Properties

Label 9522.2.a.ce.1.8
Level $9522$
Weight $2$
Character 9522.1
Self dual yes
Analytic conductor $76.034$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9522,2,Mod(1,9522)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9522, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9522.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9522 = 2 \cdot 3^{2} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9522.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.0335528047\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.819879542784.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 22x^{6} + 80x^{5} + 151x^{4} - 440x^{3} - 298x^{2} + 532x - 146 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1058)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(4.30747\) of defining polynomial
Character \(\chi\) \(=\) 9522.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +4.07171 q^{5} +1.94542 q^{7} -1.00000 q^{8} -4.07171 q^{10} -2.44949 q^{11} +1.35643 q^{13} -1.94542 q^{14} +1.00000 q^{16} -5.09341 q^{17} +3.55407 q^{19} +4.07171 q^{20} +2.44949 q^{22} +11.5788 q^{25} -1.35643 q^{26} +1.94542 q^{28} +4.40183 q^{29} +3.46410 q^{31} -1.00000 q^{32} +5.09341 q^{34} +7.92118 q^{35} -1.94542 q^{37} -3.55407 q^{38} -4.07171 q^{40} +5.57177 q^{41} +1.63579 q^{43} -2.44949 q^{44} +2.29416 q^{47} -3.21534 q^{49} -11.5788 q^{50} +1.35643 q^{52} +8.84555 q^{53} -9.97360 q^{55} -1.94542 q^{56} -4.40183 q^{58} -14.3300 q^{59} -5.96285 q^{61} -3.46410 q^{62} +1.00000 q^{64} +5.52299 q^{65} +8.83199 q^{67} -5.09341 q^{68} -7.92118 q^{70} +13.9877 q^{71} -4.92118 q^{73} +1.94542 q^{74} +3.55407 q^{76} -4.76529 q^{77} +7.06114 q^{79} +4.07171 q^{80} -5.57177 q^{82} -4.96828 q^{83} -20.7389 q^{85} -1.63579 q^{86} +2.44949 q^{88} +16.0689 q^{89} +2.63883 q^{91} -2.29416 q^{94} +14.4711 q^{95} -8.59175 q^{97} +3.21534 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} + 8 q^{4} - 8 q^{8} + 12 q^{13} + 8 q^{16} + 32 q^{25} - 12 q^{26} - 8 q^{32} + 12 q^{35} - 12 q^{41} + 12 q^{47} + 32 q^{49} - 32 q^{50} + 12 q^{52} + 12 q^{55} - 24 q^{59} + 8 q^{64} - 12 q^{70}+ \cdots - 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 4.07171 1.82092 0.910461 0.413594i \(-0.135727\pi\)
0.910461 + 0.413594i \(0.135727\pi\)
\(6\) 0 0
\(7\) 1.94542 0.735300 0.367650 0.929964i \(-0.380163\pi\)
0.367650 + 0.929964i \(0.380163\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −4.07171 −1.28759
\(11\) −2.44949 −0.738549 −0.369274 0.929320i \(-0.620394\pi\)
−0.369274 + 0.929320i \(0.620394\pi\)
\(12\) 0 0
\(13\) 1.35643 0.376206 0.188103 0.982149i \(-0.439766\pi\)
0.188103 + 0.982149i \(0.439766\pi\)
\(14\) −1.94542 −0.519935
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −5.09341 −1.23533 −0.617667 0.786440i \(-0.711922\pi\)
−0.617667 + 0.786440i \(0.711922\pi\)
\(18\) 0 0
\(19\) 3.55407 0.815359 0.407680 0.913125i \(-0.366338\pi\)
0.407680 + 0.913125i \(0.366338\pi\)
\(20\) 4.07171 0.910461
\(21\) 0 0
\(22\) 2.44949 0.522233
\(23\) 0 0
\(24\) 0 0
\(25\) 11.5788 2.31576
\(26\) −1.35643 −0.266018
\(27\) 0 0
\(28\) 1.94542 0.367650
\(29\) 4.40183 0.817400 0.408700 0.912669i \(-0.365982\pi\)
0.408700 + 0.912669i \(0.365982\pi\)
\(30\) 0 0
\(31\) 3.46410 0.622171 0.311086 0.950382i \(-0.399307\pi\)
0.311086 + 0.950382i \(0.399307\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 5.09341 0.873513
\(35\) 7.92118 1.33892
\(36\) 0 0
\(37\) −1.94542 −0.319825 −0.159913 0.987131i \(-0.551121\pi\)
−0.159913 + 0.987131i \(0.551121\pi\)
\(38\) −3.55407 −0.576546
\(39\) 0 0
\(40\) −4.07171 −0.643793
\(41\) 5.57177 0.870165 0.435082 0.900391i \(-0.356719\pi\)
0.435082 + 0.900391i \(0.356719\pi\)
\(42\) 0 0
\(43\) 1.63579 0.249455 0.124727 0.992191i \(-0.460194\pi\)
0.124727 + 0.992191i \(0.460194\pi\)
\(44\) −2.44949 −0.369274
\(45\) 0 0
\(46\) 0 0
\(47\) 2.29416 0.334638 0.167319 0.985903i \(-0.446489\pi\)
0.167319 + 0.985903i \(0.446489\pi\)
\(48\) 0 0
\(49\) −3.21534 −0.459334
\(50\) −11.5788 −1.63749
\(51\) 0 0
\(52\) 1.35643 0.188103
\(53\) 8.84555 1.21503 0.607515 0.794308i \(-0.292166\pi\)
0.607515 + 0.794308i \(0.292166\pi\)
\(54\) 0 0
\(55\) −9.97360 −1.34484
\(56\) −1.94542 −0.259968
\(57\) 0 0
\(58\) −4.40183 −0.577989
\(59\) −14.3300 −1.86561 −0.932806 0.360379i \(-0.882647\pi\)
−0.932806 + 0.360379i \(0.882647\pi\)
\(60\) 0 0
\(61\) −5.96285 −0.763465 −0.381733 0.924273i \(-0.624672\pi\)
−0.381733 + 0.924273i \(0.624672\pi\)
\(62\) −3.46410 −0.439941
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 5.52299 0.685043
\(66\) 0 0
\(67\) 8.83199 1.07900 0.539499 0.841986i \(-0.318614\pi\)
0.539499 + 0.841986i \(0.318614\pi\)
\(68\) −5.09341 −0.617667
\(69\) 0 0
\(70\) −7.92118 −0.946762
\(71\) 13.9877 1.66003 0.830014 0.557742i \(-0.188332\pi\)
0.830014 + 0.557742i \(0.188332\pi\)
\(72\) 0 0
\(73\) −4.92118 −0.575981 −0.287990 0.957633i \(-0.592987\pi\)
−0.287990 + 0.957633i \(0.592987\pi\)
\(74\) 1.94542 0.226150
\(75\) 0 0
\(76\) 3.55407 0.407680
\(77\) −4.76529 −0.543055
\(78\) 0 0
\(79\) 7.06114 0.794440 0.397220 0.917723i \(-0.369975\pi\)
0.397220 + 0.917723i \(0.369975\pi\)
\(80\) 4.07171 0.455231
\(81\) 0 0
\(82\) −5.57177 −0.615299
\(83\) −4.96828 −0.545340 −0.272670 0.962108i \(-0.587907\pi\)
−0.272670 + 0.962108i \(0.587907\pi\)
\(84\) 0 0
\(85\) −20.7389 −2.24945
\(86\) −1.63579 −0.176391
\(87\) 0 0
\(88\) 2.44949 0.261116
\(89\) 16.0689 1.70330 0.851650 0.524112i \(-0.175603\pi\)
0.851650 + 0.524112i \(0.175603\pi\)
\(90\) 0 0
\(91\) 2.63883 0.276624
\(92\) 0 0
\(93\) 0 0
\(94\) −2.29416 −0.236625
\(95\) 14.4711 1.48471
\(96\) 0 0
\(97\) −8.59175 −0.872360 −0.436180 0.899859i \(-0.643669\pi\)
−0.436180 + 0.899859i \(0.643669\pi\)
\(98\) 3.21534 0.324798
\(99\) 0 0
\(100\) 11.5788 1.15788
\(101\) −15.5858 −1.55085 −0.775423 0.631442i \(-0.782464\pi\)
−0.775423 + 0.631442i \(0.782464\pi\)
\(102\) 0 0
\(103\) −9.82510 −0.968095 −0.484048 0.875042i \(-0.660834\pi\)
−0.484048 + 0.875042i \(0.660834\pi\)
\(104\) −1.35643 −0.133009
\(105\) 0 0
\(106\) −8.84555 −0.859156
\(107\) 2.10762 0.203751 0.101876 0.994797i \(-0.467516\pi\)
0.101876 + 0.994797i \(0.467516\pi\)
\(108\) 0 0
\(109\) −11.1328 −1.06633 −0.533166 0.846010i \(-0.678998\pi\)
−0.533166 + 0.846010i \(0.678998\pi\)
\(110\) 9.97360 0.950946
\(111\) 0 0
\(112\) 1.94542 0.183825
\(113\) 11.6146 1.09261 0.546305 0.837586i \(-0.316034\pi\)
0.546305 + 0.837586i \(0.316034\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 4.40183 0.408700
\(117\) 0 0
\(118\) 14.3300 1.31919
\(119\) −9.90883 −0.908341
\(120\) 0 0
\(121\) −5.00000 −0.454545
\(122\) 5.96285 0.539851
\(123\) 0 0
\(124\) 3.46410 0.311086
\(125\) 26.7869 2.39590
\(126\) 0 0
\(127\) 8.22939 0.730240 0.365120 0.930960i \(-0.381028\pi\)
0.365120 + 0.930960i \(0.381028\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) −5.52299 −0.484398
\(131\) 8.81351 0.770040 0.385020 0.922908i \(-0.374195\pi\)
0.385020 + 0.922908i \(0.374195\pi\)
\(132\) 0 0
\(133\) 6.91416 0.599533
\(134\) −8.83199 −0.762967
\(135\) 0 0
\(136\) 5.09341 0.436757
\(137\) 3.87727 0.331258 0.165629 0.986188i \(-0.447035\pi\)
0.165629 + 0.986188i \(0.447035\pi\)
\(138\) 0 0
\(139\) −0.533395 −0.0452420 −0.0226210 0.999744i \(-0.507201\pi\)
−0.0226210 + 0.999744i \(0.507201\pi\)
\(140\) 7.92118 0.669462
\(141\) 0 0
\(142\) −13.9877 −1.17382
\(143\) −3.32256 −0.277847
\(144\) 0 0
\(145\) 17.9230 1.48842
\(146\) 4.92118 0.407280
\(147\) 0 0
\(148\) −1.94542 −0.159913
\(149\) −2.79256 −0.228775 −0.114388 0.993436i \(-0.536491\pi\)
−0.114388 + 0.993436i \(0.536491\pi\)
\(150\) 0 0
\(151\) 22.2030 1.80685 0.903427 0.428742i \(-0.141043\pi\)
0.903427 + 0.428742i \(0.141043\pi\)
\(152\) −3.55407 −0.288273
\(153\) 0 0
\(154\) 4.76529 0.383998
\(155\) 14.1048 1.13293
\(156\) 0 0
\(157\) 12.4925 0.997012 0.498506 0.866886i \(-0.333882\pi\)
0.498506 + 0.866886i \(0.333882\pi\)
\(158\) −7.06114 −0.561754
\(159\) 0 0
\(160\) −4.07171 −0.321897
\(161\) 0 0
\(162\) 0 0
\(163\) 6.33254 0.496003 0.248001 0.968760i \(-0.420226\pi\)
0.248001 + 0.968760i \(0.420226\pi\)
\(164\) 5.57177 0.435082
\(165\) 0 0
\(166\) 4.96828 0.385613
\(167\) 20.6741 1.59981 0.799906 0.600126i \(-0.204883\pi\)
0.799906 + 0.600126i \(0.204883\pi\)
\(168\) 0 0
\(169\) −11.1601 −0.858469
\(170\) 20.7389 1.59060
\(171\) 0 0
\(172\) 1.63579 0.124727
\(173\) −1.59817 −0.121506 −0.0607532 0.998153i \(-0.519350\pi\)
−0.0607532 + 0.998153i \(0.519350\pi\)
\(174\) 0 0
\(175\) 22.5256 1.70278
\(176\) −2.44949 −0.184637
\(177\) 0 0
\(178\) −16.0689 −1.20441
\(179\) −8.87107 −0.663055 −0.331528 0.943446i \(-0.607564\pi\)
−0.331528 + 0.943446i \(0.607564\pi\)
\(180\) 0 0
\(181\) −4.26624 −0.317107 −0.158553 0.987350i \(-0.550683\pi\)
−0.158553 + 0.987350i \(0.550683\pi\)
\(182\) −2.63883 −0.195603
\(183\) 0 0
\(184\) 0 0
\(185\) −7.92118 −0.582377
\(186\) 0 0
\(187\) 12.4763 0.912355
\(188\) 2.29416 0.167319
\(189\) 0 0
\(190\) −14.4711 −1.04985
\(191\) 3.58630 0.259496 0.129748 0.991547i \(-0.458583\pi\)
0.129748 + 0.991547i \(0.458583\pi\)
\(192\) 0 0
\(193\) 15.2870 1.10038 0.550190 0.835040i \(-0.314555\pi\)
0.550190 + 0.835040i \(0.314555\pi\)
\(194\) 8.59175 0.616852
\(195\) 0 0
\(196\) −3.21534 −0.229667
\(197\) 7.79946 0.555689 0.277844 0.960626i \(-0.410380\pi\)
0.277844 + 0.960626i \(0.410380\pi\)
\(198\) 0 0
\(199\) 24.1394 1.71119 0.855597 0.517642i \(-0.173190\pi\)
0.855597 + 0.517642i \(0.173190\pi\)
\(200\) −11.5788 −0.818744
\(201\) 0 0
\(202\) 15.5858 1.09661
\(203\) 8.56341 0.601034
\(204\) 0 0
\(205\) 22.6866 1.58450
\(206\) 9.82510 0.684547
\(207\) 0 0
\(208\) 1.35643 0.0940516
\(209\) −8.70565 −0.602183
\(210\) 0 0
\(211\) −0.100647 −0.00692882 −0.00346441 0.999994i \(-0.501103\pi\)
−0.00346441 + 0.999994i \(0.501103\pi\)
\(212\) 8.84555 0.607515
\(213\) 0 0
\(214\) −2.10762 −0.144074
\(215\) 6.66044 0.454238
\(216\) 0 0
\(217\) 6.73913 0.457482
\(218\) 11.1328 0.754011
\(219\) 0 0
\(220\) −9.97360 −0.672420
\(221\) −6.90887 −0.464741
\(222\) 0 0
\(223\) 6.11720 0.409638 0.204819 0.978800i \(-0.434339\pi\)
0.204819 + 0.978800i \(0.434339\pi\)
\(224\) −1.94542 −0.129984
\(225\) 0 0
\(226\) −11.6146 −0.772592
\(227\) −24.5033 −1.62634 −0.813170 0.582027i \(-0.802260\pi\)
−0.813170 + 0.582027i \(0.802260\pi\)
\(228\) 0 0
\(229\) 13.9724 0.923322 0.461661 0.887056i \(-0.347254\pi\)
0.461661 + 0.887056i \(0.347254\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −4.40183 −0.288994
\(233\) −4.85641 −0.318154 −0.159077 0.987266i \(-0.550852\pi\)
−0.159077 + 0.987266i \(0.550852\pi\)
\(234\) 0 0
\(235\) 9.34115 0.609350
\(236\) −14.3300 −0.932806
\(237\) 0 0
\(238\) 9.90883 0.642294
\(239\) −10.6601 −0.689543 −0.344771 0.938687i \(-0.612044\pi\)
−0.344771 + 0.938687i \(0.612044\pi\)
\(240\) 0 0
\(241\) −13.3806 −0.861922 −0.430961 0.902371i \(-0.641825\pi\)
−0.430961 + 0.902371i \(0.641825\pi\)
\(242\) 5.00000 0.321412
\(243\) 0 0
\(244\) −5.96285 −0.381733
\(245\) −13.0919 −0.836412
\(246\) 0 0
\(247\) 4.82085 0.306743
\(248\) −3.46410 −0.219971
\(249\) 0 0
\(250\) −26.7869 −1.69415
\(251\) 3.44260 0.217295 0.108647 0.994080i \(-0.465348\pi\)
0.108647 + 0.994080i \(0.465348\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −8.22939 −0.516358
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 8.79150 0.548399 0.274199 0.961673i \(-0.411587\pi\)
0.274199 + 0.961673i \(0.411587\pi\)
\(258\) 0 0
\(259\) −3.78466 −0.235167
\(260\) 5.52299 0.342521
\(261\) 0 0
\(262\) −8.81351 −0.544500
\(263\) 17.0957 1.05417 0.527083 0.849814i \(-0.323286\pi\)
0.527083 + 0.849814i \(0.323286\pi\)
\(264\) 0 0
\(265\) 36.0165 2.21248
\(266\) −6.91416 −0.423934
\(267\) 0 0
\(268\) 8.83199 0.539499
\(269\) 4.28181 0.261067 0.130533 0.991444i \(-0.458331\pi\)
0.130533 + 0.991444i \(0.458331\pi\)
\(270\) 0 0
\(271\) −13.6337 −0.828190 −0.414095 0.910234i \(-0.635902\pi\)
−0.414095 + 0.910234i \(0.635902\pi\)
\(272\) −5.09341 −0.308834
\(273\) 0 0
\(274\) −3.87727 −0.234235
\(275\) −28.3621 −1.71030
\(276\) 0 0
\(277\) −30.3395 −1.82292 −0.911462 0.411384i \(-0.865046\pi\)
−0.911462 + 0.411384i \(0.865046\pi\)
\(278\) 0.533395 0.0319909
\(279\) 0 0
\(280\) −7.92118 −0.473381
\(281\) −9.25793 −0.552282 −0.276141 0.961117i \(-0.589056\pi\)
−0.276141 + 0.961117i \(0.589056\pi\)
\(282\) 0 0
\(283\) 14.7391 0.876149 0.438074 0.898939i \(-0.355661\pi\)
0.438074 + 0.898939i \(0.355661\pi\)
\(284\) 13.9877 0.830014
\(285\) 0 0
\(286\) 3.32256 0.196467
\(287\) 10.8394 0.639832
\(288\) 0 0
\(289\) 8.94287 0.526051
\(290\) −17.9230 −1.05247
\(291\) 0 0
\(292\) −4.92118 −0.287990
\(293\) −15.7879 −0.922342 −0.461171 0.887311i \(-0.652571\pi\)
−0.461171 + 0.887311i \(0.652571\pi\)
\(294\) 0 0
\(295\) −58.3477 −3.39713
\(296\) 1.94542 0.113075
\(297\) 0 0
\(298\) 2.79256 0.161769
\(299\) 0 0
\(300\) 0 0
\(301\) 3.18229 0.183424
\(302\) −22.2030 −1.27764
\(303\) 0 0
\(304\) 3.55407 0.203840
\(305\) −24.2790 −1.39021
\(306\) 0 0
\(307\) 32.9589 1.88107 0.940533 0.339703i \(-0.110326\pi\)
0.940533 + 0.339703i \(0.110326\pi\)
\(308\) −4.76529 −0.271527
\(309\) 0 0
\(310\) −14.1048 −0.801099
\(311\) 19.9212 1.12963 0.564813 0.825219i \(-0.308948\pi\)
0.564813 + 0.825219i \(0.308948\pi\)
\(312\) 0 0
\(313\) −9.67273 −0.546735 −0.273368 0.961910i \(-0.588138\pi\)
−0.273368 + 0.961910i \(0.588138\pi\)
\(314\) −12.4925 −0.704994
\(315\) 0 0
\(316\) 7.06114 0.397220
\(317\) 18.3490 1.03058 0.515292 0.857014i \(-0.327683\pi\)
0.515292 + 0.857014i \(0.327683\pi\)
\(318\) 0 0
\(319\) −10.7822 −0.603690
\(320\) 4.07171 0.227615
\(321\) 0 0
\(322\) 0 0
\(323\) −18.1023 −1.00724
\(324\) 0 0
\(325\) 15.7058 0.871203
\(326\) −6.33254 −0.350727
\(327\) 0 0
\(328\) −5.57177 −0.307650
\(329\) 4.46311 0.246059
\(330\) 0 0
\(331\) −25.5384 −1.40371 −0.701857 0.712317i \(-0.747646\pi\)
−0.701857 + 0.712317i \(0.747646\pi\)
\(332\) −4.96828 −0.272670
\(333\) 0 0
\(334\) −20.6741 −1.13124
\(335\) 35.9613 1.96477
\(336\) 0 0
\(337\) −32.6280 −1.77736 −0.888681 0.458526i \(-0.848377\pi\)
−0.888681 + 0.458526i \(0.848377\pi\)
\(338\) 11.1601 0.607029
\(339\) 0 0
\(340\) −20.7389 −1.12472
\(341\) −8.48528 −0.459504
\(342\) 0 0
\(343\) −19.8731 −1.07305
\(344\) −1.63579 −0.0881956
\(345\) 0 0
\(346\) 1.59817 0.0859181
\(347\) −11.6909 −0.627598 −0.313799 0.949489i \(-0.601602\pi\)
−0.313799 + 0.949489i \(0.601602\pi\)
\(348\) 0 0
\(349\) 11.3012 0.604939 0.302469 0.953159i \(-0.402189\pi\)
0.302469 + 0.953159i \(0.402189\pi\)
\(350\) −22.5256 −1.20405
\(351\) 0 0
\(352\) 2.44949 0.130558
\(353\) 25.1190 1.33695 0.668476 0.743734i \(-0.266947\pi\)
0.668476 + 0.743734i \(0.266947\pi\)
\(354\) 0 0
\(355\) 56.9536 3.02278
\(356\) 16.0689 0.851650
\(357\) 0 0
\(358\) 8.87107 0.468851
\(359\) 15.9761 0.843186 0.421593 0.906785i \(-0.361471\pi\)
0.421593 + 0.906785i \(0.361471\pi\)
\(360\) 0 0
\(361\) −6.36860 −0.335189
\(362\) 4.26624 0.224228
\(363\) 0 0
\(364\) 2.63883 0.138312
\(365\) −20.0376 −1.04882
\(366\) 0 0
\(367\) −0.337877 −0.0176370 −0.00881851 0.999961i \(-0.502807\pi\)
−0.00881851 + 0.999961i \(0.502807\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 7.92118 0.411803
\(371\) 17.2083 0.893411
\(372\) 0 0
\(373\) −2.17582 −0.112660 −0.0563298 0.998412i \(-0.517940\pi\)
−0.0563298 + 0.998412i \(0.517940\pi\)
\(374\) −12.4763 −0.645132
\(375\) 0 0
\(376\) −2.29416 −0.118312
\(377\) 5.97078 0.307511
\(378\) 0 0
\(379\) −3.99367 −0.205141 −0.102571 0.994726i \(-0.532707\pi\)
−0.102571 + 0.994726i \(0.532707\pi\)
\(380\) 14.4711 0.742353
\(381\) 0 0
\(382\) −3.58630 −0.183491
\(383\) −16.2398 −0.829816 −0.414908 0.909863i \(-0.636186\pi\)
−0.414908 + 0.909863i \(0.636186\pi\)
\(384\) 0 0
\(385\) −19.4028 −0.988861
\(386\) −15.2870 −0.778085
\(387\) 0 0
\(388\) −8.59175 −0.436180
\(389\) 3.96170 0.200866 0.100433 0.994944i \(-0.467977\pi\)
0.100433 + 0.994944i \(0.467977\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 3.21534 0.162399
\(393\) 0 0
\(394\) −7.79946 −0.392931
\(395\) 28.7509 1.44661
\(396\) 0 0
\(397\) 9.53339 0.478467 0.239234 0.970962i \(-0.423104\pi\)
0.239234 + 0.970962i \(0.423104\pi\)
\(398\) −24.1394 −1.21000
\(399\) 0 0
\(400\) 11.5788 0.578940
\(401\) −3.05120 −0.152370 −0.0761848 0.997094i \(-0.524274\pi\)
−0.0761848 + 0.997094i \(0.524274\pi\)
\(402\) 0 0
\(403\) 4.69882 0.234065
\(404\) −15.5858 −0.775423
\(405\) 0 0
\(406\) −8.56341 −0.424995
\(407\) 4.76529 0.236206
\(408\) 0 0
\(409\) 39.7028 1.96318 0.981589 0.191003i \(-0.0611742\pi\)
0.981589 + 0.191003i \(0.0611742\pi\)
\(410\) −22.6866 −1.12041
\(411\) 0 0
\(412\) −9.82510 −0.484048
\(413\) −27.8779 −1.37178
\(414\) 0 0
\(415\) −20.2294 −0.993022
\(416\) −1.35643 −0.0665045
\(417\) 0 0
\(418\) 8.70565 0.425807
\(419\) −30.8981 −1.50947 −0.754736 0.656028i \(-0.772235\pi\)
−0.754736 + 0.656028i \(0.772235\pi\)
\(420\) 0 0
\(421\) 2.14868 0.104720 0.0523602 0.998628i \(-0.483326\pi\)
0.0523602 + 0.998628i \(0.483326\pi\)
\(422\) 0.100647 0.00489942
\(423\) 0 0
\(424\) −8.84555 −0.429578
\(425\) −58.9756 −2.86074
\(426\) 0 0
\(427\) −11.6003 −0.561376
\(428\) 2.10762 0.101876
\(429\) 0 0
\(430\) −6.66044 −0.321195
\(431\) −25.1005 −1.20905 −0.604524 0.796587i \(-0.706637\pi\)
−0.604524 + 0.796587i \(0.706637\pi\)
\(432\) 0 0
\(433\) 5.95292 0.286079 0.143040 0.989717i \(-0.454312\pi\)
0.143040 + 0.989717i \(0.454312\pi\)
\(434\) −6.73913 −0.323489
\(435\) 0 0
\(436\) −11.1328 −0.533166
\(437\) 0 0
\(438\) 0 0
\(439\) 24.1766 1.15389 0.576943 0.816784i \(-0.304245\pi\)
0.576943 + 0.816784i \(0.304245\pi\)
\(440\) 9.97360 0.475473
\(441\) 0 0
\(442\) 6.90887 0.328621
\(443\) −6.51214 −0.309401 −0.154701 0.987961i \(-0.549441\pi\)
−0.154701 + 0.987961i \(0.549441\pi\)
\(444\) 0 0
\(445\) 65.4278 3.10158
\(446\) −6.11720 −0.289658
\(447\) 0 0
\(448\) 1.94542 0.0919125
\(449\) −29.7300 −1.40304 −0.701522 0.712647i \(-0.747496\pi\)
−0.701522 + 0.712647i \(0.747496\pi\)
\(450\) 0 0
\(451\) −13.6480 −0.642659
\(452\) 11.6146 0.546305
\(453\) 0 0
\(454\) 24.5033 1.15000
\(455\) 10.7445 0.503712
\(456\) 0 0
\(457\) 4.37251 0.204538 0.102269 0.994757i \(-0.467390\pi\)
0.102269 + 0.994757i \(0.467390\pi\)
\(458\) −13.9724 −0.652887
\(459\) 0 0
\(460\) 0 0
\(461\) −7.86593 −0.366353 −0.183177 0.983080i \(-0.558638\pi\)
−0.183177 + 0.983080i \(0.558638\pi\)
\(462\) 0 0
\(463\) −21.9472 −1.01997 −0.509987 0.860182i \(-0.670350\pi\)
−0.509987 + 0.860182i \(0.670350\pi\)
\(464\) 4.40183 0.204350
\(465\) 0 0
\(466\) 4.85641 0.224969
\(467\) 29.6404 1.37159 0.685797 0.727793i \(-0.259454\pi\)
0.685797 + 0.727793i \(0.259454\pi\)
\(468\) 0 0
\(469\) 17.1819 0.793387
\(470\) −9.34115 −0.430875
\(471\) 0 0
\(472\) 14.3300 0.659593
\(473\) −4.00684 −0.184235
\(474\) 0 0
\(475\) 41.1518 1.88818
\(476\) −9.90883 −0.454171
\(477\) 0 0
\(478\) 10.6601 0.487580
\(479\) −38.7485 −1.77046 −0.885232 0.465150i \(-0.846001\pi\)
−0.885232 + 0.465150i \(0.846001\pi\)
\(480\) 0 0
\(481\) −2.63883 −0.120320
\(482\) 13.3806 0.609471
\(483\) 0 0
\(484\) −5.00000 −0.227273
\(485\) −34.9831 −1.58850
\(486\) 0 0
\(487\) 15.6777 0.710426 0.355213 0.934785i \(-0.384408\pi\)
0.355213 + 0.934785i \(0.384408\pi\)
\(488\) 5.96285 0.269926
\(489\) 0 0
\(490\) 13.0919 0.591433
\(491\) 16.8561 0.760705 0.380352 0.924842i \(-0.375803\pi\)
0.380352 + 0.924842i \(0.375803\pi\)
\(492\) 0 0
\(493\) −22.4204 −1.00976
\(494\) −4.82085 −0.216900
\(495\) 0 0
\(496\) 3.46410 0.155543
\(497\) 27.2119 1.22062
\(498\) 0 0
\(499\) −16.9853 −0.760368 −0.380184 0.924911i \(-0.624139\pi\)
−0.380184 + 0.924911i \(0.624139\pi\)
\(500\) 26.7869 1.19795
\(501\) 0 0
\(502\) −3.44260 −0.153651
\(503\) −5.66325 −0.252512 −0.126256 0.991998i \(-0.540296\pi\)
−0.126256 + 0.991998i \(0.540296\pi\)
\(504\) 0 0
\(505\) −63.4609 −2.82397
\(506\) 0 0
\(507\) 0 0
\(508\) 8.22939 0.365120
\(509\) −10.4262 −0.462131 −0.231066 0.972938i \(-0.574221\pi\)
−0.231066 + 0.972938i \(0.574221\pi\)
\(510\) 0 0
\(511\) −9.57376 −0.423518
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −8.79150 −0.387776
\(515\) −40.0049 −1.76283
\(516\) 0 0
\(517\) −5.61952 −0.247146
\(518\) 3.78466 0.166288
\(519\) 0 0
\(520\) −5.52299 −0.242199
\(521\) 27.8011 1.21799 0.608995 0.793174i \(-0.291573\pi\)
0.608995 + 0.793174i \(0.291573\pi\)
\(522\) 0 0
\(523\) −21.1154 −0.923312 −0.461656 0.887059i \(-0.652745\pi\)
−0.461656 + 0.887059i \(0.652745\pi\)
\(524\) 8.81351 0.385020
\(525\) 0 0
\(526\) −17.0957 −0.745408
\(527\) −17.6441 −0.768589
\(528\) 0 0
\(529\) 0 0
\(530\) −36.0165 −1.56446
\(531\) 0 0
\(532\) 6.91416 0.299767
\(533\) 7.55773 0.327361
\(534\) 0 0
\(535\) 8.58162 0.371016
\(536\) −8.83199 −0.381484
\(537\) 0 0
\(538\) −4.28181 −0.184602
\(539\) 7.87594 0.339241
\(540\) 0 0
\(541\) −31.1340 −1.33856 −0.669278 0.743012i \(-0.733396\pi\)
−0.669278 + 0.743012i \(0.733396\pi\)
\(542\) 13.6337 0.585619
\(543\) 0 0
\(544\) 5.09341 0.218378
\(545\) −45.3297 −1.94171
\(546\) 0 0
\(547\) 23.8705 1.02063 0.510313 0.859988i \(-0.329529\pi\)
0.510313 + 0.859988i \(0.329529\pi\)
\(548\) 3.87727 0.165629
\(549\) 0 0
\(550\) 28.3621 1.20937
\(551\) 15.6444 0.666474
\(552\) 0 0
\(553\) 13.7369 0.584151
\(554\) 30.3395 1.28900
\(555\) 0 0
\(556\) −0.533395 −0.0226210
\(557\) 46.8977 1.98712 0.993560 0.113305i \(-0.0361439\pi\)
0.993560 + 0.113305i \(0.0361439\pi\)
\(558\) 0 0
\(559\) 2.21883 0.0938465
\(560\) 7.92118 0.334731
\(561\) 0 0
\(562\) 9.25793 0.390522
\(563\) 6.76143 0.284960 0.142480 0.989798i \(-0.454492\pi\)
0.142480 + 0.989798i \(0.454492\pi\)
\(564\) 0 0
\(565\) 47.2913 1.98956
\(566\) −14.7391 −0.619531
\(567\) 0 0
\(568\) −13.9877 −0.586909
\(569\) 2.06692 0.0866497 0.0433248 0.999061i \(-0.486205\pi\)
0.0433248 + 0.999061i \(0.486205\pi\)
\(570\) 0 0
\(571\) 17.8482 0.746924 0.373462 0.927645i \(-0.378171\pi\)
0.373462 + 0.927645i \(0.378171\pi\)
\(572\) −3.32256 −0.138923
\(573\) 0 0
\(574\) −10.8394 −0.452429
\(575\) 0 0
\(576\) 0 0
\(577\) −14.8779 −0.619376 −0.309688 0.950838i \(-0.600225\pi\)
−0.309688 + 0.950838i \(0.600225\pi\)
\(578\) −8.94287 −0.371974
\(579\) 0 0
\(580\) 17.9230 0.744211
\(581\) −9.66540 −0.400988
\(582\) 0 0
\(583\) −21.6671 −0.897359
\(584\) 4.92118 0.203640
\(585\) 0 0
\(586\) 15.7879 0.652194
\(587\) −29.5524 −1.21976 −0.609879 0.792495i \(-0.708782\pi\)
−0.609879 + 0.792495i \(0.708782\pi\)
\(588\) 0 0
\(589\) 12.3117 0.507293
\(590\) 58.3477 2.40214
\(591\) 0 0
\(592\) −1.94542 −0.0799563
\(593\) −24.1392 −0.991276 −0.495638 0.868529i \(-0.665066\pi\)
−0.495638 + 0.868529i \(0.665066\pi\)
\(594\) 0 0
\(595\) −40.3459 −1.65402
\(596\) −2.79256 −0.114388
\(597\) 0 0
\(598\) 0 0
\(599\) 12.0404 0.491959 0.245980 0.969275i \(-0.420890\pi\)
0.245980 + 0.969275i \(0.420890\pi\)
\(600\) 0 0
\(601\) 32.6696 1.33262 0.666310 0.745675i \(-0.267873\pi\)
0.666310 + 0.745675i \(0.267873\pi\)
\(602\) −3.18229 −0.129700
\(603\) 0 0
\(604\) 22.2030 0.903427
\(605\) −20.3585 −0.827692
\(606\) 0 0
\(607\) 4.09287 0.166124 0.0830622 0.996544i \(-0.473530\pi\)
0.0830622 + 0.996544i \(0.473530\pi\)
\(608\) −3.55407 −0.144137
\(609\) 0 0
\(610\) 24.2790 0.983028
\(611\) 3.11187 0.125893
\(612\) 0 0
\(613\) −29.7094 −1.19995 −0.599975 0.800019i \(-0.704823\pi\)
−0.599975 + 0.800019i \(0.704823\pi\)
\(614\) −32.9589 −1.33011
\(615\) 0 0
\(616\) 4.76529 0.191999
\(617\) −20.8936 −0.841146 −0.420573 0.907259i \(-0.638171\pi\)
−0.420573 + 0.907259i \(0.638171\pi\)
\(618\) 0 0
\(619\) −36.3294 −1.46020 −0.730102 0.683339i \(-0.760527\pi\)
−0.730102 + 0.683339i \(0.760527\pi\)
\(620\) 14.1048 0.566463
\(621\) 0 0
\(622\) −19.9212 −0.798767
\(623\) 31.2607 1.25244
\(624\) 0 0
\(625\) 51.1745 2.04698
\(626\) 9.67273 0.386600
\(627\) 0 0
\(628\) 12.4925 0.498506
\(629\) 9.90883 0.395091
\(630\) 0 0
\(631\) −1.77569 −0.0706890 −0.0353445 0.999375i \(-0.511253\pi\)
−0.0353445 + 0.999375i \(0.511253\pi\)
\(632\) −7.06114 −0.280877
\(633\) 0 0
\(634\) −18.3490 −0.728733
\(635\) 33.5077 1.32971
\(636\) 0 0
\(637\) −4.36139 −0.172805
\(638\) 10.7822 0.426873
\(639\) 0 0
\(640\) −4.07171 −0.160948
\(641\) 33.0344 1.30478 0.652389 0.757884i \(-0.273767\pi\)
0.652389 + 0.757884i \(0.273767\pi\)
\(642\) 0 0
\(643\) 43.0895 1.69928 0.849642 0.527360i \(-0.176818\pi\)
0.849642 + 0.527360i \(0.176818\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 18.1023 0.712227
\(647\) 0.0891034 0.00350302 0.00175151 0.999998i \(-0.499442\pi\)
0.00175151 + 0.999998i \(0.499442\pi\)
\(648\) 0 0
\(649\) 35.1013 1.37785
\(650\) −15.7058 −0.616034
\(651\) 0 0
\(652\) 6.33254 0.248001
\(653\) 9.03587 0.353601 0.176801 0.984247i \(-0.443425\pi\)
0.176801 + 0.984247i \(0.443425\pi\)
\(654\) 0 0
\(655\) 35.8860 1.40218
\(656\) 5.57177 0.217541
\(657\) 0 0
\(658\) −4.46311 −0.173990
\(659\) −7.78944 −0.303433 −0.151717 0.988424i \(-0.548480\pi\)
−0.151717 + 0.988424i \(0.548480\pi\)
\(660\) 0 0
\(661\) −27.8692 −1.08399 −0.541993 0.840383i \(-0.682330\pi\)
−0.541993 + 0.840383i \(0.682330\pi\)
\(662\) 25.5384 0.992576
\(663\) 0 0
\(664\) 4.96828 0.192807
\(665\) 28.1524 1.09170
\(666\) 0 0
\(667\) 0 0
\(668\) 20.6741 0.799906
\(669\) 0 0
\(670\) −35.9613 −1.38930
\(671\) 14.6059 0.563856
\(672\) 0 0
\(673\) 0.885122 0.0341189 0.0170595 0.999854i \(-0.494570\pi\)
0.0170595 + 0.999854i \(0.494570\pi\)
\(674\) 32.6280 1.25678
\(675\) 0 0
\(676\) −11.1601 −0.429234
\(677\) −45.3102 −1.74141 −0.870707 0.491802i \(-0.836338\pi\)
−0.870707 + 0.491802i \(0.836338\pi\)
\(678\) 0 0
\(679\) −16.7146 −0.641446
\(680\) 20.7389 0.795300
\(681\) 0 0
\(682\) 8.48528 0.324918
\(683\) 51.8395 1.98358 0.991791 0.127866i \(-0.0408128\pi\)
0.991791 + 0.127866i \(0.0408128\pi\)
\(684\) 0 0
\(685\) 15.7871 0.603195
\(686\) 19.8731 0.758760
\(687\) 0 0
\(688\) 1.63579 0.0623637
\(689\) 11.9984 0.457102
\(690\) 0 0
\(691\) 31.3012 1.19075 0.595377 0.803447i \(-0.297003\pi\)
0.595377 + 0.803447i \(0.297003\pi\)
\(692\) −1.59817 −0.0607532
\(693\) 0 0
\(694\) 11.6909 0.443779
\(695\) −2.17183 −0.0823821
\(696\) 0 0
\(697\) −28.3793 −1.07494
\(698\) −11.3012 −0.427756
\(699\) 0 0
\(700\) 22.5256 0.851388
\(701\) −12.3084 −0.464881 −0.232440 0.972611i \(-0.574671\pi\)
−0.232440 + 0.972611i \(0.574671\pi\)
\(702\) 0 0
\(703\) −6.91416 −0.260772
\(704\) −2.44949 −0.0923186
\(705\) 0 0
\(706\) −25.1190 −0.945367
\(707\) −30.3210 −1.14034
\(708\) 0 0
\(709\) −19.3568 −0.726959 −0.363480 0.931602i \(-0.618411\pi\)
−0.363480 + 0.931602i \(0.618411\pi\)
\(710\) −56.9536 −2.13743
\(711\) 0 0
\(712\) −16.0689 −0.602207
\(713\) 0 0
\(714\) 0 0
\(715\) −13.5285 −0.505937
\(716\) −8.87107 −0.331528
\(717\) 0 0
\(718\) −15.9761 −0.596222
\(719\) −0.616416 −0.0229885 −0.0114942 0.999934i \(-0.503659\pi\)
−0.0114942 + 0.999934i \(0.503659\pi\)
\(720\) 0 0
\(721\) −19.1139 −0.711840
\(722\) 6.36860 0.237015
\(723\) 0 0
\(724\) −4.26624 −0.158553
\(725\) 50.9679 1.89290
\(726\) 0 0
\(727\) −45.3126 −1.68055 −0.840275 0.542160i \(-0.817607\pi\)
−0.840275 + 0.542160i \(0.817607\pi\)
\(728\) −2.63883 −0.0978015
\(729\) 0 0
\(730\) 20.0376 0.741625
\(731\) −8.33173 −0.308160
\(732\) 0 0
\(733\) 17.3915 0.642370 0.321185 0.947017i \(-0.395919\pi\)
0.321185 + 0.947017i \(0.395919\pi\)
\(734\) 0.337877 0.0124713
\(735\) 0 0
\(736\) 0 0
\(737\) −21.6339 −0.796893
\(738\) 0 0
\(739\) 33.9686 1.24956 0.624778 0.780803i \(-0.285190\pi\)
0.624778 + 0.780803i \(0.285190\pi\)
\(740\) −7.92118 −0.291188
\(741\) 0 0
\(742\) −17.2083 −0.631737
\(743\) 25.9127 0.950643 0.475321 0.879812i \(-0.342332\pi\)
0.475321 + 0.879812i \(0.342332\pi\)
\(744\) 0 0
\(745\) −11.3705 −0.416582
\(746\) 2.17582 0.0796624
\(747\) 0 0
\(748\) 12.4763 0.456177
\(749\) 4.10021 0.149818
\(750\) 0 0
\(751\) −21.5515 −0.786427 −0.393213 0.919447i \(-0.628637\pi\)
−0.393213 + 0.919447i \(0.628637\pi\)
\(752\) 2.29416 0.0836595
\(753\) 0 0
\(754\) −5.97078 −0.217443
\(755\) 90.4041 3.29014
\(756\) 0 0
\(757\) 30.5862 1.11167 0.555837 0.831292i \(-0.312398\pi\)
0.555837 + 0.831292i \(0.312398\pi\)
\(758\) 3.99367 0.145057
\(759\) 0 0
\(760\) −14.4711 −0.524923
\(761\) −22.0332 −0.798702 −0.399351 0.916798i \(-0.630765\pi\)
−0.399351 + 0.916798i \(0.630765\pi\)
\(762\) 0 0
\(763\) −21.6581 −0.784074
\(764\) 3.58630 0.129748
\(765\) 0 0
\(766\) 16.2398 0.586769
\(767\) −19.4377 −0.701855
\(768\) 0 0
\(769\) 42.3961 1.52884 0.764421 0.644717i \(-0.223025\pi\)
0.764421 + 0.644717i \(0.223025\pi\)
\(770\) 19.4028 0.699230
\(771\) 0 0
\(772\) 15.2870 0.550190
\(773\) −10.2548 −0.368838 −0.184419 0.982848i \(-0.559040\pi\)
−0.184419 + 0.982848i \(0.559040\pi\)
\(774\) 0 0
\(775\) 40.1101 1.44080
\(776\) 8.59175 0.308426
\(777\) 0 0
\(778\) −3.96170 −0.142034
\(779\) 19.8025 0.709497
\(780\) 0 0
\(781\) −34.2626 −1.22601
\(782\) 0 0
\(783\) 0 0
\(784\) −3.21534 −0.114834
\(785\) 50.8659 1.81548
\(786\) 0 0
\(787\) 48.6462 1.73405 0.867025 0.498265i \(-0.166030\pi\)
0.867025 + 0.498265i \(0.166030\pi\)
\(788\) 7.79946 0.277844
\(789\) 0 0
\(790\) −28.7509 −1.02291
\(791\) 22.5953 0.803396
\(792\) 0 0
\(793\) −8.08820 −0.287220
\(794\) −9.53339 −0.338328
\(795\) 0 0
\(796\) 24.1394 0.855597
\(797\) −46.1175 −1.63356 −0.816782 0.576946i \(-0.804244\pi\)
−0.816782 + 0.576946i \(0.804244\pi\)
\(798\) 0 0
\(799\) −11.6851 −0.413390
\(800\) −11.5788 −0.409372
\(801\) 0 0
\(802\) 3.05120 0.107742
\(803\) 12.0544 0.425390
\(804\) 0 0
\(805\) 0 0
\(806\) −4.69882 −0.165509
\(807\) 0 0
\(808\) 15.5858 0.548307
\(809\) −33.9809 −1.19470 −0.597352 0.801979i \(-0.703780\pi\)
−0.597352 + 0.801979i \(0.703780\pi\)
\(810\) 0 0
\(811\) 5.04290 0.177080 0.0885400 0.996073i \(-0.471780\pi\)
0.0885400 + 0.996073i \(0.471780\pi\)
\(812\) 8.56341 0.300517
\(813\) 0 0
\(814\) −4.76529 −0.167023
\(815\) 25.7842 0.903182
\(816\) 0 0
\(817\) 5.81369 0.203395
\(818\) −39.7028 −1.38818
\(819\) 0 0
\(820\) 22.6866 0.792251
\(821\) −2.44191 −0.0852231 −0.0426116 0.999092i \(-0.513568\pi\)
−0.0426116 + 0.999092i \(0.513568\pi\)
\(822\) 0 0
\(823\) −2.84938 −0.0993232 −0.0496616 0.998766i \(-0.515814\pi\)
−0.0496616 + 0.998766i \(0.515814\pi\)
\(824\) 9.82510 0.342273
\(825\) 0 0
\(826\) 27.8779 0.969997
\(827\) −3.88626 −0.135139 −0.0675693 0.997715i \(-0.521524\pi\)
−0.0675693 + 0.997715i \(0.521524\pi\)
\(828\) 0 0
\(829\) 20.3631 0.707239 0.353620 0.935389i \(-0.384951\pi\)
0.353620 + 0.935389i \(0.384951\pi\)
\(830\) 20.2294 0.702172
\(831\) 0 0
\(832\) 1.35643 0.0470258
\(833\) 16.3771 0.567432
\(834\) 0 0
\(835\) 84.1789 2.91313
\(836\) −8.70565 −0.301091
\(837\) 0 0
\(838\) 30.8981 1.06736
\(839\) 7.05733 0.243646 0.121823 0.992552i \(-0.461126\pi\)
0.121823 + 0.992552i \(0.461126\pi\)
\(840\) 0 0
\(841\) −9.62388 −0.331858
\(842\) −2.14868 −0.0740485
\(843\) 0 0
\(844\) −0.100647 −0.00346441
\(845\) −45.4406 −1.56321
\(846\) 0 0
\(847\) −9.72710 −0.334227
\(848\) 8.84555 0.303758
\(849\) 0 0
\(850\) 58.9756 2.02285
\(851\) 0 0
\(852\) 0 0
\(853\) −22.4781 −0.769635 −0.384818 0.922993i \(-0.625736\pi\)
−0.384818 + 0.922993i \(0.625736\pi\)
\(854\) 11.6003 0.396953
\(855\) 0 0
\(856\) −2.10762 −0.0720370
\(857\) −6.43977 −0.219978 −0.109989 0.993933i \(-0.535082\pi\)
−0.109989 + 0.993933i \(0.535082\pi\)
\(858\) 0 0
\(859\) 37.7008 1.28633 0.643167 0.765726i \(-0.277620\pi\)
0.643167 + 0.765726i \(0.277620\pi\)
\(860\) 6.66044 0.227119
\(861\) 0 0
\(862\) 25.1005 0.854927
\(863\) −34.5566 −1.17632 −0.588159 0.808745i \(-0.700147\pi\)
−0.588159 + 0.808745i \(0.700147\pi\)
\(864\) 0 0
\(865\) −6.50727 −0.221254
\(866\) −5.95292 −0.202288
\(867\) 0 0
\(868\) 6.73913 0.228741
\(869\) −17.2962 −0.586733
\(870\) 0 0
\(871\) 11.9800 0.405926
\(872\) 11.1328 0.377006
\(873\) 0 0
\(874\) 0 0
\(875\) 52.1118 1.76170
\(876\) 0 0
\(877\) −7.17164 −0.242169 −0.121085 0.992642i \(-0.538637\pi\)
−0.121085 + 0.992642i \(0.538637\pi\)
\(878\) −24.1766 −0.815921
\(879\) 0 0
\(880\) −9.97360 −0.336210
\(881\) −8.08174 −0.272281 −0.136140 0.990690i \(-0.543470\pi\)
−0.136140 + 0.990690i \(0.543470\pi\)
\(882\) 0 0
\(883\) −41.0042 −1.37990 −0.689950 0.723857i \(-0.742367\pi\)
−0.689950 + 0.723857i \(0.742367\pi\)
\(884\) −6.90887 −0.232370
\(885\) 0 0
\(886\) 6.51214 0.218780
\(887\) 37.8321 1.27028 0.635138 0.772398i \(-0.280943\pi\)
0.635138 + 0.772398i \(0.280943\pi\)
\(888\) 0 0
\(889\) 16.0096 0.536945
\(890\) −65.4278 −2.19315
\(891\) 0 0
\(892\) 6.11720 0.204819
\(893\) 8.15361 0.272850
\(894\) 0 0
\(895\) −36.1204 −1.20737
\(896\) −1.94542 −0.0649919
\(897\) 0 0
\(898\) 29.7300 0.992102
\(899\) 15.2484 0.508562
\(900\) 0 0
\(901\) −45.0541 −1.50097
\(902\) 13.6480 0.454429
\(903\) 0 0
\(904\) −11.6146 −0.386296
\(905\) −17.3709 −0.577427
\(906\) 0 0
\(907\) −15.9611 −0.529978 −0.264989 0.964251i \(-0.585368\pi\)
−0.264989 + 0.964251i \(0.585368\pi\)
\(908\) −24.5033 −0.813170
\(909\) 0 0
\(910\) −10.7445 −0.356178
\(911\) −37.5172 −1.24300 −0.621501 0.783414i \(-0.713477\pi\)
−0.621501 + 0.783414i \(0.713477\pi\)
\(912\) 0 0
\(913\) 12.1698 0.402760
\(914\) −4.37251 −0.144630
\(915\) 0 0
\(916\) 13.9724 0.461661
\(917\) 17.1460 0.566210
\(918\) 0 0
\(919\) 26.7175 0.881330 0.440665 0.897672i \(-0.354743\pi\)
0.440665 + 0.897672i \(0.354743\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 7.86593 0.259051
\(923\) 18.9733 0.624513
\(924\) 0 0
\(925\) −22.5256 −0.740638
\(926\) 21.9472 0.721230
\(927\) 0 0
\(928\) −4.40183 −0.144497
\(929\) 43.8177 1.43761 0.718805 0.695211i \(-0.244689\pi\)
0.718805 + 0.695211i \(0.244689\pi\)
\(930\) 0 0
\(931\) −11.4275 −0.374523
\(932\) −4.85641 −0.159077
\(933\) 0 0
\(934\) −29.6404 −0.969864
\(935\) 50.7997 1.66133
\(936\) 0 0
\(937\) −34.4360 −1.12498 −0.562488 0.826805i \(-0.690156\pi\)
−0.562488 + 0.826805i \(0.690156\pi\)
\(938\) −17.1819 −0.561010
\(939\) 0 0
\(940\) 9.34115 0.304675
\(941\) −35.8492 −1.16865 −0.584326 0.811519i \(-0.698641\pi\)
−0.584326 + 0.811519i \(0.698641\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −14.3300 −0.466403
\(945\) 0 0
\(946\) 4.00684 0.130274
\(947\) −0.975923 −0.0317132 −0.0158566 0.999874i \(-0.505048\pi\)
−0.0158566 + 0.999874i \(0.505048\pi\)
\(948\) 0 0
\(949\) −6.67524 −0.216688
\(950\) −41.1518 −1.33514
\(951\) 0 0
\(952\) 9.90883 0.321147
\(953\) −16.6476 −0.539267 −0.269634 0.962963i \(-0.586903\pi\)
−0.269634 + 0.962963i \(0.586903\pi\)
\(954\) 0 0
\(955\) 14.6024 0.472522
\(956\) −10.6601 −0.344771
\(957\) 0 0
\(958\) 38.7485 1.25191
\(959\) 7.54292 0.243574
\(960\) 0 0
\(961\) −19.0000 −0.612903
\(962\) 2.63883 0.0850792
\(963\) 0 0
\(964\) −13.3806 −0.430961
\(965\) 62.2440 2.00370
\(966\) 0 0
\(967\) 52.3940 1.68488 0.842439 0.538792i \(-0.181119\pi\)
0.842439 + 0.538792i \(0.181119\pi\)
\(968\) 5.00000 0.160706
\(969\) 0 0
\(970\) 34.9831 1.12324
\(971\) 51.8696 1.66457 0.832287 0.554344i \(-0.187031\pi\)
0.832287 + 0.554344i \(0.187031\pi\)
\(972\) 0 0
\(973\) −1.03768 −0.0332664
\(974\) −15.6777 −0.502347
\(975\) 0 0
\(976\) −5.96285 −0.190866
\(977\) −18.1728 −0.581399 −0.290699 0.956814i \(-0.593888\pi\)
−0.290699 + 0.956814i \(0.593888\pi\)
\(978\) 0 0
\(979\) −39.3606 −1.25797
\(980\) −13.0919 −0.418206
\(981\) 0 0
\(982\) −16.8561 −0.537899
\(983\) −23.6079 −0.752975 −0.376488 0.926422i \(-0.622868\pi\)
−0.376488 + 0.926422i \(0.622868\pi\)
\(984\) 0 0
\(985\) 31.7571 1.01187
\(986\) 22.4204 0.714010
\(987\) 0 0
\(988\) 4.82085 0.153372
\(989\) 0 0
\(990\) 0 0
\(991\) 3.77401 0.119885 0.0599427 0.998202i \(-0.480908\pi\)
0.0599427 + 0.998202i \(0.480908\pi\)
\(992\) −3.46410 −0.109985
\(993\) 0 0
\(994\) −27.2119 −0.863108
\(995\) 98.2884 3.11595
\(996\) 0 0
\(997\) −14.6939 −0.465361 −0.232681 0.972553i \(-0.574750\pi\)
−0.232681 + 0.972553i \(0.574750\pi\)
\(998\) 16.9853 0.537661
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9522.2.a.ce.1.8 8
3.2 odd 2 1058.2.a.n.1.5 8
12.11 even 2 8464.2.a.cb.1.3 8
23.22 odd 2 inner 9522.2.a.ce.1.1 8
69.68 even 2 1058.2.a.n.1.6 yes 8
276.275 odd 2 8464.2.a.cb.1.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1058.2.a.n.1.5 8 3.2 odd 2
1058.2.a.n.1.6 yes 8 69.68 even 2
8464.2.a.cb.1.3 8 12.11 even 2
8464.2.a.cb.1.4 8 276.275 odd 2
9522.2.a.ce.1.1 8 23.22 odd 2 inner
9522.2.a.ce.1.8 8 1.1 even 1 trivial