Properties

Label 1058.2.a.n.1.5
Level $1058$
Weight $2$
Character 1058.1
Self dual yes
Analytic conductor $8.448$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1058,2,Mod(1,1058)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1058, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1058.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1058 = 2 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1058.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.44817253385\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.819879542784.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 22x^{6} + 80x^{5} + 151x^{4} - 440x^{3} - 298x^{2} + 532x - 146 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.443768\) of defining polynomial
Character \(\chi\) \(=\) 1058.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +2.37562 q^{3} +1.00000 q^{4} -4.07171 q^{5} +2.37562 q^{6} +1.94542 q^{7} +1.00000 q^{8} +2.64357 q^{9} -4.07171 q^{10} +2.44949 q^{11} +2.37562 q^{12} +1.35643 q^{13} +1.94542 q^{14} -9.67283 q^{15} +1.00000 q^{16} +5.09341 q^{17} +2.64357 q^{18} +3.55407 q^{19} -4.07171 q^{20} +4.62158 q^{21} +2.44949 q^{22} +2.37562 q^{24} +11.5788 q^{25} +1.35643 q^{26} -0.846745 q^{27} +1.94542 q^{28} -4.40183 q^{29} -9.67283 q^{30} +3.46410 q^{31} +1.00000 q^{32} +5.81906 q^{33} +5.09341 q^{34} -7.92118 q^{35} +2.64357 q^{36} -1.94542 q^{37} +3.55407 q^{38} +3.22236 q^{39} -4.07171 q^{40} -5.57177 q^{41} +4.62158 q^{42} +1.63579 q^{43} +2.44949 q^{44} -10.7638 q^{45} -2.29416 q^{47} +2.37562 q^{48} -3.21534 q^{49} +11.5788 q^{50} +12.1000 q^{51} +1.35643 q^{52} -8.84555 q^{53} -0.846745 q^{54} -9.97360 q^{55} +1.94542 q^{56} +8.44312 q^{57} -4.40183 q^{58} +14.3300 q^{59} -9.67283 q^{60} -5.96285 q^{61} +3.46410 q^{62} +5.14285 q^{63} +1.00000 q^{64} -5.52299 q^{65} +5.81906 q^{66} +8.83199 q^{67} +5.09341 q^{68} -7.92118 q^{70} -13.9877 q^{71} +2.64357 q^{72} -4.92118 q^{73} -1.94542 q^{74} +27.5068 q^{75} +3.55407 q^{76} +4.76529 q^{77} +3.22236 q^{78} +7.06114 q^{79} -4.07171 q^{80} -9.94225 q^{81} -5.57177 q^{82} +4.96828 q^{83} +4.62158 q^{84} -20.7389 q^{85} +1.63579 q^{86} -10.4571 q^{87} +2.44949 q^{88} -16.0689 q^{89} -10.7638 q^{90} +2.63883 q^{91} +8.22939 q^{93} -2.29416 q^{94} -14.4711 q^{95} +2.37562 q^{96} -8.59175 q^{97} -3.21534 q^{98} +6.47539 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 4 q^{3} + 8 q^{4} + 4 q^{6} + 8 q^{8} + 20 q^{9} + 4 q^{12} + 12 q^{13} + 8 q^{16} + 20 q^{18} + 4 q^{24} + 32 q^{25} + 12 q^{26} + 40 q^{27} + 8 q^{32} - 12 q^{35} + 20 q^{36} - 36 q^{39}+ \cdots + 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 2.37562 1.37156 0.685782 0.727807i \(-0.259460\pi\)
0.685782 + 0.727807i \(0.259460\pi\)
\(4\) 1.00000 0.500000
\(5\) −4.07171 −1.82092 −0.910461 0.413594i \(-0.864273\pi\)
−0.910461 + 0.413594i \(0.864273\pi\)
\(6\) 2.37562 0.969843
\(7\) 1.94542 0.735300 0.367650 0.929964i \(-0.380163\pi\)
0.367650 + 0.929964i \(0.380163\pi\)
\(8\) 1.00000 0.353553
\(9\) 2.64357 0.881190
\(10\) −4.07171 −1.28759
\(11\) 2.44949 0.738549 0.369274 0.929320i \(-0.379606\pi\)
0.369274 + 0.929320i \(0.379606\pi\)
\(12\) 2.37562 0.685782
\(13\) 1.35643 0.376206 0.188103 0.982149i \(-0.439766\pi\)
0.188103 + 0.982149i \(0.439766\pi\)
\(14\) 1.94542 0.519935
\(15\) −9.67283 −2.49751
\(16\) 1.00000 0.250000
\(17\) 5.09341 1.23533 0.617667 0.786440i \(-0.288078\pi\)
0.617667 + 0.786440i \(0.288078\pi\)
\(18\) 2.64357 0.623095
\(19\) 3.55407 0.815359 0.407680 0.913125i \(-0.366338\pi\)
0.407680 + 0.913125i \(0.366338\pi\)
\(20\) −4.07171 −0.910461
\(21\) 4.62158 1.00851
\(22\) 2.44949 0.522233
\(23\) 0 0
\(24\) 2.37562 0.484921
\(25\) 11.5788 2.31576
\(26\) 1.35643 0.266018
\(27\) −0.846745 −0.162956
\(28\) 1.94542 0.367650
\(29\) −4.40183 −0.817400 −0.408700 0.912669i \(-0.634018\pi\)
−0.408700 + 0.912669i \(0.634018\pi\)
\(30\) −9.67283 −1.76601
\(31\) 3.46410 0.622171 0.311086 0.950382i \(-0.399307\pi\)
0.311086 + 0.950382i \(0.399307\pi\)
\(32\) 1.00000 0.176777
\(33\) 5.81906 1.01297
\(34\) 5.09341 0.873513
\(35\) −7.92118 −1.33892
\(36\) 2.64357 0.440595
\(37\) −1.94542 −0.319825 −0.159913 0.987131i \(-0.551121\pi\)
−0.159913 + 0.987131i \(0.551121\pi\)
\(38\) 3.55407 0.576546
\(39\) 3.22236 0.515991
\(40\) −4.07171 −0.643793
\(41\) −5.57177 −0.870165 −0.435082 0.900391i \(-0.643281\pi\)
−0.435082 + 0.900391i \(0.643281\pi\)
\(42\) 4.62158 0.713125
\(43\) 1.63579 0.249455 0.124727 0.992191i \(-0.460194\pi\)
0.124727 + 0.992191i \(0.460194\pi\)
\(44\) 2.44949 0.369274
\(45\) −10.7638 −1.60458
\(46\) 0 0
\(47\) −2.29416 −0.334638 −0.167319 0.985903i \(-0.553511\pi\)
−0.167319 + 0.985903i \(0.553511\pi\)
\(48\) 2.37562 0.342891
\(49\) −3.21534 −0.459334
\(50\) 11.5788 1.63749
\(51\) 12.1000 1.69434
\(52\) 1.35643 0.188103
\(53\) −8.84555 −1.21503 −0.607515 0.794308i \(-0.707834\pi\)
−0.607515 + 0.794308i \(0.707834\pi\)
\(54\) −0.846745 −0.115227
\(55\) −9.97360 −1.34484
\(56\) 1.94542 0.259968
\(57\) 8.44312 1.11832
\(58\) −4.40183 −0.577989
\(59\) 14.3300 1.86561 0.932806 0.360379i \(-0.117353\pi\)
0.932806 + 0.360379i \(0.117353\pi\)
\(60\) −9.67283 −1.24876
\(61\) −5.96285 −0.763465 −0.381733 0.924273i \(-0.624672\pi\)
−0.381733 + 0.924273i \(0.624672\pi\)
\(62\) 3.46410 0.439941
\(63\) 5.14285 0.647938
\(64\) 1.00000 0.125000
\(65\) −5.52299 −0.685043
\(66\) 5.81906 0.716276
\(67\) 8.83199 1.07900 0.539499 0.841986i \(-0.318614\pi\)
0.539499 + 0.841986i \(0.318614\pi\)
\(68\) 5.09341 0.617667
\(69\) 0 0
\(70\) −7.92118 −0.946762
\(71\) −13.9877 −1.66003 −0.830014 0.557742i \(-0.811668\pi\)
−0.830014 + 0.557742i \(0.811668\pi\)
\(72\) 2.64357 0.311548
\(73\) −4.92118 −0.575981 −0.287990 0.957633i \(-0.592987\pi\)
−0.287990 + 0.957633i \(0.592987\pi\)
\(74\) −1.94542 −0.226150
\(75\) 27.5068 3.17621
\(76\) 3.55407 0.407680
\(77\) 4.76529 0.543055
\(78\) 3.22236 0.364861
\(79\) 7.06114 0.794440 0.397220 0.917723i \(-0.369975\pi\)
0.397220 + 0.917723i \(0.369975\pi\)
\(80\) −4.07171 −0.455231
\(81\) −9.94225 −1.10469
\(82\) −5.57177 −0.615299
\(83\) 4.96828 0.545340 0.272670 0.962108i \(-0.412093\pi\)
0.272670 + 0.962108i \(0.412093\pi\)
\(84\) 4.62158 0.504256
\(85\) −20.7389 −2.24945
\(86\) 1.63579 0.176391
\(87\) −10.4571 −1.12112
\(88\) 2.44949 0.261116
\(89\) −16.0689 −1.70330 −0.851650 0.524112i \(-0.824397\pi\)
−0.851650 + 0.524112i \(0.824397\pi\)
\(90\) −10.7638 −1.13461
\(91\) 2.63883 0.276624
\(92\) 0 0
\(93\) 8.22939 0.853348
\(94\) −2.29416 −0.236625
\(95\) −14.4711 −1.48471
\(96\) 2.37562 0.242461
\(97\) −8.59175 −0.872360 −0.436180 0.899859i \(-0.643669\pi\)
−0.436180 + 0.899859i \(0.643669\pi\)
\(98\) −3.21534 −0.324798
\(99\) 6.47539 0.650802
\(100\) 11.5788 1.15788
\(101\) 15.5858 1.55085 0.775423 0.631442i \(-0.217536\pi\)
0.775423 + 0.631442i \(0.217536\pi\)
\(102\) 12.1000 1.19808
\(103\) −9.82510 −0.968095 −0.484048 0.875042i \(-0.660834\pi\)
−0.484048 + 0.875042i \(0.660834\pi\)
\(104\) 1.35643 0.133009
\(105\) −18.8177 −1.83642
\(106\) −8.84555 −0.859156
\(107\) −2.10762 −0.203751 −0.101876 0.994797i \(-0.532484\pi\)
−0.101876 + 0.994797i \(0.532484\pi\)
\(108\) −0.846745 −0.0814781
\(109\) −11.1328 −1.06633 −0.533166 0.846010i \(-0.678998\pi\)
−0.533166 + 0.846010i \(0.678998\pi\)
\(110\) −9.97360 −0.950946
\(111\) −4.62158 −0.438661
\(112\) 1.94542 0.183825
\(113\) −11.6146 −1.09261 −0.546305 0.837586i \(-0.683966\pi\)
−0.546305 + 0.837586i \(0.683966\pi\)
\(114\) 8.44312 0.790770
\(115\) 0 0
\(116\) −4.40183 −0.408700
\(117\) 3.58582 0.331509
\(118\) 14.3300 1.31919
\(119\) 9.90883 0.908341
\(120\) −9.67283 −0.883004
\(121\) −5.00000 −0.454545
\(122\) −5.96285 −0.539851
\(123\) −13.2364 −1.19349
\(124\) 3.46410 0.311086
\(125\) −26.7869 −2.39590
\(126\) 5.14285 0.458162
\(127\) 8.22939 0.730240 0.365120 0.930960i \(-0.381028\pi\)
0.365120 + 0.930960i \(0.381028\pi\)
\(128\) 1.00000 0.0883883
\(129\) 3.88600 0.342144
\(130\) −5.52299 −0.484398
\(131\) −8.81351 −0.770040 −0.385020 0.922908i \(-0.625805\pi\)
−0.385020 + 0.922908i \(0.625805\pi\)
\(132\) 5.81906 0.506484
\(133\) 6.91416 0.599533
\(134\) 8.83199 0.762967
\(135\) 3.44770 0.296730
\(136\) 5.09341 0.436757
\(137\) −3.87727 −0.331258 −0.165629 0.986188i \(-0.552965\pi\)
−0.165629 + 0.986188i \(0.552965\pi\)
\(138\) 0 0
\(139\) −0.533395 −0.0452420 −0.0226210 0.999744i \(-0.507201\pi\)
−0.0226210 + 0.999744i \(0.507201\pi\)
\(140\) −7.92118 −0.669462
\(141\) −5.45005 −0.458977
\(142\) −13.9877 −1.17382
\(143\) 3.32256 0.277847
\(144\) 2.64357 0.220297
\(145\) 17.9230 1.48842
\(146\) −4.92118 −0.407280
\(147\) −7.63843 −0.630007
\(148\) −1.94542 −0.159913
\(149\) 2.79256 0.228775 0.114388 0.993436i \(-0.463509\pi\)
0.114388 + 0.993436i \(0.463509\pi\)
\(150\) 27.5068 2.24592
\(151\) 22.2030 1.80685 0.903427 0.428742i \(-0.141043\pi\)
0.903427 + 0.428742i \(0.141043\pi\)
\(152\) 3.55407 0.288273
\(153\) 13.4648 1.08856
\(154\) 4.76529 0.383998
\(155\) −14.1048 −1.13293
\(156\) 3.22236 0.257996
\(157\) 12.4925 0.997012 0.498506 0.866886i \(-0.333882\pi\)
0.498506 + 0.866886i \(0.333882\pi\)
\(158\) 7.06114 0.561754
\(159\) −21.0137 −1.66649
\(160\) −4.07171 −0.321897
\(161\) 0 0
\(162\) −9.94225 −0.781137
\(163\) 6.33254 0.496003 0.248001 0.968760i \(-0.420226\pi\)
0.248001 + 0.968760i \(0.420226\pi\)
\(164\) −5.57177 −0.435082
\(165\) −23.6935 −1.84454
\(166\) 4.96828 0.385613
\(167\) −20.6741 −1.59981 −0.799906 0.600126i \(-0.795117\pi\)
−0.799906 + 0.600126i \(0.795117\pi\)
\(168\) 4.62158 0.356562
\(169\) −11.1601 −0.858469
\(170\) −20.7389 −1.59060
\(171\) 9.39543 0.718486
\(172\) 1.63579 0.124727
\(173\) 1.59817 0.121506 0.0607532 0.998153i \(-0.480650\pi\)
0.0607532 + 0.998153i \(0.480650\pi\)
\(174\) −10.4571 −0.792749
\(175\) 22.5256 1.70278
\(176\) 2.44949 0.184637
\(177\) 34.0427 2.55881
\(178\) −16.0689 −1.20441
\(179\) 8.87107 0.663055 0.331528 0.943446i \(-0.392436\pi\)
0.331528 + 0.943446i \(0.392436\pi\)
\(180\) −10.7638 −0.802289
\(181\) −4.26624 −0.317107 −0.158553 0.987350i \(-0.550683\pi\)
−0.158553 + 0.987350i \(0.550683\pi\)
\(182\) 2.63883 0.195603
\(183\) −14.1655 −1.04714
\(184\) 0 0
\(185\) 7.92118 0.582377
\(186\) 8.22939 0.603408
\(187\) 12.4763 0.912355
\(188\) −2.29416 −0.167319
\(189\) −1.64727 −0.119822
\(190\) −14.4711 −1.04985
\(191\) −3.58630 −0.259496 −0.129748 0.991547i \(-0.541417\pi\)
−0.129748 + 0.991547i \(0.541417\pi\)
\(192\) 2.37562 0.171446
\(193\) 15.2870 1.10038 0.550190 0.835040i \(-0.314555\pi\)
0.550190 + 0.835040i \(0.314555\pi\)
\(194\) −8.59175 −0.616852
\(195\) −13.1205 −0.939580
\(196\) −3.21534 −0.229667
\(197\) −7.79946 −0.555689 −0.277844 0.960626i \(-0.589620\pi\)
−0.277844 + 0.960626i \(0.589620\pi\)
\(198\) 6.47539 0.460186
\(199\) 24.1394 1.71119 0.855597 0.517642i \(-0.173190\pi\)
0.855597 + 0.517642i \(0.173190\pi\)
\(200\) 11.5788 0.818744
\(201\) 20.9814 1.47992
\(202\) 15.5858 1.09661
\(203\) −8.56341 −0.601034
\(204\) 12.1000 0.847171
\(205\) 22.6866 1.58450
\(206\) −9.82510 −0.684547
\(207\) 0 0
\(208\) 1.35643 0.0940516
\(209\) 8.70565 0.602183
\(210\) −18.8177 −1.29855
\(211\) −0.100647 −0.00692882 −0.00346441 0.999994i \(-0.501103\pi\)
−0.00346441 + 0.999994i \(0.501103\pi\)
\(212\) −8.84555 −0.607515
\(213\) −33.2293 −2.27684
\(214\) −2.10762 −0.144074
\(215\) −6.66044 −0.454238
\(216\) −0.846745 −0.0576137
\(217\) 6.73913 0.457482
\(218\) −11.1328 −0.754011
\(219\) −11.6909 −0.789995
\(220\) −9.97360 −0.672420
\(221\) 6.90887 0.464741
\(222\) −4.62158 −0.310180
\(223\) 6.11720 0.409638 0.204819 0.978800i \(-0.434339\pi\)
0.204819 + 0.978800i \(0.434339\pi\)
\(224\) 1.94542 0.129984
\(225\) 30.6093 2.04062
\(226\) −11.6146 −0.772592
\(227\) 24.5033 1.62634 0.813170 0.582027i \(-0.197740\pi\)
0.813170 + 0.582027i \(0.197740\pi\)
\(228\) 8.44312 0.559159
\(229\) 13.9724 0.923322 0.461661 0.887056i \(-0.347254\pi\)
0.461661 + 0.887056i \(0.347254\pi\)
\(230\) 0 0
\(231\) 11.3205 0.744835
\(232\) −4.40183 −0.288994
\(233\) 4.85641 0.318154 0.159077 0.987266i \(-0.449148\pi\)
0.159077 + 0.987266i \(0.449148\pi\)
\(234\) 3.58582 0.234412
\(235\) 9.34115 0.609350
\(236\) 14.3300 0.932806
\(237\) 16.7746 1.08963
\(238\) 9.90883 0.642294
\(239\) 10.6601 0.689543 0.344771 0.938687i \(-0.387956\pi\)
0.344771 + 0.938687i \(0.387956\pi\)
\(240\) −9.67283 −0.624378
\(241\) −13.3806 −0.861922 −0.430961 0.902371i \(-0.641825\pi\)
−0.430961 + 0.902371i \(0.641825\pi\)
\(242\) −5.00000 −0.321412
\(243\) −21.0788 −1.35220
\(244\) −5.96285 −0.381733
\(245\) 13.0919 0.836412
\(246\) −13.2364 −0.843923
\(247\) 4.82085 0.306743
\(248\) 3.46410 0.219971
\(249\) 11.8027 0.747969
\(250\) −26.7869 −1.69415
\(251\) −3.44260 −0.217295 −0.108647 0.994080i \(-0.534652\pi\)
−0.108647 + 0.994080i \(0.534652\pi\)
\(252\) 5.14285 0.323969
\(253\) 0 0
\(254\) 8.22939 0.516358
\(255\) −49.2677 −3.08526
\(256\) 1.00000 0.0625000
\(257\) −8.79150 −0.548399 −0.274199 0.961673i \(-0.588413\pi\)
−0.274199 + 0.961673i \(0.588413\pi\)
\(258\) 3.88600 0.241932
\(259\) −3.78466 −0.235167
\(260\) −5.52299 −0.342521
\(261\) −11.6365 −0.720284
\(262\) −8.81351 −0.544500
\(263\) −17.0957 −1.05417 −0.527083 0.849814i \(-0.676714\pi\)
−0.527083 + 0.849814i \(0.676714\pi\)
\(264\) 5.81906 0.358138
\(265\) 36.0165 2.21248
\(266\) 6.91416 0.423934
\(267\) −38.1736 −2.33618
\(268\) 8.83199 0.539499
\(269\) −4.28181 −0.261067 −0.130533 0.991444i \(-0.541669\pi\)
−0.130533 + 0.991444i \(0.541669\pi\)
\(270\) 3.44770 0.209820
\(271\) −13.6337 −0.828190 −0.414095 0.910234i \(-0.635902\pi\)
−0.414095 + 0.910234i \(0.635902\pi\)
\(272\) 5.09341 0.308834
\(273\) 6.26885 0.379408
\(274\) −3.87727 −0.234235
\(275\) 28.3621 1.71030
\(276\) 0 0
\(277\) −30.3395 −1.82292 −0.911462 0.411384i \(-0.865046\pi\)
−0.911462 + 0.411384i \(0.865046\pi\)
\(278\) −0.533395 −0.0319909
\(279\) 9.15759 0.548251
\(280\) −7.92118 −0.473381
\(281\) 9.25793 0.552282 0.276141 0.961117i \(-0.410944\pi\)
0.276141 + 0.961117i \(0.410944\pi\)
\(282\) −5.45005 −0.324546
\(283\) 14.7391 0.876149 0.438074 0.898939i \(-0.355661\pi\)
0.438074 + 0.898939i \(0.355661\pi\)
\(284\) −13.9877 −0.830014
\(285\) −34.3779 −2.03637
\(286\) 3.32256 0.196467
\(287\) −10.8394 −0.639832
\(288\) 2.64357 0.155774
\(289\) 8.94287 0.526051
\(290\) 17.9230 1.05247
\(291\) −20.4107 −1.19650
\(292\) −4.92118 −0.287990
\(293\) 15.7879 0.922342 0.461171 0.887311i \(-0.347429\pi\)
0.461171 + 0.887311i \(0.347429\pi\)
\(294\) −7.63843 −0.445482
\(295\) −58.3477 −3.39713
\(296\) −1.94542 −0.113075
\(297\) −2.07409 −0.120351
\(298\) 2.79256 0.161769
\(299\) 0 0
\(300\) 27.5068 1.58811
\(301\) 3.18229 0.183424
\(302\) 22.2030 1.27764
\(303\) 37.0260 2.12709
\(304\) 3.55407 0.203840
\(305\) 24.2790 1.39021
\(306\) 13.4648 0.769731
\(307\) 32.9589 1.88107 0.940533 0.339703i \(-0.110326\pi\)
0.940533 + 0.339703i \(0.110326\pi\)
\(308\) 4.76529 0.271527
\(309\) −23.3407 −1.32781
\(310\) −14.1048 −0.801099
\(311\) −19.9212 −1.12963 −0.564813 0.825219i \(-0.691052\pi\)
−0.564813 + 0.825219i \(0.691052\pi\)
\(312\) 3.22236 0.182430
\(313\) −9.67273 −0.546735 −0.273368 0.961910i \(-0.588138\pi\)
−0.273368 + 0.961910i \(0.588138\pi\)
\(314\) 12.4925 0.704994
\(315\) −20.9402 −1.17985
\(316\) 7.06114 0.397220
\(317\) −18.3490 −1.03058 −0.515292 0.857014i \(-0.672317\pi\)
−0.515292 + 0.857014i \(0.672317\pi\)
\(318\) −21.0137 −1.17839
\(319\) −10.7822 −0.603690
\(320\) −4.07171 −0.227615
\(321\) −5.00691 −0.279458
\(322\) 0 0
\(323\) 18.1023 1.00724
\(324\) −9.94225 −0.552347
\(325\) 15.7058 0.871203
\(326\) 6.33254 0.350727
\(327\) −26.4474 −1.46254
\(328\) −5.57177 −0.307650
\(329\) −4.46311 −0.246059
\(330\) −23.6935 −1.30428
\(331\) −25.5384 −1.40371 −0.701857 0.712317i \(-0.747646\pi\)
−0.701857 + 0.712317i \(0.747646\pi\)
\(332\) 4.96828 0.272670
\(333\) −5.14285 −0.281827
\(334\) −20.6741 −1.13124
\(335\) −35.9613 −1.96477
\(336\) 4.62158 0.252128
\(337\) −32.6280 −1.77736 −0.888681 0.458526i \(-0.848377\pi\)
−0.888681 + 0.458526i \(0.848377\pi\)
\(338\) −11.1601 −0.607029
\(339\) −27.5919 −1.49859
\(340\) −20.7389 −1.12472
\(341\) 8.48528 0.459504
\(342\) 9.39543 0.508046
\(343\) −19.8731 −1.07305
\(344\) 1.63579 0.0881956
\(345\) 0 0
\(346\) 1.59817 0.0859181
\(347\) 11.6909 0.627598 0.313799 0.949489i \(-0.398398\pi\)
0.313799 + 0.949489i \(0.398398\pi\)
\(348\) −10.4571 −0.560558
\(349\) 11.3012 0.604939 0.302469 0.953159i \(-0.402189\pi\)
0.302469 + 0.953159i \(0.402189\pi\)
\(350\) 22.5256 1.20405
\(351\) −1.14855 −0.0613051
\(352\) 2.44949 0.130558
\(353\) −25.1190 −1.33695 −0.668476 0.743734i \(-0.733053\pi\)
−0.668476 + 0.743734i \(0.733053\pi\)
\(354\) 34.0427 1.80935
\(355\) 56.9536 3.02278
\(356\) −16.0689 −0.851650
\(357\) 23.5396 1.24585
\(358\) 8.87107 0.468851
\(359\) −15.9761 −0.843186 −0.421593 0.906785i \(-0.638529\pi\)
−0.421593 + 0.906785i \(0.638529\pi\)
\(360\) −10.7638 −0.567304
\(361\) −6.36860 −0.335189
\(362\) −4.26624 −0.224228
\(363\) −11.8781 −0.623438
\(364\) 2.63883 0.138312
\(365\) 20.0376 1.04882
\(366\) −14.1655 −0.740441
\(367\) −0.337877 −0.0176370 −0.00881851 0.999961i \(-0.502807\pi\)
−0.00881851 + 0.999961i \(0.502807\pi\)
\(368\) 0 0
\(369\) −14.7294 −0.766780
\(370\) 7.92118 0.411803
\(371\) −17.2083 −0.893411
\(372\) 8.22939 0.426674
\(373\) −2.17582 −0.112660 −0.0563298 0.998412i \(-0.517940\pi\)
−0.0563298 + 0.998412i \(0.517940\pi\)
\(374\) 12.4763 0.645132
\(375\) −63.6355 −3.28613
\(376\) −2.29416 −0.118312
\(377\) −5.97078 −0.307511
\(378\) −1.64727 −0.0847266
\(379\) −3.99367 −0.205141 −0.102571 0.994726i \(-0.532707\pi\)
−0.102571 + 0.994726i \(0.532707\pi\)
\(380\) −14.4711 −0.742353
\(381\) 19.5499 1.00157
\(382\) −3.58630 −0.183491
\(383\) 16.2398 0.829816 0.414908 0.909863i \(-0.363814\pi\)
0.414908 + 0.909863i \(0.363814\pi\)
\(384\) 2.37562 0.121230
\(385\) −19.4028 −0.988861
\(386\) 15.2870 0.778085
\(387\) 4.32431 0.219817
\(388\) −8.59175 −0.436180
\(389\) −3.96170 −0.200866 −0.100433 0.994944i \(-0.532023\pi\)
−0.100433 + 0.994944i \(0.532023\pi\)
\(390\) −13.1205 −0.664384
\(391\) 0 0
\(392\) −3.21534 −0.162399
\(393\) −20.9375 −1.05616
\(394\) −7.79946 −0.392931
\(395\) −28.7509 −1.44661
\(396\) 6.47539 0.325401
\(397\) 9.53339 0.478467 0.239234 0.970962i \(-0.423104\pi\)
0.239234 + 0.970962i \(0.423104\pi\)
\(398\) 24.1394 1.21000
\(399\) 16.4254 0.822299
\(400\) 11.5788 0.578940
\(401\) 3.05120 0.152370 0.0761848 0.997094i \(-0.475726\pi\)
0.0761848 + 0.997094i \(0.475726\pi\)
\(402\) 20.9814 1.04646
\(403\) 4.69882 0.234065
\(404\) 15.5858 0.775423
\(405\) 40.4819 2.01156
\(406\) −8.56341 −0.424995
\(407\) −4.76529 −0.236206
\(408\) 12.1000 0.599040
\(409\) 39.7028 1.96318 0.981589 0.191003i \(-0.0611742\pi\)
0.981589 + 0.191003i \(0.0611742\pi\)
\(410\) 22.6866 1.12041
\(411\) −9.21092 −0.454341
\(412\) −9.82510 −0.484048
\(413\) 27.8779 1.37178
\(414\) 0 0
\(415\) −20.2294 −0.993022
\(416\) 1.35643 0.0665045
\(417\) −1.26714 −0.0620523
\(418\) 8.70565 0.425807
\(419\) 30.8981 1.50947 0.754736 0.656028i \(-0.227765\pi\)
0.754736 + 0.656028i \(0.227765\pi\)
\(420\) −18.8177 −0.918210
\(421\) 2.14868 0.104720 0.0523602 0.998628i \(-0.483326\pi\)
0.0523602 + 0.998628i \(0.483326\pi\)
\(422\) −0.100647 −0.00489942
\(423\) −6.06477 −0.294879
\(424\) −8.84555 −0.429578
\(425\) 58.9756 2.86074
\(426\) −33.2293 −1.60997
\(427\) −11.6003 −0.561376
\(428\) −2.10762 −0.101876
\(429\) 7.89315 0.381085
\(430\) −6.66044 −0.321195
\(431\) 25.1005 1.20905 0.604524 0.796587i \(-0.293363\pi\)
0.604524 + 0.796587i \(0.293363\pi\)
\(432\) −0.846745 −0.0407390
\(433\) 5.95292 0.286079 0.143040 0.989717i \(-0.454312\pi\)
0.143040 + 0.989717i \(0.454312\pi\)
\(434\) 6.73913 0.323489
\(435\) 42.5782 2.04147
\(436\) −11.1328 −0.533166
\(437\) 0 0
\(438\) −11.6909 −0.558610
\(439\) 24.1766 1.15389 0.576943 0.816784i \(-0.304245\pi\)
0.576943 + 0.816784i \(0.304245\pi\)
\(440\) −9.97360 −0.475473
\(441\) −8.49998 −0.404761
\(442\) 6.90887 0.328621
\(443\) 6.51214 0.309401 0.154701 0.987961i \(-0.450559\pi\)
0.154701 + 0.987961i \(0.450559\pi\)
\(444\) −4.62158 −0.219330
\(445\) 65.4278 3.10158
\(446\) 6.11720 0.289658
\(447\) 6.63406 0.313780
\(448\) 1.94542 0.0919125
\(449\) 29.7300 1.40304 0.701522 0.712647i \(-0.252504\pi\)
0.701522 + 0.712647i \(0.252504\pi\)
\(450\) 30.6093 1.44294
\(451\) −13.6480 −0.642659
\(452\) −11.6146 −0.546305
\(453\) 52.7459 2.47822
\(454\) 24.5033 1.15000
\(455\) −10.7445 −0.503712
\(456\) 8.44312 0.395385
\(457\) 4.37251 0.204538 0.102269 0.994757i \(-0.467390\pi\)
0.102269 + 0.994757i \(0.467390\pi\)
\(458\) 13.9724 0.652887
\(459\) −4.31282 −0.201305
\(460\) 0 0
\(461\) 7.86593 0.366353 0.183177 0.983080i \(-0.441362\pi\)
0.183177 + 0.983080i \(0.441362\pi\)
\(462\) 11.3205 0.526678
\(463\) −21.9472 −1.01997 −0.509987 0.860182i \(-0.670350\pi\)
−0.509987 + 0.860182i \(0.670350\pi\)
\(464\) −4.40183 −0.204350
\(465\) −33.5077 −1.55388
\(466\) 4.85641 0.224969
\(467\) −29.6404 −1.37159 −0.685797 0.727793i \(-0.740546\pi\)
−0.685797 + 0.727793i \(0.740546\pi\)
\(468\) 3.58582 0.165755
\(469\) 17.1819 0.793387
\(470\) 9.34115 0.430875
\(471\) 29.6775 1.36747
\(472\) 14.3300 0.659593
\(473\) 4.00684 0.184235
\(474\) 16.7746 0.770482
\(475\) 41.1518 1.88818
\(476\) 9.90883 0.454171
\(477\) −23.3838 −1.07067
\(478\) 10.6601 0.487580
\(479\) 38.7485 1.77046 0.885232 0.465150i \(-0.153999\pi\)
0.885232 + 0.465150i \(0.153999\pi\)
\(480\) −9.67283 −0.441502
\(481\) −2.63883 −0.120320
\(482\) −13.3806 −0.609471
\(483\) 0 0
\(484\) −5.00000 −0.227273
\(485\) 34.9831 1.58850
\(486\) −21.0788 −0.956152
\(487\) 15.6777 0.710426 0.355213 0.934785i \(-0.384408\pi\)
0.355213 + 0.934785i \(0.384408\pi\)
\(488\) −5.96285 −0.269926
\(489\) 15.0437 0.680300
\(490\) 13.0919 0.591433
\(491\) −16.8561 −0.760705 −0.380352 0.924842i \(-0.624197\pi\)
−0.380352 + 0.924842i \(0.624197\pi\)
\(492\) −13.2364 −0.596744
\(493\) −22.4204 −1.00976
\(494\) 4.82085 0.216900
\(495\) −26.3659 −1.18506
\(496\) 3.46410 0.155543
\(497\) −27.2119 −1.22062
\(498\) 11.8027 0.528894
\(499\) −16.9853 −0.760368 −0.380184 0.924911i \(-0.624139\pi\)
−0.380184 + 0.924911i \(0.624139\pi\)
\(500\) −26.7869 −1.19795
\(501\) −49.1138 −2.19424
\(502\) −3.44260 −0.153651
\(503\) 5.66325 0.252512 0.126256 0.991998i \(-0.459704\pi\)
0.126256 + 0.991998i \(0.459704\pi\)
\(504\) 5.14285 0.229081
\(505\) −63.4609 −2.82397
\(506\) 0 0
\(507\) −26.5121 −1.17745
\(508\) 8.22939 0.365120
\(509\) 10.4262 0.462131 0.231066 0.972938i \(-0.425779\pi\)
0.231066 + 0.972938i \(0.425779\pi\)
\(510\) −49.2677 −2.18161
\(511\) −9.57376 −0.423518
\(512\) 1.00000 0.0441942
\(513\) −3.00939 −0.132868
\(514\) −8.79150 −0.387776
\(515\) 40.0049 1.76283
\(516\) 3.88600 0.171072
\(517\) −5.61952 −0.247146
\(518\) −3.78466 −0.166288
\(519\) 3.79664 0.166654
\(520\) −5.52299 −0.242199
\(521\) −27.8011 −1.21799 −0.608995 0.793174i \(-0.708427\pi\)
−0.608995 + 0.793174i \(0.708427\pi\)
\(522\) −11.6365 −0.509318
\(523\) −21.1154 −0.923312 −0.461656 0.887059i \(-0.652745\pi\)
−0.461656 + 0.887059i \(0.652745\pi\)
\(524\) −8.81351 −0.385020
\(525\) 53.5123 2.33547
\(526\) −17.0957 −0.745408
\(527\) 17.6441 0.768589
\(528\) 5.81906 0.253242
\(529\) 0 0
\(530\) 36.0165 1.56446
\(531\) 37.8824 1.64396
\(532\) 6.91416 0.299767
\(533\) −7.55773 −0.327361
\(534\) −38.1736 −1.65193
\(535\) 8.58162 0.371016
\(536\) 8.83199 0.381484
\(537\) 21.0743 0.909423
\(538\) −4.28181 −0.184602
\(539\) −7.87594 −0.339241
\(540\) 3.44770 0.148365
\(541\) −31.1340 −1.33856 −0.669278 0.743012i \(-0.733396\pi\)
−0.669278 + 0.743012i \(0.733396\pi\)
\(542\) −13.6337 −0.585619
\(543\) −10.1350 −0.434933
\(544\) 5.09341 0.218378
\(545\) 45.3297 1.94171
\(546\) 6.26885 0.268282
\(547\) 23.8705 1.02063 0.510313 0.859988i \(-0.329529\pi\)
0.510313 + 0.859988i \(0.329529\pi\)
\(548\) −3.87727 −0.165629
\(549\) −15.7632 −0.672758
\(550\) 28.3621 1.20937
\(551\) −15.6444 −0.666474
\(552\) 0 0
\(553\) 13.7369 0.584151
\(554\) −30.3395 −1.28900
\(555\) 18.8177 0.798767
\(556\) −0.533395 −0.0226210
\(557\) −46.8977 −1.98712 −0.993560 0.113305i \(-0.963856\pi\)
−0.993560 + 0.113305i \(0.963856\pi\)
\(558\) 9.15759 0.387672
\(559\) 2.21883 0.0938465
\(560\) −7.92118 −0.334731
\(561\) 29.6389 1.25135
\(562\) 9.25793 0.390522
\(563\) −6.76143 −0.284960 −0.142480 0.989798i \(-0.545508\pi\)
−0.142480 + 0.989798i \(0.545508\pi\)
\(564\) −5.45005 −0.229489
\(565\) 47.2913 1.98956
\(566\) 14.7391 0.619531
\(567\) −19.3419 −0.812281
\(568\) −13.9877 −0.586909
\(569\) −2.06692 −0.0866497 −0.0433248 0.999061i \(-0.513795\pi\)
−0.0433248 + 0.999061i \(0.513795\pi\)
\(570\) −34.3779 −1.43993
\(571\) 17.8482 0.746924 0.373462 0.927645i \(-0.378171\pi\)
0.373462 + 0.927645i \(0.378171\pi\)
\(572\) 3.32256 0.138923
\(573\) −8.51969 −0.355915
\(574\) −10.8394 −0.452429
\(575\) 0 0
\(576\) 2.64357 0.110149
\(577\) −14.8779 −0.619376 −0.309688 0.950838i \(-0.600225\pi\)
−0.309688 + 0.950838i \(0.600225\pi\)
\(578\) 8.94287 0.371974
\(579\) 36.3160 1.50924
\(580\) 17.9230 0.744211
\(581\) 9.66540 0.400988
\(582\) −20.4107 −0.846052
\(583\) −21.6671 −0.897359
\(584\) −4.92118 −0.203640
\(585\) −14.6004 −0.603652
\(586\) 15.7879 0.652194
\(587\) 29.5524 1.21976 0.609879 0.792495i \(-0.291218\pi\)
0.609879 + 0.792495i \(0.291218\pi\)
\(588\) −7.63843 −0.315003
\(589\) 12.3117 0.507293
\(590\) −58.3477 −2.40214
\(591\) −18.5286 −0.762163
\(592\) −1.94542 −0.0799563
\(593\) 24.1392 0.991276 0.495638 0.868529i \(-0.334934\pi\)
0.495638 + 0.868529i \(0.334934\pi\)
\(594\) −2.07409 −0.0851011
\(595\) −40.3459 −1.65402
\(596\) 2.79256 0.114388
\(597\) 57.3460 2.34701
\(598\) 0 0
\(599\) −12.0404 −0.491959 −0.245980 0.969275i \(-0.579110\pi\)
−0.245980 + 0.969275i \(0.579110\pi\)
\(600\) 27.5068 1.12296
\(601\) 32.6696 1.33262 0.666310 0.745675i \(-0.267873\pi\)
0.666310 + 0.745675i \(0.267873\pi\)
\(602\) 3.18229 0.129700
\(603\) 23.3480 0.950803
\(604\) 22.2030 0.903427
\(605\) 20.3585 0.827692
\(606\) 37.0260 1.50408
\(607\) 4.09287 0.166124 0.0830622 0.996544i \(-0.473530\pi\)
0.0830622 + 0.996544i \(0.473530\pi\)
\(608\) 3.55407 0.144137
\(609\) −20.3434 −0.824357
\(610\) 24.2790 0.983028
\(611\) −3.11187 −0.125893
\(612\) 13.4648 0.544282
\(613\) −29.7094 −1.19995 −0.599975 0.800019i \(-0.704823\pi\)
−0.599975 + 0.800019i \(0.704823\pi\)
\(614\) 32.9589 1.33011
\(615\) 53.8948 2.17325
\(616\) 4.76529 0.191999
\(617\) 20.8936 0.841146 0.420573 0.907259i \(-0.361829\pi\)
0.420573 + 0.907259i \(0.361829\pi\)
\(618\) −23.3407 −0.938900
\(619\) −36.3294 −1.46020 −0.730102 0.683339i \(-0.760527\pi\)
−0.730102 + 0.683339i \(0.760527\pi\)
\(620\) −14.1048 −0.566463
\(621\) 0 0
\(622\) −19.9212 −0.798767
\(623\) −31.2607 −1.25244
\(624\) 3.22236 0.128998
\(625\) 51.1745 2.04698
\(626\) −9.67273 −0.386600
\(627\) 20.6813 0.825933
\(628\) 12.4925 0.498506
\(629\) −9.90883 −0.395091
\(630\) −20.9402 −0.834277
\(631\) −1.77569 −0.0706890 −0.0353445 0.999375i \(-0.511253\pi\)
−0.0353445 + 0.999375i \(0.511253\pi\)
\(632\) 7.06114 0.280877
\(633\) −0.239099 −0.00950333
\(634\) −18.3490 −0.728733
\(635\) −33.5077 −1.32971
\(636\) −21.0137 −0.833246
\(637\) −4.36139 −0.172805
\(638\) −10.7822 −0.426873
\(639\) −36.9773 −1.46280
\(640\) −4.07171 −0.160948
\(641\) −33.0344 −1.30478 −0.652389 0.757884i \(-0.726233\pi\)
−0.652389 + 0.757884i \(0.726233\pi\)
\(642\) −5.00691 −0.197607
\(643\) 43.0895 1.69928 0.849642 0.527360i \(-0.176818\pi\)
0.849642 + 0.527360i \(0.176818\pi\)
\(644\) 0 0
\(645\) −15.8227 −0.623017
\(646\) 18.1023 0.712227
\(647\) −0.0891034 −0.00350302 −0.00175151 0.999998i \(-0.500558\pi\)
−0.00175151 + 0.999998i \(0.500558\pi\)
\(648\) −9.94225 −0.390568
\(649\) 35.1013 1.37785
\(650\) 15.7058 0.616034
\(651\) 16.0096 0.627466
\(652\) 6.33254 0.248001
\(653\) −9.03587 −0.353601 −0.176801 0.984247i \(-0.556575\pi\)
−0.176801 + 0.984247i \(0.556575\pi\)
\(654\) −26.4474 −1.03418
\(655\) 35.8860 1.40218
\(656\) −5.57177 −0.217541
\(657\) −13.0095 −0.507548
\(658\) −4.46311 −0.173990
\(659\) 7.78944 0.303433 0.151717 0.988424i \(-0.451520\pi\)
0.151717 + 0.988424i \(0.451520\pi\)
\(660\) −23.6935 −0.922268
\(661\) −27.8692 −1.08399 −0.541993 0.840383i \(-0.682330\pi\)
−0.541993 + 0.840383i \(0.682330\pi\)
\(662\) −25.5384 −0.992576
\(663\) 16.4128 0.637422
\(664\) 4.96828 0.192807
\(665\) −28.1524 −1.09170
\(666\) −5.14285 −0.199281
\(667\) 0 0
\(668\) −20.6741 −0.799906
\(669\) 14.5321 0.561845
\(670\) −35.9613 −1.38930
\(671\) −14.6059 −0.563856
\(672\) 4.62158 0.178281
\(673\) 0.885122 0.0341189 0.0170595 0.999854i \(-0.494570\pi\)
0.0170595 + 0.999854i \(0.494570\pi\)
\(674\) −32.6280 −1.25678
\(675\) −9.80428 −0.377367
\(676\) −11.1601 −0.429234
\(677\) 45.3102 1.74141 0.870707 0.491802i \(-0.163662\pi\)
0.870707 + 0.491802i \(0.163662\pi\)
\(678\) −27.5919 −1.05966
\(679\) −16.7146 −0.641446
\(680\) −20.7389 −0.795300
\(681\) 58.2105 2.23063
\(682\) 8.48528 0.324918
\(683\) −51.8395 −1.98358 −0.991791 0.127866i \(-0.959187\pi\)
−0.991791 + 0.127866i \(0.959187\pi\)
\(684\) 9.39543 0.359243
\(685\) 15.7871 0.603195
\(686\) −19.8731 −0.758760
\(687\) 33.1931 1.26640
\(688\) 1.63579 0.0623637
\(689\) −11.9984 −0.457102
\(690\) 0 0
\(691\) 31.3012 1.19075 0.595377 0.803447i \(-0.297003\pi\)
0.595377 + 0.803447i \(0.297003\pi\)
\(692\) 1.59817 0.0607532
\(693\) 12.5974 0.478534
\(694\) 11.6909 0.443779
\(695\) 2.17183 0.0823821
\(696\) −10.4571 −0.396375
\(697\) −28.3793 −1.07494
\(698\) 11.3012 0.427756
\(699\) 11.5370 0.436368
\(700\) 22.5256 0.851388
\(701\) 12.3084 0.464881 0.232440 0.972611i \(-0.425329\pi\)
0.232440 + 0.972611i \(0.425329\pi\)
\(702\) −1.14855 −0.0433493
\(703\) −6.91416 −0.260772
\(704\) 2.44949 0.0923186
\(705\) 22.1910 0.835762
\(706\) −25.1190 −0.945367
\(707\) 30.3210 1.14034
\(708\) 34.0427 1.27940
\(709\) −19.3568 −0.726959 −0.363480 0.931602i \(-0.618411\pi\)
−0.363480 + 0.931602i \(0.618411\pi\)
\(710\) 56.9536 2.13743
\(711\) 18.6666 0.700052
\(712\) −16.0689 −0.602207
\(713\) 0 0
\(714\) 23.5396 0.880948
\(715\) −13.5285 −0.505937
\(716\) 8.87107 0.331528
\(717\) 25.3243 0.945752
\(718\) −15.9761 −0.596222
\(719\) 0.616416 0.0229885 0.0114942 0.999934i \(-0.496341\pi\)
0.0114942 + 0.999934i \(0.496341\pi\)
\(720\) −10.7638 −0.401145
\(721\) −19.1139 −0.711840
\(722\) −6.36860 −0.237015
\(723\) −31.7873 −1.18218
\(724\) −4.26624 −0.158553
\(725\) −50.9679 −1.89290
\(726\) −11.8781 −0.440838
\(727\) −45.3126 −1.68055 −0.840275 0.542160i \(-0.817607\pi\)
−0.840275 + 0.542160i \(0.817607\pi\)
\(728\) 2.63883 0.0978015
\(729\) −20.2484 −0.749940
\(730\) 20.0376 0.741625
\(731\) 8.33173 0.308160
\(732\) −14.1655 −0.523571
\(733\) 17.3915 0.642370 0.321185 0.947017i \(-0.395919\pi\)
0.321185 + 0.947017i \(0.395919\pi\)
\(734\) −0.337877 −0.0124713
\(735\) 31.1014 1.14719
\(736\) 0 0
\(737\) 21.6339 0.796893
\(738\) −14.7294 −0.542195
\(739\) 33.9686 1.24956 0.624778 0.780803i \(-0.285190\pi\)
0.624778 + 0.780803i \(0.285190\pi\)
\(740\) 7.92118 0.291188
\(741\) 11.4525 0.420718
\(742\) −17.2083 −0.631737
\(743\) −25.9127 −0.950643 −0.475321 0.879812i \(-0.657668\pi\)
−0.475321 + 0.879812i \(0.657668\pi\)
\(744\) 8.22939 0.301704
\(745\) −11.3705 −0.416582
\(746\) −2.17582 −0.0796624
\(747\) 13.1340 0.480548
\(748\) 12.4763 0.456177
\(749\) −4.10021 −0.149818
\(750\) −63.6355 −2.32364
\(751\) −21.5515 −0.786427 −0.393213 0.919447i \(-0.628637\pi\)
−0.393213 + 0.919447i \(0.628637\pi\)
\(752\) −2.29416 −0.0836595
\(753\) −8.17831 −0.298034
\(754\) −5.97078 −0.217443
\(755\) −90.4041 −3.29014
\(756\) −1.64727 −0.0599108
\(757\) 30.5862 1.11167 0.555837 0.831292i \(-0.312398\pi\)
0.555837 + 0.831292i \(0.312398\pi\)
\(758\) −3.99367 −0.145057
\(759\) 0 0
\(760\) −14.4711 −0.524923
\(761\) 22.0332 0.798702 0.399351 0.916798i \(-0.369235\pi\)
0.399351 + 0.916798i \(0.369235\pi\)
\(762\) 19.5499 0.708218
\(763\) −21.6581 −0.784074
\(764\) −3.58630 −0.129748
\(765\) −54.8247 −1.98219
\(766\) 16.2398 0.586769
\(767\) 19.4377 0.701855
\(768\) 2.37562 0.0857228
\(769\) 42.3961 1.52884 0.764421 0.644717i \(-0.223025\pi\)
0.764421 + 0.644717i \(0.223025\pi\)
\(770\) −19.4028 −0.699230
\(771\) −20.8853 −0.752164
\(772\) 15.2870 0.550190
\(773\) 10.2548 0.368838 0.184419 0.982848i \(-0.440960\pi\)
0.184419 + 0.982848i \(0.440960\pi\)
\(774\) 4.32431 0.155434
\(775\) 40.1101 1.44080
\(776\) −8.59175 −0.308426
\(777\) −8.99091 −0.322547
\(778\) −3.96170 −0.142034
\(779\) −19.8025 −0.709497
\(780\) −13.1205 −0.469790
\(781\) −34.2626 −1.22601
\(782\) 0 0
\(783\) 3.72723 0.133200
\(784\) −3.21534 −0.114834
\(785\) −50.8659 −1.81548
\(786\) −20.9375 −0.746818
\(787\) 48.6462 1.73405 0.867025 0.498265i \(-0.166030\pi\)
0.867025 + 0.498265i \(0.166030\pi\)
\(788\) −7.79946 −0.277844
\(789\) −40.6129 −1.44586
\(790\) −28.7509 −1.02291
\(791\) −22.5953 −0.803396
\(792\) 6.47539 0.230093
\(793\) −8.08820 −0.287220
\(794\) 9.53339 0.338328
\(795\) 85.5615 3.03455
\(796\) 24.1394 0.855597
\(797\) 46.1175 1.63356 0.816782 0.576946i \(-0.195756\pi\)
0.816782 + 0.576946i \(0.195756\pi\)
\(798\) 16.4254 0.581453
\(799\) −11.6851 −0.413390
\(800\) 11.5788 0.409372
\(801\) −42.4792 −1.50093
\(802\) 3.05120 0.107742
\(803\) −12.0544 −0.425390
\(804\) 20.9814 0.739958
\(805\) 0 0
\(806\) 4.69882 0.165509
\(807\) −10.1720 −0.358070
\(808\) 15.5858 0.548307
\(809\) 33.9809 1.19470 0.597352 0.801979i \(-0.296220\pi\)
0.597352 + 0.801979i \(0.296220\pi\)
\(810\) 40.4819 1.42239
\(811\) 5.04290 0.177080 0.0885400 0.996073i \(-0.471780\pi\)
0.0885400 + 0.996073i \(0.471780\pi\)
\(812\) −8.56341 −0.300517
\(813\) −32.3885 −1.13592
\(814\) −4.76529 −0.167023
\(815\) −25.7842 −0.903182
\(816\) 12.1000 0.423585
\(817\) 5.81369 0.203395
\(818\) 39.7028 1.38818
\(819\) 6.97592 0.243759
\(820\) 22.6866 0.792251
\(821\) 2.44191 0.0852231 0.0426116 0.999092i \(-0.486432\pi\)
0.0426116 + 0.999092i \(0.486432\pi\)
\(822\) −9.21092 −0.321268
\(823\) −2.84938 −0.0993232 −0.0496616 0.998766i \(-0.515814\pi\)
−0.0496616 + 0.998766i \(0.515814\pi\)
\(824\) −9.82510 −0.342273
\(825\) 67.3777 2.34579
\(826\) 27.8779 0.969997
\(827\) 3.88626 0.135139 0.0675693 0.997715i \(-0.478476\pi\)
0.0675693 + 0.997715i \(0.478476\pi\)
\(828\) 0 0
\(829\) 20.3631 0.707239 0.353620 0.935389i \(-0.384951\pi\)
0.353620 + 0.935389i \(0.384951\pi\)
\(830\) −20.2294 −0.702172
\(831\) −72.0751 −2.50026
\(832\) 1.35643 0.0470258
\(833\) −16.3771 −0.567432
\(834\) −1.26714 −0.0438776
\(835\) 84.1789 2.91313
\(836\) 8.70565 0.301091
\(837\) −2.93321 −0.101387
\(838\) 30.8981 1.06736
\(839\) −7.05733 −0.243646 −0.121823 0.992552i \(-0.538874\pi\)
−0.121823 + 0.992552i \(0.538874\pi\)
\(840\) −18.8177 −0.649273
\(841\) −9.62388 −0.331858
\(842\) 2.14868 0.0740485
\(843\) 21.9933 0.757490
\(844\) −0.100647 −0.00346441
\(845\) 45.4406 1.56321
\(846\) −6.06477 −0.208511
\(847\) −9.72710 −0.334227
\(848\) −8.84555 −0.303758
\(849\) 35.0145 1.20169
\(850\) 58.9756 2.02285
\(851\) 0 0
\(852\) −33.2293 −1.13842
\(853\) −22.4781 −0.769635 −0.384818 0.922993i \(-0.625736\pi\)
−0.384818 + 0.922993i \(0.625736\pi\)
\(854\) −11.6003 −0.396953
\(855\) −38.2554 −1.30831
\(856\) −2.10762 −0.0720370
\(857\) 6.43977 0.219978 0.109989 0.993933i \(-0.464918\pi\)
0.109989 + 0.993933i \(0.464918\pi\)
\(858\) 7.89315 0.269468
\(859\) 37.7008 1.28633 0.643167 0.765726i \(-0.277620\pi\)
0.643167 + 0.765726i \(0.277620\pi\)
\(860\) −6.66044 −0.227119
\(861\) −25.7504 −0.877571
\(862\) 25.1005 0.854927
\(863\) 34.5566 1.17632 0.588159 0.808745i \(-0.299853\pi\)
0.588159 + 0.808745i \(0.299853\pi\)
\(864\) −0.846745 −0.0288068
\(865\) −6.50727 −0.221254
\(866\) 5.95292 0.202288
\(867\) 21.2449 0.721513
\(868\) 6.73913 0.228741
\(869\) 17.2962 0.586733
\(870\) 42.5782 1.44353
\(871\) 11.9800 0.405926
\(872\) −11.1328 −0.377006
\(873\) −22.7129 −0.768715
\(874\) 0 0
\(875\) −52.1118 −1.76170
\(876\) −11.6909 −0.394997
\(877\) −7.17164 −0.242169 −0.121085 0.992642i \(-0.538637\pi\)
−0.121085 + 0.992642i \(0.538637\pi\)
\(878\) 24.1766 0.815921
\(879\) 37.5062 1.26505
\(880\) −9.97360 −0.336210
\(881\) 8.08174 0.272281 0.136140 0.990690i \(-0.456530\pi\)
0.136140 + 0.990690i \(0.456530\pi\)
\(882\) −8.49998 −0.286209
\(883\) −41.0042 −1.37990 −0.689950 0.723857i \(-0.742367\pi\)
−0.689950 + 0.723857i \(0.742367\pi\)
\(884\) 6.90887 0.232370
\(885\) −138.612 −4.65939
\(886\) 6.51214 0.218780
\(887\) −37.8321 −1.27028 −0.635138 0.772398i \(-0.719057\pi\)
−0.635138 + 0.772398i \(0.719057\pi\)
\(888\) −4.62158 −0.155090
\(889\) 16.0096 0.536945
\(890\) 65.4278 2.19315
\(891\) −24.3534 −0.815871
\(892\) 6.11720 0.204819
\(893\) −8.15361 −0.272850
\(894\) 6.63406 0.221876
\(895\) −36.1204 −1.20737
\(896\) 1.94542 0.0649919
\(897\) 0 0
\(898\) 29.7300 0.992102
\(899\) −15.2484 −0.508562
\(900\) 30.6093 1.02031
\(901\) −45.0541 −1.50097
\(902\) −13.6480 −0.454429
\(903\) 7.55991 0.251578
\(904\) −11.6146 −0.386296
\(905\) 17.3709 0.577427
\(906\) 52.7459 1.75236
\(907\) −15.9611 −0.529978 −0.264989 0.964251i \(-0.585368\pi\)
−0.264989 + 0.964251i \(0.585368\pi\)
\(908\) 24.5033 0.813170
\(909\) 41.2022 1.36659
\(910\) −10.7445 −0.356178
\(911\) 37.5172 1.24300 0.621501 0.783414i \(-0.286523\pi\)
0.621501 + 0.783414i \(0.286523\pi\)
\(912\) 8.44312 0.279579
\(913\) 12.1698 0.402760
\(914\) 4.37251 0.144630
\(915\) 57.6776 1.90676
\(916\) 13.9724 0.461661
\(917\) −17.1460 −0.566210
\(918\) −4.31282 −0.142344
\(919\) 26.7175 0.881330 0.440665 0.897672i \(-0.354743\pi\)
0.440665 + 0.897672i \(0.354743\pi\)
\(920\) 0 0
\(921\) 78.2979 2.58000
\(922\) 7.86593 0.259051
\(923\) −18.9733 −0.624513
\(924\) 11.3205 0.372417
\(925\) −22.5256 −0.740638
\(926\) −21.9472 −0.721230
\(927\) −25.9733 −0.853076
\(928\) −4.40183 −0.144497
\(929\) −43.8177 −1.43761 −0.718805 0.695211i \(-0.755311\pi\)
−0.718805 + 0.695211i \(0.755311\pi\)
\(930\) −33.5077 −1.09876
\(931\) −11.4275 −0.374523
\(932\) 4.85641 0.159077
\(933\) −47.3251 −1.54936
\(934\) −29.6404 −0.969864
\(935\) −50.7997 −1.66133
\(936\) 3.58582 0.117206
\(937\) −34.4360 −1.12498 −0.562488 0.826805i \(-0.690156\pi\)
−0.562488 + 0.826805i \(0.690156\pi\)
\(938\) 17.1819 0.561010
\(939\) −22.9787 −0.749883
\(940\) 9.34115 0.304675
\(941\) 35.8492 1.16865 0.584326 0.811519i \(-0.301359\pi\)
0.584326 + 0.811519i \(0.301359\pi\)
\(942\) 29.6775 0.966945
\(943\) 0 0
\(944\) 14.3300 0.466403
\(945\) 6.70722 0.218186
\(946\) 4.00684 0.130274
\(947\) 0.975923 0.0317132 0.0158566 0.999874i \(-0.494952\pi\)
0.0158566 + 0.999874i \(0.494952\pi\)
\(948\) 16.7746 0.544813
\(949\) −6.67524 −0.216688
\(950\) 41.1518 1.33514
\(951\) −43.5903 −1.41351
\(952\) 9.90883 0.321147
\(953\) 16.6476 0.539267 0.269634 0.962963i \(-0.413097\pi\)
0.269634 + 0.962963i \(0.413097\pi\)
\(954\) −23.3838 −0.757079
\(955\) 14.6024 0.472522
\(956\) 10.6601 0.344771
\(957\) −25.6145 −0.827999
\(958\) 38.7485 1.25191
\(959\) −7.54292 −0.243574
\(960\) −9.67283 −0.312189
\(961\) −19.0000 −0.612903
\(962\) −2.63883 −0.0850792
\(963\) −5.57164 −0.179544
\(964\) −13.3806 −0.430961
\(965\) −62.2440 −2.00370
\(966\) 0 0
\(967\) 52.3940 1.68488 0.842439 0.538792i \(-0.181119\pi\)
0.842439 + 0.538792i \(0.181119\pi\)
\(968\) −5.00000 −0.160706
\(969\) 43.0043 1.38150
\(970\) 34.9831 1.12324
\(971\) −51.8696 −1.66457 −0.832287 0.554344i \(-0.812969\pi\)
−0.832287 + 0.554344i \(0.812969\pi\)
\(972\) −21.0788 −0.676102
\(973\) −1.03768 −0.0332664
\(974\) 15.6777 0.502347
\(975\) 37.3111 1.19491
\(976\) −5.96285 −0.190866
\(977\) 18.1728 0.581399 0.290699 0.956814i \(-0.406112\pi\)
0.290699 + 0.956814i \(0.406112\pi\)
\(978\) 15.0437 0.481045
\(979\) −39.3606 −1.25797
\(980\) 13.0919 0.418206
\(981\) −29.4304 −0.939641
\(982\) −16.8561 −0.537899
\(983\) 23.6079 0.752975 0.376488 0.926422i \(-0.377132\pi\)
0.376488 + 0.926422i \(0.377132\pi\)
\(984\) −13.2364 −0.421961
\(985\) 31.7571 1.01187
\(986\) −22.4204 −0.714010
\(987\) −10.6026 −0.337486
\(988\) 4.82085 0.153372
\(989\) 0 0
\(990\) −26.3659 −0.837964
\(991\) 3.77401 0.119885 0.0599427 0.998202i \(-0.480908\pi\)
0.0599427 + 0.998202i \(0.480908\pi\)
\(992\) 3.46410 0.109985
\(993\) −60.6694 −1.92529
\(994\) −27.2119 −0.863108
\(995\) −98.2884 −3.11595
\(996\) 11.8027 0.373984
\(997\) −14.6939 −0.465361 −0.232681 0.972553i \(-0.574750\pi\)
−0.232681 + 0.972553i \(0.574750\pi\)
\(998\) −16.9853 −0.537661
\(999\) 1.64727 0.0521175
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1058.2.a.n.1.5 8
3.2 odd 2 9522.2.a.ce.1.8 8
4.3 odd 2 8464.2.a.cb.1.3 8
23.22 odd 2 inner 1058.2.a.n.1.6 yes 8
69.68 even 2 9522.2.a.ce.1.1 8
92.91 even 2 8464.2.a.cb.1.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1058.2.a.n.1.5 8 1.1 even 1 trivial
1058.2.a.n.1.6 yes 8 23.22 odd 2 inner
8464.2.a.cb.1.3 8 4.3 odd 2
8464.2.a.cb.1.4 8 92.91 even 2
9522.2.a.ce.1.1 8 69.68 even 2
9522.2.a.ce.1.8 8 3.2 odd 2