Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [102,5,Mod(53,102)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(102, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([4, 7]))
N = Newforms(chi, 5, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("102.53");
S:= CuspForms(chi, 5);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 102 = 2 \cdot 3 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 102.g (of order \(8\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(10.5437362346\) |
Analytic rank: | \(0\) |
Dimension: | \(44\) |
Relative dimension: | \(11\) over \(\Q(\zeta_{8})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
53.1 | 2.00000 | − | 2.00000i | −8.98767 | − | 0.470907i | − | 8.00000i | 44.5723 | − | 18.4624i | −18.9172 | + | 17.0335i | −18.9619 | + | 45.7780i | −16.0000 | − | 16.0000i | 80.5565 | + | 8.46471i | 52.2197 | − | 126.069i | |
53.2 | 2.00000 | − | 2.00000i | −8.64365 | + | 2.50744i | − | 8.00000i | −4.86643 | + | 2.01574i | −12.2724 | + | 22.3022i | 5.00624 | − | 12.0861i | −16.0000 | − | 16.0000i | 68.4255 | − | 43.3468i | −5.70137 | + | 13.7643i | |
53.3 | 2.00000 | − | 2.00000i | −6.49064 | − | 6.23471i | − | 8.00000i | −13.4598 | + | 5.57524i | −25.4507 | + | 0.511855i | −17.8254 | + | 43.0343i | −16.0000 | − | 16.0000i | 3.25676 | + | 80.9345i | −15.7692 | + | 38.0701i | |
53.4 | 2.00000 | − | 2.00000i | −5.22697 | − | 7.32658i | − | 8.00000i | 12.7918 | − | 5.29855i | −25.1071 | − | 4.19923i | 35.6639 | − | 86.1003i | −16.0000 | − | 16.0000i | −26.3576 | + | 76.5916i | 14.9866 | − | 36.1808i | |
53.5 | 2.00000 | − | 2.00000i | −4.70328 | + | 7.67327i | − | 8.00000i | −10.0719 | + | 4.17192i | 5.93998 | + | 24.7531i | 7.83473 | − | 18.9147i | −16.0000 | − | 16.0000i | −36.7583 | − | 72.1792i | −11.8000 | + | 28.4876i | |
53.6 | 2.00000 | − | 2.00000i | −0.0925879 | + | 8.99952i | − | 8.00000i | 7.71818 | − | 3.19697i | 17.8139 | + | 18.1842i | −32.7174 | + | 78.9869i | −16.0000 | − | 16.0000i | −80.9829 | − | 1.66649i | 9.04241 | − | 21.8303i | |
53.7 | 2.00000 | − | 2.00000i | 3.73212 | − | 8.18971i | − | 8.00000i | −36.5016 | + | 15.1195i | −8.91517 | − | 23.8437i | −20.7919 | + | 50.1961i | −16.0000 | − | 16.0000i | −53.1426 | − | 61.1299i | −42.7643 | + | 103.242i | |
53.8 | 2.00000 | − | 2.00000i | 5.34583 | + | 7.24031i | − | 8.00000i | −40.4335 | + | 16.7481i | 25.1723 | + | 3.78896i | 9.74985 | − | 23.5382i | −16.0000 | − | 16.0000i | −23.8442 | + | 77.4110i | −47.3708 | + | 114.363i | |
53.9 | 2.00000 | − | 2.00000i | 5.68748 | + | 6.97514i | − | 8.00000i | 24.3911 | − | 10.1031i | 25.3252 | + | 2.57533i | 18.4989 | − | 44.6604i | −16.0000 | − | 16.0000i | −16.3052 | + | 79.3419i | 28.5759 | − | 68.9884i | |
53.10 | 2.00000 | − | 2.00000i | 8.05326 | − | 4.01809i | − | 8.00000i | 40.0560 | − | 16.5917i | 8.07035 | − | 24.1427i | −2.16514 | + | 5.22710i | −16.0000 | − | 16.0000i | 48.7100 | − | 64.7174i | 46.9285 | − | 113.295i | |
53.11 | 2.00000 | − | 2.00000i | 8.91190 | − | 1.25620i | − | 8.00000i | −14.6814 | + | 6.08124i | 15.3114 | − | 20.3362i | 11.9385 | − | 28.8221i | −16.0000 | − | 16.0000i | 77.8439 | − | 22.3902i | −17.2004 | + | 41.5253i | |
59.1 | 2.00000 | + | 2.00000i | −8.81431 | − | 1.81879i | 8.00000i | 5.39248 | − | 13.0186i | −13.9910 | − | 21.2662i | −32.8806 | + | 13.6196i | −16.0000 | + | 16.0000i | 74.3840 | + | 32.0627i | 36.8221 | − | 15.2522i | ||
59.2 | 2.00000 | + | 2.00000i | −7.69652 | + | 4.66514i | 8.00000i | −13.6292 | + | 32.9039i | −24.7233 | − | 6.06275i | 1.24493 | − | 0.515667i | −16.0000 | + | 16.0000i | 37.4728 | − | 71.8108i | −93.0663 | + | 38.5493i | ||
59.3 | 2.00000 | + | 2.00000i | −7.34085 | + | 5.20691i | 8.00000i | 8.97188 | − | 21.6600i | −25.0955 | − | 4.26787i | 85.5528 | − | 35.4371i | −16.0000 | + | 16.0000i | 26.7761 | − | 76.4463i | 61.2638 | − | 25.3763i | ||
59.4 | 2.00000 | + | 2.00000i | −6.83333 | − | 5.85710i | 8.00000i | 2.47614 | − | 5.97792i | −1.95247 | − | 25.3809i | −1.01811 | + | 0.421715i | −16.0000 | + | 16.0000i | 12.3889 | + | 80.0470i | 16.9081 | − | 7.00357i | ||
59.5 | 2.00000 | + | 2.00000i | −3.67062 | + | 8.21745i | 8.00000i | 16.1337 | − | 38.9501i | −23.7761 | + | 9.09367i | −77.2612 | + | 32.0026i | −16.0000 | + | 16.0000i | −54.0531 | − | 60.3263i | 110.167 | − | 45.6329i | ||
59.6 | 2.00000 | + | 2.00000i | 1.58351 | − | 8.85960i | 8.00000i | 11.1111 | − | 26.8246i | 20.8862 | − | 14.5522i | 27.8275 | − | 11.5265i | −16.0000 | + | 16.0000i | −75.9850 | − | 28.0586i | 75.8714 | − | 31.4270i | ||
59.7 | 2.00000 | + | 2.00000i | 1.73792 | + | 8.83061i | 8.00000i | −7.65773 | + | 18.4874i | −14.1854 | + | 21.1371i | 3.64521 | − | 1.50990i | −16.0000 | + | 16.0000i | −74.9592 | + | 30.6938i | −52.2903 | + | 21.6593i | ||
59.8 | 2.00000 | + | 2.00000i | 7.10130 | − | 5.52916i | 8.00000i | 3.88053 | − | 9.36843i | 25.2609 | + | 3.14427i | 15.3463 | − | 6.35666i | −16.0000 | + | 16.0000i | 19.8568 | − | 78.5284i | 26.4979 | − | 10.9758i | ||
59.9 | 2.00000 | + | 2.00000i | 7.44631 | + | 5.05494i | 8.00000i | 14.7889 | − | 35.7036i | 4.78274 | + | 25.0025i | 33.4426 | − | 13.8524i | −16.0000 | + | 16.0000i | 29.8951 | + | 75.2814i | 100.985 | − | 41.8294i | ||
See all 44 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
51.g | odd | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 102.5.g.d | yes | 44 |
3.b | odd | 2 | 1 | 102.5.g.c | ✓ | 44 | |
17.d | even | 8 | 1 | 102.5.g.c | ✓ | 44 | |
51.g | odd | 8 | 1 | inner | 102.5.g.d | yes | 44 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
102.5.g.c | ✓ | 44 | 3.b | odd | 2 | 1 | |
102.5.g.c | ✓ | 44 | 17.d | even | 8 | 1 | |
102.5.g.d | yes | 44 | 1.a | even | 1 | 1 | trivial |
102.5.g.d | yes | 44 | 51.g | odd | 8 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{44} - 72 T_{5}^{43} + 1648 T_{5}^{42} + 38112 T_{5}^{41} - 3210880 T_{5}^{40} + \cdots + 24\!\cdots\!12 \)
acting on \(S_{5}^{\mathrm{new}}(102, [\chi])\).