077\pi\)
−0.301715 + 0.953398i \(0.597559\pi\)
\(468\) 0 0
\(469\) 5.23584 + 37.9441i 0.241769 + 1.75209i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 37.7637 1.73638
\(474\) 0 0
\(475\) −4.41583 + 7.64845i −0.202612 + 0.350935i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −13.9551 24.1710i −0.637626 1.10440i −0.985952 0.167027i \(-0.946583\pi\)
0.348326 0.937373i \(-0.386750\pi\)
\(480\) 0 0
\(481\) −4.19774 + 7.27070i −0.191401 + 0.331515i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.91884 3.32353i −0.0871301 0.150914i
\(486\) 0 0
\(487\) 2.14409 3.71367i 0.0971580 0.168283i −0.813349 0.581776i \(-0.802358\pi\)
0.910507 + 0.413493i \(0.135691\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −5.22215 9.04503i −0.235672 0.408196i 0.723796 0.690015i \(-0.242396\pi\)
−0.959468 + 0.281818i \(0.909063\pi\)
\(492\) 0 0
\(493\) 1.21770 + 2.10912i 0.0548425 + 0.0949900i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.81086 13.1233i −0.0812282 0.588660i
\(498\) 0 0
\(499\) −3.06312 + 5.30548i −0.137124 + 0.237506i −0.926407 0.376524i \(-0.877119\pi\)
0.789283 + 0.614030i \(0.210453\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −12.4469 −0.554982 −0.277491 0.960728i \(-0.589503\pi\)
−0.277491 + 0.960728i \(0.589503\pi\)
\(504\) 0 0
\(505\) 30.2175 1.34466
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 5.90450 10.2269i 0.261712 0.453299i −0.704985 0.709222i \(-0.749046\pi\)
0.966697 + 0.255923i \(0.0823795\pi\)
\(510\) 0 0
\(511\) −8.88902 3.61731i −0.393227 0.160021i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −7.11388 12.3216i −0.313475 0.542955i
\(516\) 0 0
\(517\) −7.14495 12.3754i −0.314235 0.544271i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −5.54828 + 9.60991i −0.243075 + 0.421018i −0.961589 0.274495i \(-0.911489\pi\)
0.718514 + 0.695513i \(0.244823\pi\)
\(522\) 0 0
\(523\) −10.6209 18.3960i −0.464421 0.804401i 0.534754 0.845008i \(-0.320404\pi\)
−0.999175 + 0.0406065i \(0.987071\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.94052 3.36107i 0.0845302 0.146411i
\(528\) 0 0
\(529\) −20.1672 34.9305i −0.876833 1.51872i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 12.1198 20.9921i 0.524967 0.909269i
\(534\) 0 0
\(535\) −13.7650 −0.595111
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −15.5199 15.1383i −0.668490 0.652054i
\(540\) 0 0
\(541\) −6.33567 10.9737i −0.272392 0.471796i 0.697082 0.716991i \(-0.254481\pi\)
−0.969474 + 0.245195i \(0.921148\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −7.90908 13.6989i −0.338788 0.586798i
\(546\) 0 0
\(547\) 21.4805 37.2053i 0.918438 1.59078i 0.116651 0.993173i \(-0.462784\pi\)
0.801788 0.597609i \(-0.203883\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 3.53121 0.150435
\(552\) 0 0
\(553\) 5.19268 + 37.6313i 0.220815 + 1.60025i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −16.5129 + 28.6012i −0.699673 + 1.21187i 0.268906 + 0.963166i \(0.413338\pi\)
−0.968580 + 0.248703i \(0.919996\pi\)
\(558\) 0 0
\(559\) 58.5807 2.47770
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 36.8132 1.55149 0.775746 0.631046i \(-0.217374\pi\)
0.775746 + 0.631046i \(0.217374\pi\)
\(564\) 0 0
\(565\) −5.72081 −0.240676
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −44.3571 −1.85955 −0.929774 0.368132i \(-0.879998\pi\)
−0.929774 + 0.368132i \(0.879998\pi\)
\(570\) 0 0
\(571\) 42.5872 1.78222 0.891110 0.453787i \(-0.149927\pi\)
0.891110 + 0.453787i \(0.149927\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 12.9482 0.539977
\(576\) 0 0
\(577\) 16.3209 28.2687i 0.679450 1.17684i −0.295697 0.955282i \(-0.595552\pi\)
0.975147 0.221559i \(-0.0711147\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 18.7785 + 7.64175i 0.779063 + 0.317033i
\(582\) 0 0
\(583\) −28.1895 −1.16749
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −13.1270 + 22.7366i −0.541809 + 0.938441i 0.456991 + 0.889471i \(0.348927\pi\)
−0.998800 + 0.0489701i \(0.984406\pi\)
\(588\) 0 0
\(589\) −2.81365 4.87338i −0.115934 0.200804i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 2.59998 + 4.50330i 0.106768 + 0.184928i 0.914459 0.404678i \(-0.132616\pi\)
−0.807691 + 0.589606i \(0.799283\pi\)
\(594\) 0 0
\(595\) 14.3627 11.1636i 0.588814 0.457663i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 26.3675 1.07735 0.538673 0.842515i \(-0.318926\pi\)
0.538673 + 0.842515i \(0.318926\pi\)
\(600\) 0 0
\(601\) −15.4505 + 26.7611i −0.630239 + 1.09161i 0.357263 + 0.934004i \(0.383710\pi\)
−0.987503 + 0.157603i \(0.949623\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.29240 + 2.23851i 0.0525436 + 0.0910082i
\(606\) 0 0
\(607\) 3.83661 6.64519i 0.155723 0.269720i −0.777599 0.628760i \(-0.783563\pi\)
0.933322 + 0.359040i \(0.116896\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −11.0836 19.1973i −0.448393 0.776639i
\(612\) 0 0
\(613\) 7.97498 13.8131i 0.322106 0.557905i −0.658816 0.752304i \(-0.728942\pi\)
0.980922 + 0.194399i \(0.0622758\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3.67011 + 6.35682i 0.147753 + 0.255916i 0.930397 0.366554i \(-0.119463\pi\)
−0.782644 + 0.622470i \(0.786129\pi\)
\(618\) 0 0
\(619\) 10.2842 + 17.8127i 0.413357 + 0.715955i 0.995254 0.0973072i \(-0.0310229\pi\)
−0.581898 + 0.813262i \(0.697690\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −24.0981 + 18.7305i −0.965469 + 0.750421i
\(624\) 0 0
\(625\) 7.10891 12.3130i 0.284356 0.492520i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −6.54182 −0.260840
\(630\) 0 0
\(631\) 5.09394 0.202787 0.101393 0.994846i \(-0.467670\pi\)
0.101393 + 0.994846i \(0.467670\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 9.99705 17.3154i 0.396721 0.687141i
\(636\) 0 0
\(637\) −24.0751 23.4832i −0.953892 0.930439i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 6.31861 + 10.9442i 0.249570 + 0.432268i 0.963407 0.268044i \(-0.0863773\pi\)
−0.713836 + 0.700312i \(0.753044\pi\)
\(642\) 0 0
\(643\) −12.4329 21.5344i −0.490306 0.849235i 0.509632 0.860393i \(-0.329782\pi\)
−0.999938 + 0.0111579i \(0.996448\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.12339 1.94577i 0.0441650 0.0764960i −0.843098 0.537760i \(-0.819271\pi\)
0.887263 + 0.461264i \(0.152604\pi\)
\(648\) 0 0
\(649\) −8.97762 15.5497i −0.352403 0.610379i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.02881 1.78195i 0.0402604 0.0697330i −0.845193 0.534461i \(-0.820515\pi\)
0.885453 + 0.464728i \(0.153848\pi\)
\(654\) 0 0
\(655\) 14.7438 + 25.5370i 0.576088 + 0.997815i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −4.16599 + 7.21571i −0.162284 + 0.281084i −0.935687 0.352830i \(-0.885219\pi\)
0.773403 + 0.633914i \(0.218553\pi\)
\(660\) 0 0
\(661\) 34.0926 1.32605 0.663024 0.748598i \(-0.269273\pi\)
0.663024 + 0.748598i \(0.269273\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3.60543 26.1285i −0.139812 1.01322i
\(666\) 0 0
\(667\) −2.58857 4.48353i −0.100230 0.173603i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −7.45255 12.9082i −0.287702 0.498315i
\(672\) 0 0
\(673\) 0.571008 0.989016i 0.0220108 0.0381237i −0.854810 0.518941i \(-0.826327\pi\)
0.876821 + 0.480817i \(0.159660\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −36.3812 −1.39824 −0.699121 0.715004i \(-0.746425\pi\)
−0.699121 + 0.715004i \(0.746425\pi\)
\(678\) 0 0
\(679\) −5.12077 2.08386i −0.196517 0.0799711i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 3.11274 5.39142i 0.119106 0.206297i −0.800308 0.599589i \(-0.795331\pi\)
0.919414 + 0.393292i \(0.128664\pi\)
\(684\) 0 0
\(685\) −24.6846 −0.943152
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −43.7288 −1.66593
\(690\) 0 0
\(691\) 39.8259 1.51505 0.757525 0.652806i \(-0.226408\pi\)
0.757525 + 0.652806i \(0.226408\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −14.9480 −0.567008
\(696\) 0 0
\(697\) 18.8877 0.715422
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 48.3337 1.82554 0.912769 0.408477i \(-0.133940\pi\)
0.912769 + 0.408477i \(0.133940\pi\)
\(702\) 0 0
\(703\) −4.74265 + 8.21452i −0.178873 + 0.309816i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 34.3700 26.7145i 1.29262 1.00470i
\(708\) 0 0
\(709\) −16.0840 −0.604046 −0.302023 0.953301i \(-0.597662\pi\)
−0.302023 + 0.953301i \(0.597662\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −4.12512 + 7.14491i −0.154487 + 0.267579i
\(714\) 0 0
\(715\) −13.6645 23.6676i −0.511023 0.885117i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 21.0734 + 36.5002i 0.785906 + 1.36123i 0.928456 + 0.371442i \(0.121136\pi\)
−0.142550 + 0.989788i \(0.545530\pi\)
\(720\) 0 0
\(721\) −18.9847 7.72566i −0.707026 0.287718i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.05842 0.0393089
\(726\) 0 0
\(727\) 12.9548 22.4384i 0.480467 0.832192i −0.519282 0.854603i \(-0.673801\pi\)
0.999749 + 0.0224103i \(0.00713401\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 22.8232 + 39.5310i 0.844148 + 1.46211i
\(732\) 0 0
\(733\) −10.2027 + 17.6716i −0.376846 + 0.652716i −0.990601 0.136780i \(-0.956325\pi\)
0.613756 + 0.789496i \(0.289658\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 22.4196 + 38.8320i 0.825838 + 1.43039i
\(738\) 0 0
\(739\) 11.8953 20.6033i 0.437576 0.757903i −0.559926 0.828542i \(-0.689171\pi\)
0.997502 + 0.0706392i \(0.0225039\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 21.6320 + 37.4678i 0.793603 + 1.37456i 0.923723 + 0.383062i \(0.125130\pi\)
−0.130120 + 0.991498i \(0.541536\pi\)
\(744\) 0 0
\(745\) 6.91430 + 11.9759i 0.253321 + 0.438764i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −15.6565 + 12.1692i −0.572078 + 0.444654i
\(750\) 0 0
\(751\) −7.18465 + 12.4442i −0.262172 + 0.454095i −0.966819 0.255463i \(-0.917772\pi\)
0.704647 + 0.709558i \(0.251105\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 10.4176 0.379136
\(756\) 0 0
\(757\) 39.7854 1.44603 0.723013 0.690835i \(-0.242757\pi\)
0.723013 + 0.690835i \(0.242757\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −11.1966 + 19.3932i −0.405878 + 0.703002i −0.994423 0.105463i \(-0.966368\pi\)
0.588545 + 0.808464i \(0.299701\pi\)
\(762\) 0 0
\(763\) −21.1068 8.58924i −0.764117 0.310951i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −13.9265 24.1213i −0.502856 0.870971i
\(768\) 0 0
\(769\) −1.45546 2.52093i −0.0524853 0.0909071i 0.838589 0.544764i \(-0.183381\pi\)
−0.891074 + 0.453857i \(0.850048\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 6.68612 11.5807i 0.240483 0.416529i −0.720369 0.693591i \(-0.756028\pi\)
0.960852 + 0.277062i \(0.0893609\pi\)
\(774\) 0 0
\(775\) −0.843347 1.46072i −0.0302939 0.0524706i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 13.6931 23.7171i 0.490606 0.849754i
\(780\) 0 0
\(781\) −7.75403 13.4304i −0.277461 0.480577i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −0.401073 + 0.694679i −0.0143149 + 0.0247941i
\(786\) 0 0
\(787\) 23.8528 0.850260 0.425130 0.905132i \(-0.360228\pi\)
0.425130 + 0.905132i \(0.360228\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −6.50696 + 5.05761i −0.231361 + 0.179828i
\(792\) 0 0
\(793\) −11.5607 20.0237i −0.410533 0.711063i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 6.10559 + 10.5752i 0.216271 + 0.374593i 0.953665 0.300870i \(-0.0972772\pi\)
−0.737394 + 0.675463i \(0.763944\pi\)
\(798\) 0 0
\(799\) 8.63639 14.9587i 0.305533 0.529199i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −11.2344 −0.396452
\(804\) 0 0
\(805\) −30.5320 + 23.7314i −1.07611 + 0.836421i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −26.7838 + 46.3910i −0.941669 + 1.63102i −0.179383 + 0.983779i \(0.557410\pi\)
−0.762287 + 0.647240i \(0.775923\pi\)
\(810\) 0 0
\(811\) −1.81310 −0.0636667 −0.0318334 0.999493i \(-0.510135\pi\)
−0.0318334 + 0.999493i \(0.510135\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 33.5229 1.17426
\(816\) 0 0
\(817\) 66.1851 2.31552
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 39.6743 1.38464 0.692321 0.721590i \(-0.256588\pi\)
0.692321 + 0.721590i \(0.256588\pi\)
\(822\) 0 0
\(823\) −16.8131 −0.586069 −0.293034 0.956102i \(-0.594665\pi\)
−0.293034 + 0.956102i \(0.594665\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 37.2198 1.29426 0.647130 0.762379i \(-0.275969\pi\)
0.647130 + 0.762379i \(0.275969\pi\)
\(828\) 0 0
\(829\) −11.4365 + 19.8086i −0.397206 + 0.687981i −0.993380 0.114874i \(-0.963354\pi\)
0.596174 + 0.802855i \(0.296687\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 6.46703 25.3954i 0.224069 0.879898i
\(834\) 0 0
\(835\) −2.81035 −0.0972562
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 18.4071 31.8820i 0.635484 1.10069i −0.350929 0.936402i \(-0.614134\pi\)
0.986412 0.164288i \(-0.0525326\pi\)
\(840\) 0 0
\(841\) 14.2884 + 24.7482i 0.492704 + 0.853388i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −9.25921 16.0374i −0.318527 0.551704i
\(846\) 0 0
\(847\) 3.44901 + 1.40354i 0.118509 + 0.0482264i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 13.9065 0.476709
\(852\) 0 0
\(853\) 6.98355 12.0959i 0.239112 0.414155i −0.721347 0.692573i \(-0.756477\pi\)
0.960460 + 0.278419i \(0.0898102\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 8.78386 + 15.2141i 0.300051 + 0.519703i 0.976147 0.217110i \(-0.0696630\pi\)
−0.676096 + 0.736813i \(0.736330\pi\)
\(858\) 0 0
\(859\) 1.42288 2.46451i 0.0485482 0.0840879i −0.840730 0.541454i \(-0.817874\pi\)
0.889278 + 0.457366i \(0.151207\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −27.7115 47.9977i −0.943310 1.63386i −0.759100 0.650974i \(-0.774361\pi\)
−0.184210 0.982887i \(-0.558973\pi\)
\(864\) 0 0
\(865\) 1.99221 3.45061i 0.0677372 0.117324i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 22.2348 + 38.5119i 0.754265 + 1.30643i
\(870\) 0 0
\(871\) 34.7783 + 60.2378i 1.17842 + 2.04108i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −4.40170 31.8991i −0.148805 1.07839i
\(876\) 0 0
\(877\) −27.4345 + 47.5179i −0.926396 + 1.60456i −0.137095 + 0.990558i \(0.543776\pi\)
−0.789301 + 0.614006i \(0.789557\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 51.1572 1.72353 0.861765 0.507307i \(-0.169359\pi\)
0.861765 + 0.507307i \(0.169359\pi\)
\(882\) 0 0
\(883\) −38.6438 −1.30047 −0.650234 0.759734i \(-0.725329\pi\)
−0.650234 + 0.759734i \(0.725329\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 8.92626 15.4607i 0.299714 0.519121i −0.676356 0.736575i \(-0.736442\pi\)
0.976071 + 0.217454i \(0.0697752\pi\)
\(888\) 0 0
\(889\) −3.93722 28.5330i −0.132050 0.956966i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −12.5223 21.6893i −0.419043 0.725805i
\(894\) 0 0
\(895\) −1.98833 3.44388i −0.0664624 0.115116i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −0.337199 + 0.584047i −0.0112462 + 0.0194790i
\(900\) 0 0
\(901\) −17.0369 29.5088i −0.567581 0.983080i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −0.512255 + 0.887252i −0.0170279 + 0.0294932i
\(906\) 0 0
\(907\) −18.2332 31.5807i −0.605422 1.04862i −0.991985 0.126358i \(-0.959671\pi\)
0.386563 0.922263i \(-0.373662\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 18.9847 32.8825i 0.628993 1.08945i −0.358762 0.933429i \(-0.616801\pi\)
0.987754 0.156018i \(-0.0498658\pi\)
\(912\) 0 0
\(913\) 23.7331 0.785451
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 39.3465 + 16.0117i 1.29934 + 0.528754i
\(918\) 0 0
\(919\) 1.21770 + 2.10911i 0.0401681 + 0.0695732i 0.885411 0.464810i \(-0.153877\pi\)
−0.845242 + 0.534383i \(0.820544\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −12.0284 20.8338i −0.395919 0.685752i
\(924\) 0 0
\(925\) −1.42153 + 2.46217i −0.0467398 + 0.0809557i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 35.4808 1.16409 0.582044 0.813157i \(-0.302253\pi\)
0.582044 + 0.813157i \(0.302253\pi\)
\(930\) 0 0
\(931\) −27.2004 26.5316i −0.891456 0.869538i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 10.6475 18.4420i 0.348209 0.603116i
\(936\) 0 0
\(937\) −30.0427 −0.981452 −0.490726 0.871314i \(-0.663268\pi\)
−0.490726 + 0.871314i \(0.663268\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 30.2499 0.986119 0.493060 0.869996i \(-0.335878\pi\)
0.493060 + 0.869996i \(0.335878\pi\)
\(942\) 0 0
\(943\) −40.1511 −1.30750
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 33.9889 1.10449 0.552245 0.833682i \(-0.313771\pi\)
0.552245 + 0.833682i \(0.313771\pi\)
\(948\) 0 0
\(949\) −17.4272 −0.565711
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 21.4324 0.694265 0.347132 0.937816i \(-0.387155\pi\)
0.347132 + 0.937816i \(0.387155\pi\)
\(954\) 0 0
\(955\) 22.0385 38.1719i 0.713151 1.23521i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −28.0768 + 21.8230i −0.906647 + 0.704702i
\(960\) 0 0
\(961\) −29.9253 −0.965332
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 19.5406 33.8452i 0.629033 1.08952i
\(966\) 0 0
\(967\) −12.4095 21.4938i −0.399061 0.691194i 0.594549 0.804059i \(-0.297331\pi\)
−0.993610 + 0.112865i \(0.963997\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −13.9437 24.1512i −0.447475 0.775050i 0.550746 0.834673i \(-0.314343\pi\)
−0.998221 + 0.0596234i \(0.981010\pi\)
\(972\) 0 0
\(973\) −17.0021 + 13.2151i −0.545062 + 0.423656i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −27.2473 −0.871719 −0.435859 0.900015i \(-0.643555\pi\)
−0.435859 + 0.900015i \(0.643555\pi\)
\(978\) 0 0
\(979\) −17.8645 + 30.9423i −0.570953 + 0.988920i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 6.94539 + 12.0298i 0.221523 + 0.383690i 0.955271 0.295733i \(-0.0955637\pi\)
−0.733747 + 0.679422i \(0.762230\pi\)
\(984\) 0 0
\(985\) −13.6611 + 23.6618i −0.435280 + 0.753928i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −48.5173 84.0344i −1.54276 2.67214i
\(990\) 0 0
\(991\) −21.3271 + 36.9397i −0.677479 + 1.17343i 0.298259 + 0.954485i \(0.403594\pi\)
−0.975738 + 0.218942i \(0.929739\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −11.3479 19.6551i −0.359752 0.623108i
\(996\) 0 0
\(997\) −21.5905 37.3959i −0.683779 1.18434i −0.973819 0.227325i \(-0.927002\pi\)
0.290040 0.957014i \(-0.406331\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.q.k.2881.4 22
3.2 odd 2 1008.2.q.k.529.3 22
4.3 odd 2 1512.2.q.c.1369.4 22
7.2 even 3 3024.2.t.l.289.8 22
9.4 even 3 3024.2.t.l.1873.8 22
9.5 odd 6 1008.2.t.k.193.11 22
12.11 even 2 504.2.q.d.25.9 22
21.2 odd 6 1008.2.t.k.961.11 22
28.23 odd 6 1512.2.t.d.289.8 22
36.23 even 6 504.2.t.d.193.1 yes 22
36.31 odd 6 1512.2.t.d.361.8 22
63.23 odd 6 1008.2.q.k.625.3 22
63.58 even 3 inner 3024.2.q.k.2305.4 22
84.23 even 6 504.2.t.d.457.1 yes 22
252.23 even 6 504.2.q.d.121.9 yes 22
252.247 odd 6 1512.2.q.c.793.4 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.q.d.25.9 22 12.11 even 2
504.2.q.d.121.9 yes 22 252.23 even 6
504.2.t.d.193.1 yes 22 36.23 even 6
504.2.t.d.457.1 yes 22 84.23 even 6
1008.2.q.k.529.3 22 3.2 odd 2
1008.2.q.k.625.3 22 63.23 odd 6
1008.2.t.k.193.11 22 9.5 odd 6
1008.2.t.k.961.11 22 21.2 odd 6
1512.2.q.c.793.4 22 252.247 odd 6
1512.2.q.c.1369.4 22 4.3 odd 2
1512.2.t.d.289.8 22 28.23 odd 6
1512.2.t.d.361.8 22 36.31 odd 6
3024.2.q.k.2305.4 22 63.58 even 3 inner
3024.2.q.k.2881.4 22 1.1 even 1 trivial
3024.2.t.l.289.8 22 7.2 even 3
3024.2.t.l.1873.8 22 9.4 even 3