Properties

Label 1058.2.a.n.1.5
Level 10581058
Weight 22
Character 1058.1
Self dual yes
Analytic conductor 8.4488.448
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1058,2,Mod(1,1058)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1058, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1058.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1058=2232 1058 = 2 \cdot 23^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1058.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 8.448172533858.44817253385
Analytic rank: 00
Dimension: 88
Coefficient field: 8.8.819879542784.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x84x722x6+80x5+151x4440x3298x2+532x146 x^{8} - 4x^{7} - 22x^{6} + 80x^{5} + 151x^{4} - 440x^{3} - 298x^{2} + 532x - 146 Copy content Toggle raw display
Coefficient ring: Z[a1,,a17]\Z[a_1, \ldots, a_{17}]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.5
Root 0.4437680.443768 of defining polynomial
Character χ\chi == 1058.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000q2+2.37562q3+1.00000q44.07171q5+2.37562q6+1.94542q7+1.00000q8+2.64357q94.07171q10+2.44949q11+2.37562q12+1.35643q13+1.94542q149.67283q15+1.00000q16+5.09341q17+2.64357q18+3.55407q194.07171q20+4.62158q21+2.44949q22+2.37562q24+11.5788q25+1.35643q260.846745q27+1.94542q284.40183q299.67283q30+3.46410q31+1.00000q32+5.81906q33+5.09341q347.92118q35+2.64357q361.94542q37+3.55407q38+3.22236q394.07171q405.57177q41+4.62158q42+1.63579q43+2.44949q4410.7638q452.29416q47+2.37562q483.21534q49+11.5788q50+12.1000q51+1.35643q528.84555q530.846745q549.97360q55+1.94542q56+8.44312q574.40183q58+14.3300q599.67283q605.96285q61+3.46410q62+5.14285q63+1.00000q645.52299q65+5.81906q66+8.83199q67+5.09341q687.92118q7013.9877q71+2.64357q724.92118q731.94542q74+27.5068q75+3.55407q76+4.76529q77+3.22236q78+7.06114q794.07171q809.94225q815.57177q82+4.96828q83+4.62158q8420.7389q85+1.63579q8610.4571q87+2.44949q8816.0689q8910.7638q90+2.63883q91+8.22939q932.29416q9414.4711q95+2.37562q968.59175q973.21534q98+6.47539q99+O(q100)q+1.00000 q^{2} +2.37562 q^{3} +1.00000 q^{4} -4.07171 q^{5} +2.37562 q^{6} +1.94542 q^{7} +1.00000 q^{8} +2.64357 q^{9} -4.07171 q^{10} +2.44949 q^{11} +2.37562 q^{12} +1.35643 q^{13} +1.94542 q^{14} -9.67283 q^{15} +1.00000 q^{16} +5.09341 q^{17} +2.64357 q^{18} +3.55407 q^{19} -4.07171 q^{20} +4.62158 q^{21} +2.44949 q^{22} +2.37562 q^{24} +11.5788 q^{25} +1.35643 q^{26} -0.846745 q^{27} +1.94542 q^{28} -4.40183 q^{29} -9.67283 q^{30} +3.46410 q^{31} +1.00000 q^{32} +5.81906 q^{33} +5.09341 q^{34} -7.92118 q^{35} +2.64357 q^{36} -1.94542 q^{37} +3.55407 q^{38} +3.22236 q^{39} -4.07171 q^{40} -5.57177 q^{41} +4.62158 q^{42} +1.63579 q^{43} +2.44949 q^{44} -10.7638 q^{45} -2.29416 q^{47} +2.37562 q^{48} -3.21534 q^{49} +11.5788 q^{50} +12.1000 q^{51} +1.35643 q^{52} -8.84555 q^{53} -0.846745 q^{54} -9.97360 q^{55} +1.94542 q^{56} +8.44312 q^{57} -4.40183 q^{58} +14.3300 q^{59} -9.67283 q^{60} -5.96285 q^{61} +3.46410 q^{62} +5.14285 q^{63} +1.00000 q^{64} -5.52299 q^{65} +5.81906 q^{66} +8.83199 q^{67} +5.09341 q^{68} -7.92118 q^{70} -13.9877 q^{71} +2.64357 q^{72} -4.92118 q^{73} -1.94542 q^{74} +27.5068 q^{75} +3.55407 q^{76} +4.76529 q^{77} +3.22236 q^{78} +7.06114 q^{79} -4.07171 q^{80} -9.94225 q^{81} -5.57177 q^{82} +4.96828 q^{83} +4.62158 q^{84} -20.7389 q^{85} +1.63579 q^{86} -10.4571 q^{87} +2.44949 q^{88} -16.0689 q^{89} -10.7638 q^{90} +2.63883 q^{91} +8.22939 q^{93} -2.29416 q^{94} -14.4711 q^{95} +2.37562 q^{96} -8.59175 q^{97} -3.21534 q^{98} +6.47539 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+8q2+4q3+8q4+4q6+8q8+20q9+4q12+12q13+8q16+20q18+4q24+32q25+12q26+40q27+8q3212q35+20q3636q39++32q98+O(q100) 8 q + 8 q^{2} + 4 q^{3} + 8 q^{4} + 4 q^{6} + 8 q^{8} + 20 q^{9} + 4 q^{12} + 12 q^{13} + 8 q^{16} + 20 q^{18} + 4 q^{24} + 32 q^{25} + 12 q^{26} + 40 q^{27} + 8 q^{32} - 12 q^{35} + 20 q^{36} - 36 q^{39}+ \cdots + 32 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.00000 0.707107
33 2.37562 1.37156 0.685782 0.727807i 0.259460π-0.259460\pi
0.685782 + 0.727807i 0.259460π0.259460\pi
44 1.00000 0.500000
55 −4.07171 −1.82092 −0.910461 0.413594i 0.864273π-0.864273\pi
−0.910461 + 0.413594i 0.864273π0.864273\pi
66 2.37562 0.969843
77 1.94542 0.735300 0.367650 0.929964i 0.380163π-0.380163\pi
0.367650 + 0.929964i 0.380163π0.380163\pi
88 1.00000 0.353553
99 2.64357 0.881190
1010 −4.07171 −1.28759
1111 2.44949 0.738549 0.369274 0.929320i 0.379606π-0.379606\pi
0.369274 + 0.929320i 0.379606π0.379606\pi
1212 2.37562 0.685782
1313 1.35643 0.376206 0.188103 0.982149i 0.439766π-0.439766\pi
0.188103 + 0.982149i 0.439766π0.439766\pi
1414 1.94542 0.519935
1515 −9.67283 −2.49751
1616 1.00000 0.250000
1717 5.09341 1.23533 0.617667 0.786440i 0.288078π-0.288078\pi
0.617667 + 0.786440i 0.288078π0.288078\pi
1818 2.64357 0.623095
1919 3.55407 0.815359 0.407680 0.913125i 0.366338π-0.366338\pi
0.407680 + 0.913125i 0.366338π0.366338\pi
2020 −4.07171 −0.910461
2121 4.62158 1.00851
2222 2.44949 0.522233
2323 0 0
2424 2.37562 0.484921
2525 11.5788 2.31576
2626 1.35643 0.266018
2727 −0.846745 −0.162956
2828 1.94542 0.367650
2929 −4.40183 −0.817400 −0.408700 0.912669i 0.634018π-0.634018\pi
−0.408700 + 0.912669i 0.634018π0.634018\pi
3030 −9.67283 −1.76601
3131 3.46410 0.622171 0.311086 0.950382i 0.399307π-0.399307\pi
0.311086 + 0.950382i 0.399307π0.399307\pi
3232 1.00000 0.176777
3333 5.81906 1.01297
3434 5.09341 0.873513
3535 −7.92118 −1.33892
3636 2.64357 0.440595
3737 −1.94542 −0.319825 −0.159913 0.987131i 0.551121π-0.551121\pi
−0.159913 + 0.987131i 0.551121π0.551121\pi
3838 3.55407 0.576546
3939 3.22236 0.515991
4040 −4.07171 −0.643793
4141 −5.57177 −0.870165 −0.435082 0.900391i 0.643281π-0.643281\pi
−0.435082 + 0.900391i 0.643281π0.643281\pi
4242 4.62158 0.713125
4343 1.63579 0.249455 0.124727 0.992191i 0.460194π-0.460194\pi
0.124727 + 0.992191i 0.460194π0.460194\pi
4444 2.44949 0.369274
4545 −10.7638 −1.60458
4646 0 0
4747 −2.29416 −0.334638 −0.167319 0.985903i 0.553511π-0.553511\pi
−0.167319 + 0.985903i 0.553511π0.553511\pi
4848 2.37562 0.342891
4949 −3.21534 −0.459334
5050 11.5788 1.63749
5151 12.1000 1.69434
5252 1.35643 0.188103
5353 −8.84555 −1.21503 −0.607515 0.794308i 0.707834π-0.707834\pi
−0.607515 + 0.794308i 0.707834π0.707834\pi
5454 −0.846745 −0.115227
5555 −9.97360 −1.34484
5656 1.94542 0.259968
5757 8.44312 1.11832
5858 −4.40183 −0.577989
5959 14.3300 1.86561 0.932806 0.360379i 0.117353π-0.117353\pi
0.932806 + 0.360379i 0.117353π0.117353\pi
6060 −9.67283 −1.24876
6161 −5.96285 −0.763465 −0.381733 0.924273i 0.624672π-0.624672\pi
−0.381733 + 0.924273i 0.624672π0.624672\pi
6262 3.46410 0.439941
6363 5.14285 0.647938
6464 1.00000 0.125000
6565 −5.52299 −0.685043
6666 5.81906 0.716276
6767 8.83199 1.07900 0.539499 0.841986i 0.318614π-0.318614\pi
0.539499 + 0.841986i 0.318614π0.318614\pi
6868 5.09341 0.617667
6969 0 0
7070 −7.92118 −0.946762
7171 −13.9877 −1.66003 −0.830014 0.557742i 0.811668π-0.811668\pi
−0.830014 + 0.557742i 0.811668π0.811668\pi
7272 2.64357 0.311548
7373 −4.92118 −0.575981 −0.287990 0.957633i 0.592987π-0.592987\pi
−0.287990 + 0.957633i 0.592987π0.592987\pi
7474 −1.94542 −0.226150
7575 27.5068 3.17621
7676 3.55407 0.407680
7777 4.76529 0.543055
7878 3.22236 0.364861
7979 7.06114 0.794440 0.397220 0.917723i 0.369975π-0.369975\pi
0.397220 + 0.917723i 0.369975π0.369975\pi
8080 −4.07171 −0.455231
8181 −9.94225 −1.10469
8282 −5.57177 −0.615299
8383 4.96828 0.545340 0.272670 0.962108i 0.412093π-0.412093\pi
0.272670 + 0.962108i 0.412093π0.412093\pi
8484 4.62158 0.504256
8585 −20.7389 −2.24945
8686 1.63579 0.176391
8787 −10.4571 −1.12112
8888 2.44949 0.261116
8989 −16.0689 −1.70330 −0.851650 0.524112i 0.824397π-0.824397\pi
−0.851650 + 0.524112i 0.824397π0.824397\pi
9090 −10.7638 −1.13461
9191 2.63883 0.276624
9292 0 0
9393 8.22939 0.853348
9494 −2.29416 −0.236625
9595 −14.4711 −1.48471
9696 2.37562 0.242461
9797 −8.59175 −0.872360 −0.436180 0.899859i 0.643669π-0.643669\pi
−0.436180 + 0.899859i 0.643669π0.643669\pi
9898 −3.21534 −0.324798
9999 6.47539 0.650802
100100 11.5788 1.15788
101101 15.5858 1.55085 0.775423 0.631442i 0.217536π-0.217536\pi
0.775423 + 0.631442i 0.217536π0.217536\pi
102102 12.1000 1.19808
103103 −9.82510 −0.968095 −0.484048 0.875042i 0.660834π-0.660834\pi
−0.484048 + 0.875042i 0.660834π0.660834\pi
104104 1.35643 0.133009
105105 −18.8177 −1.83642
106106 −8.84555 −0.859156
107107 −2.10762 −0.203751 −0.101876 0.994797i 0.532484π-0.532484\pi
−0.101876 + 0.994797i 0.532484π0.532484\pi
108108 −0.846745 −0.0814781
109109 −11.1328 −1.06633 −0.533166 0.846010i 0.678998π-0.678998\pi
−0.533166 + 0.846010i 0.678998π0.678998\pi
110110 −9.97360 −0.950946
111111 −4.62158 −0.438661
112112 1.94542 0.183825
113113 −11.6146 −1.09261 −0.546305 0.837586i 0.683966π-0.683966\pi
−0.546305 + 0.837586i 0.683966π0.683966\pi
114114 8.44312 0.790770
115115 0 0
116116 −4.40183 −0.408700
117117 3.58582 0.331509
118118 14.3300 1.31919
119119 9.90883 0.908341
120120 −9.67283 −0.883004
121121 −5.00000 −0.454545
122122 −5.96285 −0.539851
123123 −13.2364 −1.19349
124124 3.46410 0.311086
125125 −26.7869 −2.39590
126126 5.14285 0.458162
127127 8.22939 0.730240 0.365120 0.930960i 0.381028π-0.381028\pi
0.365120 + 0.930960i 0.381028π0.381028\pi
128128 1.00000 0.0883883
129129 3.88600 0.342144
130130 −5.52299 −0.484398
131131 −8.81351 −0.770040 −0.385020 0.922908i 0.625805π-0.625805\pi
−0.385020 + 0.922908i 0.625805π0.625805\pi
132132 5.81906 0.506484
133133 6.91416 0.599533
134134 8.83199 0.762967
135135 3.44770 0.296730
136136 5.09341 0.436757
137137 −3.87727 −0.331258 −0.165629 0.986188i 0.552965π-0.552965\pi
−0.165629 + 0.986188i 0.552965π0.552965\pi
138138 0 0
139139 −0.533395 −0.0452420 −0.0226210 0.999744i 0.507201π-0.507201\pi
−0.0226210 + 0.999744i 0.507201π0.507201\pi
140140 −7.92118 −0.669462
141141 −5.45005 −0.458977
142142 −13.9877 −1.17382
143143 3.32256 0.277847
144144 2.64357 0.220297
145145 17.9230 1.48842
146146 −4.92118 −0.407280
147147 −7.63843 −0.630007
148148 −1.94542 −0.159913
149149 2.79256 0.228775 0.114388 0.993436i 0.463509π-0.463509\pi
0.114388 + 0.993436i 0.463509π0.463509\pi
150150 27.5068 2.24592
151151 22.2030 1.80685 0.903427 0.428742i 0.141043π-0.141043\pi
0.903427 + 0.428742i 0.141043π0.141043\pi
152152 3.55407 0.288273
153153 13.4648 1.08856
154154 4.76529 0.383998
155155 −14.1048 −1.13293
156156 3.22236 0.257996
157157 12.4925 0.997012 0.498506 0.866886i 0.333882π-0.333882\pi
0.498506 + 0.866886i 0.333882π0.333882\pi
158158 7.06114 0.561754
159159 −21.0137 −1.66649
160160 −4.07171 −0.321897
161161 0 0
162162 −9.94225 −0.781137
163163 6.33254 0.496003 0.248001 0.968760i 0.420226π-0.420226\pi
0.248001 + 0.968760i 0.420226π0.420226\pi
164164 −5.57177 −0.435082
165165 −23.6935 −1.84454
166166 4.96828 0.385613
167167 −20.6741 −1.59981 −0.799906 0.600126i 0.795117π-0.795117\pi
−0.799906 + 0.600126i 0.795117π0.795117\pi
168168 4.62158 0.356562
169169 −11.1601 −0.858469
170170 −20.7389 −1.59060
171171 9.39543 0.718486
172172 1.63579 0.124727
173173 1.59817 0.121506 0.0607532 0.998153i 0.480650π-0.480650\pi
0.0607532 + 0.998153i 0.480650π0.480650\pi
174174 −10.4571 −0.792749
175175 22.5256 1.70278
176176 2.44949 0.184637
177177 34.0427 2.55881
178178 −16.0689 −1.20441
179179 8.87107 0.663055 0.331528 0.943446i 0.392436π-0.392436\pi
0.331528 + 0.943446i 0.392436π0.392436\pi
180180 −10.7638 −0.802289
181181 −4.26624 −0.317107 −0.158553 0.987350i 0.550683π-0.550683\pi
−0.158553 + 0.987350i 0.550683π0.550683\pi
182182 2.63883 0.195603
183183 −14.1655 −1.04714
184184 0 0
185185 7.92118 0.582377
186186 8.22939 0.603408
187187 12.4763 0.912355
188188 −2.29416 −0.167319
189189 −1.64727 −0.119822
190190 −14.4711 −1.04985
191191 −3.58630 −0.259496 −0.129748 0.991547i 0.541417π-0.541417\pi
−0.129748 + 0.991547i 0.541417π0.541417\pi
192192 2.37562 0.171446
193193 15.2870 1.10038 0.550190 0.835040i 0.314555π-0.314555\pi
0.550190 + 0.835040i 0.314555π0.314555\pi
194194 −8.59175 −0.616852
195195 −13.1205 −0.939580
196196 −3.21534 −0.229667
197197 −7.79946 −0.555689 −0.277844 0.960626i 0.589620π-0.589620\pi
−0.277844 + 0.960626i 0.589620π0.589620\pi
198198 6.47539 0.460186
199199 24.1394 1.71119 0.855597 0.517642i 0.173190π-0.173190\pi
0.855597 + 0.517642i 0.173190π0.173190\pi
200200 11.5788 0.818744
201201 20.9814 1.47992
202202 15.5858 1.09661
203203 −8.56341 −0.601034
204204 12.1000 0.847171
205205 22.6866 1.58450
206206 −9.82510 −0.684547
207207 0 0
208208 1.35643 0.0940516
209209 8.70565 0.602183
210210 −18.8177 −1.29855
211211 −0.100647 −0.00692882 −0.00346441 0.999994i 0.501103π-0.501103\pi
−0.00346441 + 0.999994i 0.501103π0.501103\pi
212212 −8.84555 −0.607515
213213 −33.2293 −2.27684
214214 −2.10762 −0.144074
215215 −6.66044 −0.454238
216216 −0.846745 −0.0576137
217217 6.73913 0.457482
218218 −11.1328 −0.754011
219219 −11.6909 −0.789995
220220 −9.97360 −0.672420
221221 6.90887 0.464741
222222 −4.62158 −0.310180
223223 6.11720 0.409638 0.204819 0.978800i 0.434339π-0.434339\pi
0.204819 + 0.978800i 0.434339π0.434339\pi
224224 1.94542 0.129984
225225 30.6093 2.04062
226226 −11.6146 −0.772592
227227 24.5033 1.62634 0.813170 0.582027i 0.197740π-0.197740\pi
0.813170 + 0.582027i 0.197740π0.197740\pi
228228 8.44312 0.559159
229229 13.9724 0.923322 0.461661 0.887056i 0.347254π-0.347254\pi
0.461661 + 0.887056i 0.347254π0.347254\pi
230230 0 0
231231 11.3205 0.744835
232232 −4.40183 −0.288994
233233 4.85641 0.318154 0.159077 0.987266i 0.449148π-0.449148\pi
0.159077 + 0.987266i 0.449148π0.449148\pi
234234 3.58582 0.234412
235235 9.34115 0.609350
236236 14.3300 0.932806
237237 16.7746 1.08963
238238 9.90883 0.642294
239239 10.6601 0.689543 0.344771 0.938687i 0.387956π-0.387956\pi
0.344771 + 0.938687i 0.387956π0.387956\pi
240240 −9.67283 −0.624378
241241 −13.3806 −0.861922 −0.430961 0.902371i 0.641825π-0.641825\pi
−0.430961 + 0.902371i 0.641825π0.641825\pi
242242 −5.00000 −0.321412
243243 −21.0788 −1.35220
244244 −5.96285 −0.381733
245245 13.0919 0.836412
246246 −13.2364 −0.843923
247247 4.82085 0.306743
248248 3.46410 0.219971
249249 11.8027 0.747969
250250 −26.7869 −1.69415
251251 −3.44260 −0.217295 −0.108647 0.994080i 0.534652π-0.534652\pi
−0.108647 + 0.994080i 0.534652π0.534652\pi
252252 5.14285 0.323969
253253 0 0
254254 8.22939 0.516358
255255 −49.2677 −3.08526
256256 1.00000 0.0625000
257257 −8.79150 −0.548399 −0.274199 0.961673i 0.588413π-0.588413\pi
−0.274199 + 0.961673i 0.588413π0.588413\pi
258258 3.88600 0.241932
259259 −3.78466 −0.235167
260260 −5.52299 −0.342521
261261 −11.6365 −0.720284
262262 −8.81351 −0.544500
263263 −17.0957 −1.05417 −0.527083 0.849814i 0.676714π-0.676714\pi
−0.527083 + 0.849814i 0.676714π0.676714\pi
264264 5.81906 0.358138
265265 36.0165 2.21248
266266 6.91416 0.423934
267267 −38.1736 −2.33618
268268 8.83199 0.539499
269269 −4.28181 −0.261067 −0.130533 0.991444i 0.541669π-0.541669\pi
−0.130533 + 0.991444i 0.541669π0.541669\pi
270270 3.44770 0.209820
271271 −13.6337 −0.828190 −0.414095 0.910234i 0.635902π-0.635902\pi
−0.414095 + 0.910234i 0.635902π0.635902\pi
272272 5.09341 0.308834
273273 6.26885 0.379408
274274 −3.87727 −0.234235
275275 28.3621 1.71030
276276 0 0
277277 −30.3395 −1.82292 −0.911462 0.411384i 0.865046π-0.865046\pi
−0.911462 + 0.411384i 0.865046π0.865046\pi
278278 −0.533395 −0.0319909
279279 9.15759 0.548251
280280 −7.92118 −0.473381
281281 9.25793 0.552282 0.276141 0.961117i 0.410944π-0.410944\pi
0.276141 + 0.961117i 0.410944π0.410944\pi
282282 −5.45005 −0.324546
283283 14.7391 0.876149 0.438074 0.898939i 0.355661π-0.355661\pi
0.438074 + 0.898939i 0.355661π0.355661\pi
284284 −13.9877 −0.830014
285285 −34.3779 −2.03637
286286 3.32256 0.196467
287287 −10.8394 −0.639832
288288 2.64357 0.155774
289289 8.94287 0.526051
290290 17.9230 1.05247
291291 −20.4107 −1.19650
292292 −4.92118 −0.287990
293293 15.7879 0.922342 0.461171 0.887311i 0.347429π-0.347429\pi
0.461171 + 0.887311i 0.347429π0.347429\pi
294294 −7.63843 −0.445482
295295 −58.3477 −3.39713
296296 −1.94542 −0.113075
297297 −2.07409 −0.120351
298298 2.79256 0.161769
299299 0 0
300300 27.5068 1.58811
301301 3.18229 0.183424
302302 22.2030 1.27764
303303 37.0260 2.12709
304304 3.55407 0.203840
305305 24.2790 1.39021
306306 13.4648 0.769731
307307 32.9589 1.88107 0.940533 0.339703i 0.110326π-0.110326\pi
0.940533 + 0.339703i 0.110326π0.110326\pi
308308 4.76529 0.271527
309309 −23.3407 −1.32781
310310 −14.1048 −0.801099
311311 −19.9212 −1.12963 −0.564813 0.825219i 0.691052π-0.691052\pi
−0.564813 + 0.825219i 0.691052π0.691052\pi
312312 3.22236 0.182430
313313 −9.67273 −0.546735 −0.273368 0.961910i 0.588138π-0.588138\pi
−0.273368 + 0.961910i 0.588138π0.588138\pi
314314 12.4925 0.704994
315315 −20.9402 −1.17985
316316 7.06114 0.397220
317317 −18.3490 −1.03058 −0.515292 0.857014i 0.672317π-0.672317\pi
−0.515292 + 0.857014i 0.672317π0.672317\pi
318318 −21.0137 −1.17839
319319 −10.7822 −0.603690
320320 −4.07171 −0.227615
321321 −5.00691 −0.279458
322322 0 0
323323 18.1023 1.00724
324324 −9.94225 −0.552347
325325 15.7058 0.871203
326326 6.33254 0.350727
327327 −26.4474 −1.46254
328328 −5.57177 −0.307650
329329 −4.46311 −0.246059
330330 −23.6935 −1.30428
331331 −25.5384 −1.40371 −0.701857 0.712317i 0.747646π-0.747646\pi
−0.701857 + 0.712317i 0.747646π0.747646\pi
332332 4.96828 0.272670
333333 −5.14285 −0.281827
334334 −20.6741 −1.13124
335335 −35.9613 −1.96477
336336 4.62158 0.252128
337337 −32.6280 −1.77736 −0.888681 0.458526i 0.848377π-0.848377\pi
−0.888681 + 0.458526i 0.848377π0.848377\pi
338338 −11.1601 −0.607029
339339 −27.5919 −1.49859
340340 −20.7389 −1.12472
341341 8.48528 0.459504
342342 9.39543 0.508046
343343 −19.8731 −1.07305
344344 1.63579 0.0881956
345345 0 0
346346 1.59817 0.0859181
347347 11.6909 0.627598 0.313799 0.949489i 0.398398π-0.398398\pi
0.313799 + 0.949489i 0.398398π0.398398\pi
348348 −10.4571 −0.560558
349349 11.3012 0.604939 0.302469 0.953159i 0.402189π-0.402189\pi
0.302469 + 0.953159i 0.402189π0.402189\pi
350350 22.5256 1.20405
351351 −1.14855 −0.0613051
352352 2.44949 0.130558
353353 −25.1190 −1.33695 −0.668476 0.743734i 0.733053π-0.733053\pi
−0.668476 + 0.743734i 0.733053π0.733053\pi
354354 34.0427 1.80935
355355 56.9536 3.02278
356356 −16.0689 −0.851650
357357 23.5396 1.24585
358358 8.87107 0.468851
359359 −15.9761 −0.843186 −0.421593 0.906785i 0.638529π-0.638529\pi
−0.421593 + 0.906785i 0.638529π0.638529\pi
360360 −10.7638 −0.567304
361361 −6.36860 −0.335189
362362 −4.26624 −0.224228
363363 −11.8781 −0.623438
364364 2.63883 0.138312
365365 20.0376 1.04882
366366 −14.1655 −0.740441
367367 −0.337877 −0.0176370 −0.00881851 0.999961i 0.502807π-0.502807\pi
−0.00881851 + 0.999961i 0.502807π0.502807\pi
368368 0 0
369369 −14.7294 −0.766780
370370 7.92118 0.411803
371371 −17.2083 −0.893411
372372 8.22939 0.426674
373373 −2.17582 −0.112660 −0.0563298 0.998412i 0.517940π-0.517940\pi
−0.0563298 + 0.998412i 0.517940π0.517940\pi
374374 12.4763 0.645132
375375 −63.6355 −3.28613
376376 −2.29416 −0.118312
377377 −5.97078 −0.307511
378378 −1.64727 −0.0847266
379379 −3.99367 −0.205141 −0.102571 0.994726i 0.532707π-0.532707\pi
−0.102571 + 0.994726i 0.532707π0.532707\pi
380380 −14.4711 −0.742353
381381 19.5499 1.00157
382382 −3.58630 −0.183491
383383 16.2398 0.829816 0.414908 0.909863i 0.363814π-0.363814\pi
0.414908 + 0.909863i 0.363814π0.363814\pi
384384 2.37562 0.121230
385385 −19.4028 −0.988861
386386 15.2870 0.778085
387387 4.32431 0.219817
388388 −8.59175 −0.436180
389389 −3.96170 −0.200866 −0.100433 0.994944i 0.532023π-0.532023\pi
−0.100433 + 0.994944i 0.532023π0.532023\pi
390390 −13.1205 −0.664384
391391 0 0
392392 −3.21534 −0.162399
393393 −20.9375 −1.05616
394394 −7.79946 −0.392931
395395 −28.7509 −1.44661
396396 6.47539 0.325401
397397 9.53339 0.478467 0.239234 0.970962i 0.423104π-0.423104\pi
0.239234 + 0.970962i 0.423104π0.423104\pi
398398 24.1394 1.21000
399399 16.4254 0.822299
400400 11.5788 0.578940
401401 3.05120 0.152370 0.0761848 0.997094i 0.475726π-0.475726\pi
0.0761848 + 0.997094i 0.475726π0.475726\pi
402402 20.9814 1.04646
403403 4.69882 0.234065
404404 15.5858 0.775423
405405 40.4819 2.01156
406406 −8.56341 −0.424995
407407 −4.76529 −0.236206
408408 12.1000 0.599040
409409 39.7028 1.96318 0.981589 0.191003i 0.0611742π-0.0611742\pi
0.981589 + 0.191003i 0.0611742π0.0611742\pi
410410 22.6866 1.12041
411411 −9.21092 −0.454341
412412 −9.82510 −0.484048
413413 27.8779 1.37178
414414 0 0
415415 −20.2294 −0.993022
416416 1.35643 0.0665045
417417 −1.26714 −0.0620523
418418 8.70565 0.425807
419419 30.8981 1.50947 0.754736 0.656028i 0.227765π-0.227765\pi
0.754736 + 0.656028i 0.227765π0.227765\pi
420420 −18.8177 −0.918210
421421 2.14868 0.104720 0.0523602 0.998628i 0.483326π-0.483326\pi
0.0523602 + 0.998628i 0.483326π0.483326\pi
422422 −0.100647 −0.00489942
423423 −6.06477 −0.294879
424424 −8.84555 −0.429578
425425 58.9756 2.86074
426426 −33.2293 −1.60997
427427 −11.6003 −0.561376
428428 −2.10762 −0.101876
429429 7.89315 0.381085
430430 −6.66044 −0.321195
431431 25.1005 1.20905 0.604524 0.796587i 0.293363π-0.293363\pi
0.604524 + 0.796587i 0.293363π0.293363\pi
432432 −0.846745 −0.0407390
433433 5.95292 0.286079 0.143040 0.989717i 0.454312π-0.454312\pi
0.143040 + 0.989717i 0.454312π0.454312\pi
434434 6.73913 0.323489
435435 42.5782 2.04147
436436 −11.1328 −0.533166
437437 0 0
438438 −11.6909 −0.558610
439439 24.1766 1.15389 0.576943 0.816784i 0.304245π-0.304245\pi
0.576943 + 0.816784i 0.304245π0.304245\pi
440440 −9.97360 −0.475473
441441 −8.49998 −0.404761
442442 6.90887 0.328621
443443 6.51214 0.309401 0.154701 0.987961i 0.450559π-0.450559\pi
0.154701 + 0.987961i 0.450559π0.450559\pi
444444 −4.62158 −0.219330
445445 65.4278 3.10158
446446 6.11720 0.289658
447447 6.63406 0.313780
448448 1.94542 0.0919125
449449 29.7300 1.40304 0.701522 0.712647i 0.252504π-0.252504\pi
0.701522 + 0.712647i 0.252504π0.252504\pi
450450 30.6093 1.44294
451451 −13.6480 −0.642659
452452 −11.6146 −0.546305
453453 52.7459 2.47822
454454 24.5033 1.15000
455455 −10.7445 −0.503712
456456 8.44312 0.395385
457457 4.37251 0.204538 0.102269 0.994757i 0.467390π-0.467390\pi
0.102269 + 0.994757i 0.467390π0.467390\pi
458458 13.9724 0.652887
459459 −4.31282 −0.201305
460460 0 0
461461 7.86593 0.366353 0.183177 0.983080i 0.441362π-0.441362\pi
0.183177 + 0.983080i 0.441362π0.441362\pi
462462 11.3205 0.526678
463463 −21.9472 −1.01997 −0.509987 0.860182i 0.670350π-0.670350\pi
−0.509987 + 0.860182i 0.670350π0.670350\pi
464464 −4.40183 −0.204350
465465 −33.5077 −1.55388
466466 4.85641 0.224969
467467 −29.6404 −1.37159 −0.685797 0.727793i 0.740546π-0.740546\pi
−0.685797 + 0.727793i 0.740546π0.740546\pi
468468 3.58582 0.165755
469469 17.1819 0.793387
470470 9.34115 0.430875
471471 29.6775 1.36747
472472 14.3300 0.659593
473473 4.00684 0.184235
474474 16.7746 0.770482
475475 41.1518 1.88818
476476 9.90883 0.454171
477477 −23.3838 −1.07067
478478 10.6601 0.487580
479479 38.7485 1.77046 0.885232 0.465150i 0.153999π-0.153999\pi
0.885232 + 0.465150i 0.153999π0.153999\pi
480480 −9.67283 −0.441502
481481 −2.63883 −0.120320
482482 −13.3806 −0.609471
483483 0 0
484484 −5.00000 −0.227273
485485 34.9831 1.58850
486486 −21.0788 −0.956152
487487 15.6777 0.710426 0.355213 0.934785i 0.384408π-0.384408\pi
0.355213 + 0.934785i 0.384408π0.384408\pi
488488 −5.96285 −0.269926
489489 15.0437 0.680300
490490 13.0919 0.591433
491491 −16.8561 −0.760705 −0.380352 0.924842i 0.624197π-0.624197\pi
−0.380352 + 0.924842i 0.624197π0.624197\pi
492492 −13.2364 −0.596744
493493 −22.4204 −1.00976
494494 4.82085 0.216900
495495 −26.3659 −1.18506
496496 3.46410 0.155543
497497 −27.2119 −1.22062
498498 11.8027 0.528894
499499 −16.9853 −0.760368 −0.380184 0.924911i 0.624139π-0.624139\pi
−0.380184 + 0.924911i 0.624139π0.624139\pi
500500 −26.7869 −1.19795
501501 −49.1138 −2.19424
502502 −3.44260 −0.153651
503503 5.66325 0.252512 0.126256 0.991998i 0.459704π-0.459704\pi
0.126256 + 0.991998i 0.459704π0.459704\pi
504504 5.14285 0.229081
505505 −63.4609 −2.82397
506506 0 0
507507 −26.5121 −1.17745
508508 8.22939 0.365120
509509 10.4262 0.462131 0.231066 0.972938i 0.425779π-0.425779\pi
0.231066 + 0.972938i 0.425779π0.425779\pi
510510 −49.2677 −2.18161
511511 −9.57376 −0.423518
512512 1.00000 0.0441942
513513 −3.00939 −0.132868
514514 −8.79150 −0.387776
515515 40.0049 1.76283
516516 3.88600 0.171072
517517 −5.61952 −0.247146
518518 −3.78466 −0.166288
519519 3.79664 0.166654
520520 −5.52299 −0.242199
521521 −27.8011 −1.21799 −0.608995 0.793174i 0.708427π-0.708427\pi
−0.608995 + 0.793174i 0.708427π0.708427\pi
522522 −11.6365 −0.509318
523523 −21.1154 −0.923312 −0.461656 0.887059i 0.652745π-0.652745\pi
−0.461656 + 0.887059i 0.652745π0.652745\pi
524524 −8.81351 −0.385020
525525 53.5123 2.33547
526526 −17.0957 −0.745408
527527 17.6441 0.768589
528528 5.81906 0.253242
529529 0 0
530530 36.0165 1.56446
531531 37.8824 1.64396
532532 6.91416 0.299767
533533 −7.55773 −0.327361
534534 −38.1736 −1.65193
535535 8.58162 0.371016
536536 8.83199 0.381484
537537 21.0743 0.909423
538538 −4.28181 −0.184602
539539 −7.87594 −0.339241
540540 3.44770 0.148365
541541 −31.1340 −1.33856 −0.669278 0.743012i 0.733396π-0.733396\pi
−0.669278 + 0.743012i 0.733396π0.733396\pi
542542 −13.6337 −0.585619
543543 −10.1350 −0.434933
544544 5.09341 0.218378
545545 45.3297 1.94171
546546 6.26885 0.268282
547547 23.8705 1.02063 0.510313 0.859988i 0.329529π-0.329529\pi
0.510313 + 0.859988i 0.329529π0.329529\pi
548548 −3.87727 −0.165629
549549 −15.7632 −0.672758
550550 28.3621 1.20937
551551 −15.6444 −0.666474
552552 0 0
553553 13.7369 0.584151
554554 −30.3395 −1.28900
555555 18.8177 0.798767
556556 −0.533395 −0.0226210
557557 −46.8977 −1.98712 −0.993560 0.113305i 0.963856π-0.963856\pi
−0.993560 + 0.113305i 0.963856π0.963856\pi
558558 9.15759 0.387672
559559 2.21883 0.0938465
560560 −7.92118 −0.334731
561561 29.6389 1.25135
562562 9.25793 0.390522
563563 −6.76143 −0.284960 −0.142480 0.989798i 0.545508π-0.545508\pi
−0.142480 + 0.989798i 0.545508π0.545508\pi
564564 −5.45005 −0.229489
565565 47.2913 1.98956
566566 14.7391 0.619531
567567 −19.3419 −0.812281
568568 −13.9877 −0.586909
569569 −2.06692 −0.0866497 −0.0433248 0.999061i 0.513795π-0.513795\pi
−0.0433248 + 0.999061i 0.513795π0.513795\pi
570570 −34.3779 −1.43993
571571 17.8482 0.746924 0.373462 0.927645i 0.378171π-0.378171\pi
0.373462 + 0.927645i 0.378171π0.378171\pi
572572 3.32256 0.138923
573573 −8.51969 −0.355915
574574 −10.8394 −0.452429
575575 0 0
576576 2.64357 0.110149
577577 −14.8779 −0.619376 −0.309688 0.950838i 0.600225π-0.600225\pi
−0.309688 + 0.950838i 0.600225π0.600225\pi
578578 8.94287 0.371974
579579 36.3160 1.50924
580580 17.9230 0.744211
581581 9.66540 0.400988
582582 −20.4107 −0.846052
583583 −21.6671 −0.897359
584584 −4.92118 −0.203640
585585 −14.6004 −0.603652
586586 15.7879 0.652194
587587 29.5524 1.21976 0.609879 0.792495i 0.291218π-0.291218\pi
0.609879 + 0.792495i 0.291218π0.291218\pi
588588 −7.63843 −0.315003
589589 12.3117 0.507293
590590 −58.3477 −2.40214
591591 −18.5286 −0.762163
592592 −1.94542 −0.0799563
593593 24.1392 0.991276 0.495638 0.868529i 0.334934π-0.334934\pi
0.495638 + 0.868529i 0.334934π0.334934\pi
594594 −2.07409 −0.0851011
595595 −40.3459 −1.65402
596596 2.79256 0.114388
597597 57.3460 2.34701
598598 0 0
599599 −12.0404 −0.491959 −0.245980 0.969275i 0.579110π-0.579110\pi
−0.245980 + 0.969275i 0.579110π0.579110\pi
600600 27.5068 1.12296
601601 32.6696 1.33262 0.666310 0.745675i 0.267873π-0.267873\pi
0.666310 + 0.745675i 0.267873π0.267873\pi
602602 3.18229 0.129700
603603 23.3480 0.950803
604604 22.2030 0.903427
605605 20.3585 0.827692
606606 37.0260 1.50408
607607 4.09287 0.166124 0.0830622 0.996544i 0.473530π-0.473530\pi
0.0830622 + 0.996544i 0.473530π0.473530\pi
608608 3.55407 0.144137
609609 −20.3434 −0.824357
610610 24.2790 0.983028
611611 −3.11187 −0.125893
612612 13.4648 0.544282
613613 −29.7094 −1.19995 −0.599975 0.800019i 0.704823π-0.704823\pi
−0.599975 + 0.800019i 0.704823π0.704823\pi
614614 32.9589 1.33011
615615 53.8948 2.17325
616616 4.76529 0.191999
617617 20.8936 0.841146 0.420573 0.907259i 0.361829π-0.361829\pi
0.420573 + 0.907259i 0.361829π0.361829\pi
618618 −23.3407 −0.938900
619619 −36.3294 −1.46020 −0.730102 0.683339i 0.760527π-0.760527\pi
−0.730102 + 0.683339i 0.760527π0.760527\pi
620620 −14.1048 −0.566463
621621 0 0
622622 −19.9212 −0.798767
623623 −31.2607 −1.25244
624624 3.22236 0.128998
625625 51.1745 2.04698
626626 −9.67273 −0.386600
627627 20.6813 0.825933
628628 12.4925 0.498506
629629 −9.90883 −0.395091
630630 −20.9402 −0.834277
631631 −1.77569 −0.0706890 −0.0353445 0.999375i 0.511253π-0.511253\pi
−0.0353445 + 0.999375i 0.511253π0.511253\pi
632632 7.06114 0.280877
633633 −0.239099 −0.00950333
634634 −18.3490 −0.728733
635635 −33.5077 −1.32971
636636 −21.0137 −0.833246
637637 −4.36139 −0.172805
638638 −10.7822 −0.426873
639639 −36.9773 −1.46280
640640 −4.07171 −0.160948
641641 −33.0344 −1.30478 −0.652389 0.757884i 0.726233π-0.726233\pi
−0.652389 + 0.757884i 0.726233π0.726233\pi
642642 −5.00691 −0.197607
643643 43.0895 1.69928 0.849642 0.527360i 0.176818π-0.176818\pi
0.849642 + 0.527360i 0.176818π0.176818\pi
644644 0 0
645645 −15.8227 −0.623017
646646 18.1023 0.712227
647647 −0.0891034 −0.00350302 −0.00175151 0.999998i 0.500558π-0.500558\pi
−0.00175151 + 0.999998i 0.500558π0.500558\pi
648648 −9.94225 −0.390568
649649 35.1013 1.37785
650650 15.7058 0.616034
651651 16.0096 0.627466
652652 6.33254 0.248001
653653 −9.03587 −0.353601 −0.176801 0.984247i 0.556575π-0.556575\pi
−0.176801 + 0.984247i 0.556575π0.556575\pi
654654 −26.4474 −1.03418
655655 35.8860 1.40218
656656 −5.57177 −0.217541
657657 −13.0095 −0.507548
658658 −4.46311 −0.173990
659659 7.78944 0.303433 0.151717 0.988424i 0.451520π-0.451520\pi
0.151717 + 0.988424i 0.451520π0.451520\pi
660660 −23.6935 −0.922268
661661 −27.8692 −1.08399 −0.541993 0.840383i 0.682330π-0.682330\pi
−0.541993 + 0.840383i 0.682330π0.682330\pi
662662 −25.5384 −0.992576
663663 16.4128 0.637422
664664 4.96828 0.192807
665665 −28.1524 −1.09170
666666 −5.14285 −0.199281
667667 0 0
668668 −20.6741 −0.799906
669669 14.5321 0.561845
670670 −35.9613 −1.38930
671671 −14.6059 −0.563856
672672 4.62158 0.178281
673673 0.885122 0.0341189 0.0170595 0.999854i 0.494570π-0.494570\pi
0.0170595 + 0.999854i 0.494570π0.494570\pi
674674 −32.6280 −1.25678
675675 −9.80428 −0.377367
676676 −11.1601 −0.429234
677677 45.3102 1.74141 0.870707 0.491802i 0.163662π-0.163662\pi
0.870707 + 0.491802i 0.163662π0.163662\pi
678678 −27.5919 −1.05966
679679 −16.7146 −0.641446
680680 −20.7389 −0.795300
681681 58.2105 2.23063
682682 8.48528 0.324918
683683 −51.8395 −1.98358 −0.991791 0.127866i 0.959187π-0.959187\pi
−0.991791 + 0.127866i 0.959187π0.959187\pi
684684 9.39543 0.359243
685685 15.7871 0.603195
686686 −19.8731 −0.758760
687687 33.1931 1.26640
688688 1.63579 0.0623637
689689 −11.9984 −0.457102
690690 0 0
691691 31.3012 1.19075 0.595377 0.803447i 0.297003π-0.297003\pi
0.595377 + 0.803447i 0.297003π0.297003\pi
692692 1.59817 0.0607532
693693 12.5974 0.478534
694694 11.6909 0.443779
695695 2.17183 0.0823821
696696 −10.4571 −0.396375
697697 −28.3793 −1.07494
698698 11.3012 0.427756
699699 11.5370 0.436368
700700 22.5256 0.851388
701701 12.3084 0.464881 0.232440 0.972611i 0.425329π-0.425329\pi
0.232440 + 0.972611i 0.425329π0.425329\pi
702702 −1.14855 −0.0433493
703703 −6.91416 −0.260772
704704 2.44949 0.0923186
705705 22.1910 0.835762
706706 −25.1190 −0.945367
707707 30.3210 1.14034
708708 34.0427 1.27940
709709 −19.3568 −0.726959 −0.363480 0.931602i 0.618411π-0.618411\pi
−0.363480 + 0.931602i 0.618411π0.618411\pi
710710 56.9536 2.13743
711711 18.6666 0.700052
712712 −16.0689 −0.602207
713713 0 0
714714 23.5396 0.880948
715715 −13.5285 −0.505937
716716 8.87107 0.331528
717717 25.3243 0.945752
718718 −15.9761 −0.596222
719719 0.616416 0.0229885 0.0114942 0.999934i 0.496341π-0.496341\pi
0.0114942 + 0.999934i 0.496341π0.496341\pi
720720 −10.7638 −0.401145
721721 −19.1139 −0.711840
722722 −6.36860 −0.237015
723723 −31.7873 −1.18218
724724 −4.26624 −0.158553
725725 −50.9679 −1.89290
726726 −11.8781 −0.440838
727727 −45.3126 −1.68055 −0.840275 0.542160i 0.817607π-0.817607\pi
−0.840275 + 0.542160i 0.817607π0.817607\pi
728728 2.63883 0.0978015
729729 −20.2484 −0.749940
730730 20.0376 0.741625
731731 8.33173 0.308160
732732 −14.1655 −0.523571
733733 17.3915 0.642370 0.321185 0.947017i 0.395919π-0.395919\pi
0.321185 + 0.947017i 0.395919π0.395919\pi
734734 −0.337877 −0.0124713
735735 31.1014 1.14719
736736 0 0
737737 21.6339 0.796893
738738 −14.7294 −0.542195
739739 33.9686 1.24956 0.624778 0.780803i 0.285190π-0.285190\pi
0.624778 + 0.780803i 0.285190π0.285190\pi
740740 7.92118 0.291188
741741 11.4525 0.420718
742742 −17.2083 −0.631737
743743 −25.9127 −0.950643 −0.475321 0.879812i 0.657668π-0.657668\pi
−0.475321 + 0.879812i 0.657668π0.657668\pi
744744 8.22939 0.301704
745745 −11.3705 −0.416582
746746 −2.17582 −0.0796624
747747 13.1340 0.480548
748748 12.4763 0.456177
749749 −4.10021 −0.149818
750750 −63.6355 −2.32364
751751 −21.5515 −0.786427 −0.393213 0.919447i 0.628637π-0.628637\pi
−0.393213 + 0.919447i 0.628637π0.628637\pi
752752 −2.29416 −0.0836595
753753 −8.17831 −0.298034
754754 −5.97078 −0.217443
755755 −90.4041 −3.29014
756756 −1.64727 −0.0599108
757757 30.5862 1.11167 0.555837 0.831292i 0.312398π-0.312398\pi
0.555837 + 0.831292i 0.312398π0.312398\pi
758758 −3.99367 −0.145057
759759 0 0
760760 −14.4711 −0.524923
761761 22.0332 0.798702 0.399351 0.916798i 0.369235π-0.369235\pi
0.399351 + 0.916798i 0.369235π0.369235\pi
762762 19.5499 0.708218
763763 −21.6581 −0.784074
764764 −3.58630 −0.129748
765765 −54.8247 −1.98219
766766 16.2398 0.586769
767767 19.4377 0.701855
768768 2.37562 0.0857228
769769 42.3961 1.52884 0.764421 0.644717i 0.223025π-0.223025\pi
0.764421 + 0.644717i 0.223025π0.223025\pi
770770 −19.4028 −0.699230
771771 −20.8853 −0.752164
772772 15.2870 0.550190
773773 10.2548 0.368838 0.184419 0.982848i 0.440960π-0.440960\pi
0.184419 + 0.982848i 0.440960π0.440960\pi
774774 4.32431 0.155434
775775 40.1101 1.44080
776776 −8.59175 −0.308426
777777 −8.99091 −0.322547
778778 −3.96170 −0.142034
779779 −19.8025 −0.709497
780780 −13.1205 −0.469790
781781 −34.2626 −1.22601
782782 0 0
783783 3.72723 0.133200
784784 −3.21534 −0.114834
785785 −50.8659 −1.81548
786786 −20.9375 −0.746818
787787 48.6462 1.73405 0.867025 0.498265i 0.166030π-0.166030\pi
0.867025 + 0.498265i 0.166030π0.166030\pi
788788 −7.79946 −0.277844
789789 −40.6129 −1.44586
790790 −28.7509 −1.02291
791791 −22.5953 −0.803396
792792 6.47539 0.230093
793793 −8.08820 −0.287220
794794 9.53339 0.338328
795795 85.5615 3.03455
796796 24.1394 0.855597
797797 46.1175 1.63356 0.816782 0.576946i 0.195756π-0.195756\pi
0.816782 + 0.576946i 0.195756π0.195756\pi
798798 16.4254 0.581453
799799 −11.6851 −0.413390
800800 11.5788 0.409372
801801 −42.4792 −1.50093
802802 3.05120 0.107742
803803 −12.0544 −0.425390
804804 20.9814 0.739958
805805 0 0
806806 4.69882 0.165509
807807 −10.1720 −0.358070
808808 15.5858 0.548307
809809 33.9809 1.19470 0.597352 0.801979i 0.296220π-0.296220\pi
0.597352 + 0.801979i 0.296220π0.296220\pi
810810 40.4819 1.42239
811811 5.04290 0.177080 0.0885400 0.996073i 0.471780π-0.471780\pi
0.0885400 + 0.996073i 0.471780π0.471780\pi
812812 −8.56341 −0.300517
813813 −32.3885 −1.13592
814814 −4.76529 −0.167023
815815 −25.7842 −0.903182
816816 12.1000 0.423585
817817 5.81369 0.203395
818818 39.7028 1.38818
819819 6.97592 0.243759
820820 22.6866 0.792251
821821 2.44191 0.0852231 0.0426116 0.999092i 0.486432π-0.486432\pi
0.0426116 + 0.999092i 0.486432π0.486432\pi
822822 −9.21092 −0.321268
823823 −2.84938 −0.0993232 −0.0496616 0.998766i 0.515814π-0.515814\pi
−0.0496616 + 0.998766i 0.515814π0.515814\pi
824824 −9.82510 −0.342273
825825 67.3777 2.34579
826826 27.8779 0.969997
827827 3.88626 0.135139 0.0675693 0.997715i 0.478476π-0.478476\pi
0.0675693 + 0.997715i 0.478476π0.478476\pi
828828 0 0
829829 20.3631 0.707239 0.353620 0.935389i 0.384951π-0.384951\pi
0.353620 + 0.935389i 0.384951π0.384951\pi
830830 −20.2294 −0.702172
831831 −72.0751 −2.50026
832832 1.35643 0.0470258
833833 −16.3771 −0.567432
834834 −1.26714 −0.0438776
835835 84.1789 2.91313
836836 8.70565 0.301091
837837 −2.93321 −0.101387
838838 30.8981 1.06736
839839 −7.05733 −0.243646 −0.121823 0.992552i 0.538874π-0.538874\pi
−0.121823 + 0.992552i 0.538874π0.538874\pi
840840 −18.8177 −0.649273
841841 −9.62388 −0.331858
842842 2.14868 0.0740485
843843 21.9933 0.757490
844844 −0.100647 −0.00346441
845845 45.4406 1.56321
846846 −6.06477 −0.208511
847847 −9.72710 −0.334227
848848 −8.84555 −0.303758
849849 35.0145 1.20169
850850 58.9756 2.02285
851851 0 0
852852 −33.2293 −1.13842
853853 −22.4781 −0.769635 −0.384818 0.922993i 0.625736π-0.625736\pi
−0.384818 + 0.922993i 0.625736π0.625736\pi
854854 −11.6003 −0.396953
855855 −38.2554 −1.30831
856856 −2.10762 −0.0720370
857857 6.43977 0.219978 0.109989 0.993933i 0.464918π-0.464918\pi
0.109989 + 0.993933i 0.464918π0.464918\pi
858858 7.89315 0.269468
859859 37.7008 1.28633 0.643167 0.765726i 0.277620π-0.277620\pi
0.643167 + 0.765726i 0.277620π0.277620\pi
860860 −6.66044 −0.227119
861861 −25.7504 −0.877571
862862 25.1005 0.854927
863863 34.5566 1.17632 0.588159 0.808745i 0.299853π-0.299853\pi
0.588159 + 0.808745i 0.299853π0.299853\pi
864864 −0.846745 −0.0288068
865865 −6.50727 −0.221254
866866 5.95292 0.202288
867867 21.2449 0.721513
868868 6.73913 0.228741
869869 17.2962 0.586733
870870 42.5782 1.44353
871871 11.9800 0.405926
872872 −11.1328 −0.377006
873873 −22.7129 −0.768715
874874 0 0
875875 −52.1118 −1.76170
876876 −11.6909 −0.394997
877877 −7.17164 −0.242169 −0.121085 0.992642i 0.538637π-0.538637\pi
−0.121085 + 0.992642i 0.538637π0.538637\pi
878878 24.1766 0.815921
879879 37.5062 1.26505
880880 −9.97360 −0.336210
881881 8.08174 0.272281 0.136140 0.990690i 0.456530π-0.456530\pi
0.136140 + 0.990690i 0.456530π0.456530\pi
882882 −8.49998 −0.286209
883883 −41.0042 −1.37990 −0.689950 0.723857i 0.742367π-0.742367\pi
−0.689950 + 0.723857i 0.742367π0.742367\pi
884884 6.90887 0.232370
885885 −138.612 −4.65939
886886 6.51214 0.218780
887887 −37.8321 −1.27028 −0.635138 0.772398i 0.719057π-0.719057\pi
−0.635138 + 0.772398i 0.719057π0.719057\pi
888888 −4.62158 −0.155090
889889 16.0096 0.536945
890890 65.4278 2.19315
891891 −24.3534 −0.815871
892892 6.11720 0.204819
893893 −8.15361 −0.272850
894894 6.63406 0.221876
895895 −36.1204 −1.20737
896896 1.94542 0.0649919
897897 0 0
898898 29.7300 0.992102
899899 −15.2484 −0.508562
900900 30.6093 1.02031
901901 −45.0541 −1.50097
902902 −13.6480 −0.454429
903903 7.55991 0.251578
904904 −11.6146 −0.386296
905905 17.3709 0.577427
906906 52.7459 1.75236
907907 −15.9611 −0.529978 −0.264989 0.964251i 0.585368π-0.585368\pi
−0.264989 + 0.964251i 0.585368π0.585368\pi
908908 24.5033 0.813170
909909 41.2022 1.36659
910910 −10.7445 −0.356178
911911 37.5172 1.24300 0.621501 0.783414i 0.286523π-0.286523\pi
0.621501 + 0.783414i 0.286523π0.286523\pi
912912 8.44312 0.279579
913913 12.1698 0.402760
914914 4.37251 0.144630
915915 57.6776 1.90676
916916 13.9724 0.461661
917917 −17.1460 −0.566210
918918 −4.31282 −0.142344
919919 26.7175 0.881330 0.440665 0.897672i 0.354743π-0.354743\pi
0.440665 + 0.897672i 0.354743π0.354743\pi
920920 0 0
921921 78.2979 2.58000
922922 7.86593 0.259051
923923 −18.9733 −0.624513
924924 11.3205 0.372417
925925 −22.5256 −0.740638
926926 −21.9472 −0.721230
927927 −25.9733 −0.853076
928928 −4.40183 −0.144497
929929 −43.8177 −1.43761 −0.718805 0.695211i 0.755311π-0.755311\pi
−0.718805 + 0.695211i 0.755311π0.755311\pi
930930 −33.5077 −1.09876
931931 −11.4275 −0.374523
932932 4.85641 0.159077
933933 −47.3251 −1.54936
934934 −29.6404 −0.969864
935935 −50.7997 −1.66133
936936 3.58582 0.117206
937937 −34.4360 −1.12498 −0.562488 0.826805i 0.690156π-0.690156\pi
−0.562488 + 0.826805i 0.690156π0.690156\pi
938938 17.1819 0.561010
939939 −22.9787 −0.749883
940940 9.34115 0.304675
941941 35.8492 1.16865 0.584326 0.811519i 0.301359π-0.301359\pi
0.584326 + 0.811519i 0.301359π0.301359\pi
942942 29.6775 0.966945
943943 0 0
944944 14.3300 0.466403
945945 6.70722 0.218186
946946 4.00684 0.130274
947947 0.975923 0.0317132 0.0158566 0.999874i 0.494952π-0.494952\pi
0.0158566 + 0.999874i 0.494952π0.494952\pi
948948 16.7746 0.544813
949949 −6.67524 −0.216688
950950 41.1518 1.33514
951951 −43.5903 −1.41351
952952 9.90883 0.321147
953953 16.6476 0.539267 0.269634 0.962963i 0.413097π-0.413097\pi
0.269634 + 0.962963i 0.413097π0.413097\pi
954954 −23.3838 −0.757079
955955 14.6024 0.472522
956956 10.6601 0.344771
957957 −25.6145 −0.827999
958958 38.7485 1.25191
959959 −7.54292 −0.243574
960960 −9.67283 −0.312189
961961 −19.0000 −0.612903
962962 −2.63883 −0.0850792
963963 −5.57164 −0.179544
964964 −13.3806 −0.430961
965965 −62.2440 −2.00370
966966 0 0
967967 52.3940 1.68488 0.842439 0.538792i 0.181119π-0.181119\pi
0.842439 + 0.538792i 0.181119π0.181119\pi
968968 −5.00000 −0.160706
969969 43.0043 1.38150
970970 34.9831 1.12324
971971 −51.8696 −1.66457 −0.832287 0.554344i 0.812969π-0.812969\pi
−0.832287 + 0.554344i 0.812969π0.812969\pi
972972 −21.0788 −0.676102
973973 −1.03768 −0.0332664
974974 15.6777 0.502347
975975 37.3111 1.19491
976976 −5.96285 −0.190866
977977 18.1728 0.581399 0.290699 0.956814i 0.406112π-0.406112\pi
0.290699 + 0.956814i 0.406112π0.406112\pi
978978 15.0437 0.481045
979979 −39.3606 −1.25797
980980 13.0919 0.418206
981981 −29.4304 −0.939641
982982 −16.8561 −0.537899
983983 23.6079 0.752975 0.376488 0.926422i 0.377132π-0.377132\pi
0.376488 + 0.926422i 0.377132π0.377132\pi
984984 −13.2364 −0.421961
985985 31.7571 1.01187
986986 −22.4204 −0.714010
987987 −10.6026 −0.337486
988988 4.82085 0.153372
989989 0 0
990990 −26.3659 −0.837964
991991 3.77401 0.119885 0.0599427 0.998202i 0.480908π-0.480908\pi
0.0599427 + 0.998202i 0.480908π0.480908\pi
992992 3.46410 0.109985
993993 −60.6694 −1.92529
994994 −27.2119 −0.863108
995995 −98.2884 −3.11595
996996 11.8027 0.373984
997997 −14.6939 −0.465361 −0.232681 0.972553i 0.574750π-0.574750\pi
−0.232681 + 0.972553i 0.574750π0.574750\pi
998998 −16.9853 −0.537661
999999 1.64727 0.0521175
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1058.2.a.n.1.5 8
3.2 odd 2 9522.2.a.ce.1.8 8
4.3 odd 2 8464.2.a.cb.1.3 8
23.22 odd 2 inner 1058.2.a.n.1.6 yes 8
69.68 even 2 9522.2.a.ce.1.1 8
92.91 even 2 8464.2.a.cb.1.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1058.2.a.n.1.5 8 1.1 even 1 trivial
1058.2.a.n.1.6 yes 8 23.22 odd 2 inner
8464.2.a.cb.1.3 8 4.3 odd 2
8464.2.a.cb.1.4 8 92.91 even 2
9522.2.a.ce.1.1 8 69.68 even 2
9522.2.a.ce.1.8 8 3.2 odd 2