Properties

Label 8464.2.a.cb.1.4
Level $8464$
Weight $2$
Character 8464.1
Self dual yes
Analytic conductor $67.585$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8464,2,Mod(1,8464)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8464, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8464.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8464 = 2^{4} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8464.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.5853802708\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.819879542784.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 22x^{6} + 80x^{5} + 151x^{4} - 440x^{3} - 298x^{2} + 532x - 146 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1058)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.443768\) of defining polynomial
Character \(\chi\) \(=\) 8464.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.37562 q^{3} +4.07171 q^{5} +1.94542 q^{7} +2.64357 q^{9} +2.44949 q^{11} +1.35643 q^{13} -9.67283 q^{15} -5.09341 q^{17} +3.55407 q^{19} -4.62158 q^{21} +11.5788 q^{25} +0.846745 q^{27} -4.40183 q^{29} -3.46410 q^{31} -5.81906 q^{33} +7.92118 q^{35} +1.94542 q^{37} -3.22236 q^{39} -5.57177 q^{41} +1.63579 q^{43} +10.7638 q^{45} +2.29416 q^{47} -3.21534 q^{49} +12.1000 q^{51} +8.84555 q^{53} +9.97360 q^{55} -8.44312 q^{57} -14.3300 q^{59} +5.96285 q^{61} +5.14285 q^{63} +5.52299 q^{65} +8.83199 q^{67} +13.9877 q^{71} -4.92118 q^{73} -27.5068 q^{75} +4.76529 q^{77} +7.06114 q^{79} -9.94225 q^{81} +4.96828 q^{83} -20.7389 q^{85} +10.4571 q^{87} +16.0689 q^{89} +2.63883 q^{91} +8.22939 q^{93} +14.4711 q^{95} +8.59175 q^{97} +6.47539 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} + 20 q^{9} + 12 q^{13} + 32 q^{25} - 40 q^{27} + 12 q^{35} + 36 q^{39} + 12 q^{41} + 12 q^{47} + 32 q^{49} - 12 q^{55} - 24 q^{59} + 12 q^{71} + 12 q^{73} + 8 q^{75} - 16 q^{81} - 36 q^{85}+ \cdots + 84 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.37562 −1.37156 −0.685782 0.727807i \(-0.740540\pi\)
−0.685782 + 0.727807i \(0.740540\pi\)
\(4\) 0 0
\(5\) 4.07171 1.82092 0.910461 0.413594i \(-0.135727\pi\)
0.910461 + 0.413594i \(0.135727\pi\)
\(6\) 0 0
\(7\) 1.94542 0.735300 0.367650 0.929964i \(-0.380163\pi\)
0.367650 + 0.929964i \(0.380163\pi\)
\(8\) 0 0
\(9\) 2.64357 0.881190
\(10\) 0 0
\(11\) 2.44949 0.738549 0.369274 0.929320i \(-0.379606\pi\)
0.369274 + 0.929320i \(0.379606\pi\)
\(12\) 0 0
\(13\) 1.35643 0.376206 0.188103 0.982149i \(-0.439766\pi\)
0.188103 + 0.982149i \(0.439766\pi\)
\(14\) 0 0
\(15\) −9.67283 −2.49751
\(16\) 0 0
\(17\) −5.09341 −1.23533 −0.617667 0.786440i \(-0.711922\pi\)
−0.617667 + 0.786440i \(0.711922\pi\)
\(18\) 0 0
\(19\) 3.55407 0.815359 0.407680 0.913125i \(-0.366338\pi\)
0.407680 + 0.913125i \(0.366338\pi\)
\(20\) 0 0
\(21\) −4.62158 −1.00851
\(22\) 0 0
\(23\) 0 0
\(24\) 0 0
\(25\) 11.5788 2.31576
\(26\) 0 0
\(27\) 0.846745 0.162956
\(28\) 0 0
\(29\) −4.40183 −0.817400 −0.408700 0.912669i \(-0.634018\pi\)
−0.408700 + 0.912669i \(0.634018\pi\)
\(30\) 0 0
\(31\) −3.46410 −0.622171 −0.311086 0.950382i \(-0.600693\pi\)
−0.311086 + 0.950382i \(0.600693\pi\)
\(32\) 0 0
\(33\) −5.81906 −1.01297
\(34\) 0 0
\(35\) 7.92118 1.33892
\(36\) 0 0
\(37\) 1.94542 0.319825 0.159913 0.987131i \(-0.448879\pi\)
0.159913 + 0.987131i \(0.448879\pi\)
\(38\) 0 0
\(39\) −3.22236 −0.515991
\(40\) 0 0
\(41\) −5.57177 −0.870165 −0.435082 0.900391i \(-0.643281\pi\)
−0.435082 + 0.900391i \(0.643281\pi\)
\(42\) 0 0
\(43\) 1.63579 0.249455 0.124727 0.992191i \(-0.460194\pi\)
0.124727 + 0.992191i \(0.460194\pi\)
\(44\) 0 0
\(45\) 10.7638 1.60458
\(46\) 0 0
\(47\) 2.29416 0.334638 0.167319 0.985903i \(-0.446489\pi\)
0.167319 + 0.985903i \(0.446489\pi\)
\(48\) 0 0
\(49\) −3.21534 −0.459334
\(50\) 0 0
\(51\) 12.1000 1.69434
\(52\) 0 0
\(53\) 8.84555 1.21503 0.607515 0.794308i \(-0.292166\pi\)
0.607515 + 0.794308i \(0.292166\pi\)
\(54\) 0 0
\(55\) 9.97360 1.34484
\(56\) 0 0
\(57\) −8.44312 −1.11832
\(58\) 0 0
\(59\) −14.3300 −1.86561 −0.932806 0.360379i \(-0.882647\pi\)
−0.932806 + 0.360379i \(0.882647\pi\)
\(60\) 0 0
\(61\) 5.96285 0.763465 0.381733 0.924273i \(-0.375328\pi\)
0.381733 + 0.924273i \(0.375328\pi\)
\(62\) 0 0
\(63\) 5.14285 0.647938
\(64\) 0 0
\(65\) 5.52299 0.685043
\(66\) 0 0
\(67\) 8.83199 1.07900 0.539499 0.841986i \(-0.318614\pi\)
0.539499 + 0.841986i \(0.318614\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 13.9877 1.66003 0.830014 0.557742i \(-0.188332\pi\)
0.830014 + 0.557742i \(0.188332\pi\)
\(72\) 0 0
\(73\) −4.92118 −0.575981 −0.287990 0.957633i \(-0.592987\pi\)
−0.287990 + 0.957633i \(0.592987\pi\)
\(74\) 0 0
\(75\) −27.5068 −3.17621
\(76\) 0 0
\(77\) 4.76529 0.543055
\(78\) 0 0
\(79\) 7.06114 0.794440 0.397220 0.917723i \(-0.369975\pi\)
0.397220 + 0.917723i \(0.369975\pi\)
\(80\) 0 0
\(81\) −9.94225 −1.10469
\(82\) 0 0
\(83\) 4.96828 0.545340 0.272670 0.962108i \(-0.412093\pi\)
0.272670 + 0.962108i \(0.412093\pi\)
\(84\) 0 0
\(85\) −20.7389 −2.24945
\(86\) 0 0
\(87\) 10.4571 1.12112
\(88\) 0 0
\(89\) 16.0689 1.70330 0.851650 0.524112i \(-0.175603\pi\)
0.851650 + 0.524112i \(0.175603\pi\)
\(90\) 0 0
\(91\) 2.63883 0.276624
\(92\) 0 0
\(93\) 8.22939 0.853348
\(94\) 0 0
\(95\) 14.4711 1.48471
\(96\) 0 0
\(97\) 8.59175 0.872360 0.436180 0.899859i \(-0.356331\pi\)
0.436180 + 0.899859i \(0.356331\pi\)
\(98\) 0 0
\(99\) 6.47539 0.650802
\(100\) 0 0
\(101\) 15.5858 1.55085 0.775423 0.631442i \(-0.217536\pi\)
0.775423 + 0.631442i \(0.217536\pi\)
\(102\) 0 0
\(103\) −9.82510 −0.968095 −0.484048 0.875042i \(-0.660834\pi\)
−0.484048 + 0.875042i \(0.660834\pi\)
\(104\) 0 0
\(105\) −18.8177 −1.83642
\(106\) 0 0
\(107\) −2.10762 −0.203751 −0.101876 0.994797i \(-0.532484\pi\)
−0.101876 + 0.994797i \(0.532484\pi\)
\(108\) 0 0
\(109\) 11.1328 1.06633 0.533166 0.846010i \(-0.321002\pi\)
0.533166 + 0.846010i \(0.321002\pi\)
\(110\) 0 0
\(111\) −4.62158 −0.438661
\(112\) 0 0
\(113\) 11.6146 1.09261 0.546305 0.837586i \(-0.316034\pi\)
0.546305 + 0.837586i \(0.316034\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 3.58582 0.331509
\(118\) 0 0
\(119\) −9.90883 −0.908341
\(120\) 0 0
\(121\) −5.00000 −0.454545
\(122\) 0 0
\(123\) 13.2364 1.19349
\(124\) 0 0
\(125\) 26.7869 2.39590
\(126\) 0 0
\(127\) −8.22939 −0.730240 −0.365120 0.930960i \(-0.618972\pi\)
−0.365120 + 0.930960i \(0.618972\pi\)
\(128\) 0 0
\(129\) −3.88600 −0.342144
\(130\) 0 0
\(131\) 8.81351 0.770040 0.385020 0.922908i \(-0.374195\pi\)
0.385020 + 0.922908i \(0.374195\pi\)
\(132\) 0 0
\(133\) 6.91416 0.599533
\(134\) 0 0
\(135\) 3.44770 0.296730
\(136\) 0 0
\(137\) 3.87727 0.331258 0.165629 0.986188i \(-0.447035\pi\)
0.165629 + 0.986188i \(0.447035\pi\)
\(138\) 0 0
\(139\) 0.533395 0.0452420 0.0226210 0.999744i \(-0.492799\pi\)
0.0226210 + 0.999744i \(0.492799\pi\)
\(140\) 0 0
\(141\) −5.45005 −0.458977
\(142\) 0 0
\(143\) 3.32256 0.277847
\(144\) 0 0
\(145\) −17.9230 −1.48842
\(146\) 0 0
\(147\) 7.63843 0.630007
\(148\) 0 0
\(149\) −2.79256 −0.228775 −0.114388 0.993436i \(-0.536491\pi\)
−0.114388 + 0.993436i \(0.536491\pi\)
\(150\) 0 0
\(151\) −22.2030 −1.80685 −0.903427 0.428742i \(-0.858957\pi\)
−0.903427 + 0.428742i \(0.858957\pi\)
\(152\) 0 0
\(153\) −13.4648 −1.08856
\(154\) 0 0
\(155\) −14.1048 −1.13293
\(156\) 0 0
\(157\) −12.4925 −0.997012 −0.498506 0.866886i \(-0.666118\pi\)
−0.498506 + 0.866886i \(0.666118\pi\)
\(158\) 0 0
\(159\) −21.0137 −1.66649
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −6.33254 −0.496003 −0.248001 0.968760i \(-0.579774\pi\)
−0.248001 + 0.968760i \(0.579774\pi\)
\(164\) 0 0
\(165\) −23.6935 −1.84454
\(166\) 0 0
\(167\) 20.6741 1.59981 0.799906 0.600126i \(-0.204883\pi\)
0.799906 + 0.600126i \(0.204883\pi\)
\(168\) 0 0
\(169\) −11.1601 −0.858469
\(170\) 0 0
\(171\) 9.39543 0.718486
\(172\) 0 0
\(173\) 1.59817 0.121506 0.0607532 0.998153i \(-0.480650\pi\)
0.0607532 + 0.998153i \(0.480650\pi\)
\(174\) 0 0
\(175\) 22.5256 1.70278
\(176\) 0 0
\(177\) 34.0427 2.55881
\(178\) 0 0
\(179\) −8.87107 −0.663055 −0.331528 0.943446i \(-0.607564\pi\)
−0.331528 + 0.943446i \(0.607564\pi\)
\(180\) 0 0
\(181\) 4.26624 0.317107 0.158553 0.987350i \(-0.449317\pi\)
0.158553 + 0.987350i \(0.449317\pi\)
\(182\) 0 0
\(183\) −14.1655 −1.04714
\(184\) 0 0
\(185\) 7.92118 0.582377
\(186\) 0 0
\(187\) −12.4763 −0.912355
\(188\) 0 0
\(189\) 1.64727 0.119822
\(190\) 0 0
\(191\) −3.58630 −0.259496 −0.129748 0.991547i \(-0.541417\pi\)
−0.129748 + 0.991547i \(0.541417\pi\)
\(192\) 0 0
\(193\) 15.2870 1.10038 0.550190 0.835040i \(-0.314555\pi\)
0.550190 + 0.835040i \(0.314555\pi\)
\(194\) 0 0
\(195\) −13.1205 −0.939580
\(196\) 0 0
\(197\) −7.79946 −0.555689 −0.277844 0.960626i \(-0.589620\pi\)
−0.277844 + 0.960626i \(0.589620\pi\)
\(198\) 0 0
\(199\) 24.1394 1.71119 0.855597 0.517642i \(-0.173190\pi\)
0.855597 + 0.517642i \(0.173190\pi\)
\(200\) 0 0
\(201\) −20.9814 −1.47992
\(202\) 0 0
\(203\) −8.56341 −0.601034
\(204\) 0 0
\(205\) −22.6866 −1.58450
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 8.70565 0.602183
\(210\) 0 0
\(211\) 0.100647 0.00692882 0.00346441 0.999994i \(-0.498897\pi\)
0.00346441 + 0.999994i \(0.498897\pi\)
\(212\) 0 0
\(213\) −33.2293 −2.27684
\(214\) 0 0
\(215\) 6.66044 0.454238
\(216\) 0 0
\(217\) −6.73913 −0.457482
\(218\) 0 0
\(219\) 11.6909 0.789995
\(220\) 0 0
\(221\) −6.90887 −0.464741
\(222\) 0 0
\(223\) −6.11720 −0.409638 −0.204819 0.978800i \(-0.565661\pi\)
−0.204819 + 0.978800i \(0.565661\pi\)
\(224\) 0 0
\(225\) 30.6093 2.04062
\(226\) 0 0
\(227\) 24.5033 1.62634 0.813170 0.582027i \(-0.197740\pi\)
0.813170 + 0.582027i \(0.197740\pi\)
\(228\) 0 0
\(229\) −13.9724 −0.923322 −0.461661 0.887056i \(-0.652746\pi\)
−0.461661 + 0.887056i \(0.652746\pi\)
\(230\) 0 0
\(231\) −11.3205 −0.744835
\(232\) 0 0
\(233\) 4.85641 0.318154 0.159077 0.987266i \(-0.449148\pi\)
0.159077 + 0.987266i \(0.449148\pi\)
\(234\) 0 0
\(235\) 9.34115 0.609350
\(236\) 0 0
\(237\) −16.7746 −1.08963
\(238\) 0 0
\(239\) −10.6601 −0.689543 −0.344771 0.938687i \(-0.612044\pi\)
−0.344771 + 0.938687i \(0.612044\pi\)
\(240\) 0 0
\(241\) 13.3806 0.861922 0.430961 0.902371i \(-0.358175\pi\)
0.430961 + 0.902371i \(0.358175\pi\)
\(242\) 0 0
\(243\) 21.0788 1.35220
\(244\) 0 0
\(245\) −13.0919 −0.836412
\(246\) 0 0
\(247\) 4.82085 0.306743
\(248\) 0 0
\(249\) −11.8027 −0.747969
\(250\) 0 0
\(251\) −3.44260 −0.217295 −0.108647 0.994080i \(-0.534652\pi\)
−0.108647 + 0.994080i \(0.534652\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 49.2677 3.08526
\(256\) 0 0
\(257\) −8.79150 −0.548399 −0.274199 0.961673i \(-0.588413\pi\)
−0.274199 + 0.961673i \(0.588413\pi\)
\(258\) 0 0
\(259\) 3.78466 0.235167
\(260\) 0 0
\(261\) −11.6365 −0.720284
\(262\) 0 0
\(263\) −17.0957 −1.05417 −0.527083 0.849814i \(-0.676714\pi\)
−0.527083 + 0.849814i \(0.676714\pi\)
\(264\) 0 0
\(265\) 36.0165 2.21248
\(266\) 0 0
\(267\) −38.1736 −2.33618
\(268\) 0 0
\(269\) −4.28181 −0.261067 −0.130533 0.991444i \(-0.541669\pi\)
−0.130533 + 0.991444i \(0.541669\pi\)
\(270\) 0 0
\(271\) 13.6337 0.828190 0.414095 0.910234i \(-0.364098\pi\)
0.414095 + 0.910234i \(0.364098\pi\)
\(272\) 0 0
\(273\) −6.26885 −0.379408
\(274\) 0 0
\(275\) 28.3621 1.71030
\(276\) 0 0
\(277\) −30.3395 −1.82292 −0.911462 0.411384i \(-0.865046\pi\)
−0.911462 + 0.411384i \(0.865046\pi\)
\(278\) 0 0
\(279\) −9.15759 −0.548251
\(280\) 0 0
\(281\) −9.25793 −0.552282 −0.276141 0.961117i \(-0.589056\pi\)
−0.276141 + 0.961117i \(0.589056\pi\)
\(282\) 0 0
\(283\) 14.7391 0.876149 0.438074 0.898939i \(-0.355661\pi\)
0.438074 + 0.898939i \(0.355661\pi\)
\(284\) 0 0
\(285\) −34.3779 −2.03637
\(286\) 0 0
\(287\) −10.8394 −0.639832
\(288\) 0 0
\(289\) 8.94287 0.526051
\(290\) 0 0
\(291\) −20.4107 −1.19650
\(292\) 0 0
\(293\) −15.7879 −0.922342 −0.461171 0.887311i \(-0.652571\pi\)
−0.461171 + 0.887311i \(0.652571\pi\)
\(294\) 0 0
\(295\) −58.3477 −3.39713
\(296\) 0 0
\(297\) 2.07409 0.120351
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 3.18229 0.183424
\(302\) 0 0
\(303\) −37.0260 −2.12709
\(304\) 0 0
\(305\) 24.2790 1.39021
\(306\) 0 0
\(307\) −32.9589 −1.88107 −0.940533 0.339703i \(-0.889674\pi\)
−0.940533 + 0.339703i \(0.889674\pi\)
\(308\) 0 0
\(309\) 23.3407 1.32781
\(310\) 0 0
\(311\) 19.9212 1.12963 0.564813 0.825219i \(-0.308948\pi\)
0.564813 + 0.825219i \(0.308948\pi\)
\(312\) 0 0
\(313\) 9.67273 0.546735 0.273368 0.961910i \(-0.411862\pi\)
0.273368 + 0.961910i \(0.411862\pi\)
\(314\) 0 0
\(315\) 20.9402 1.17985
\(316\) 0 0
\(317\) −18.3490 −1.03058 −0.515292 0.857014i \(-0.672317\pi\)
−0.515292 + 0.857014i \(0.672317\pi\)
\(318\) 0 0
\(319\) −10.7822 −0.603690
\(320\) 0 0
\(321\) 5.00691 0.279458
\(322\) 0 0
\(323\) −18.1023 −1.00724
\(324\) 0 0
\(325\) 15.7058 0.871203
\(326\) 0 0
\(327\) −26.4474 −1.46254
\(328\) 0 0
\(329\) 4.46311 0.246059
\(330\) 0 0
\(331\) 25.5384 1.40371 0.701857 0.712317i \(-0.252354\pi\)
0.701857 + 0.712317i \(0.252354\pi\)
\(332\) 0 0
\(333\) 5.14285 0.281827
\(334\) 0 0
\(335\) 35.9613 1.96477
\(336\) 0 0
\(337\) 32.6280 1.77736 0.888681 0.458526i \(-0.151623\pi\)
0.888681 + 0.458526i \(0.151623\pi\)
\(338\) 0 0
\(339\) −27.5919 −1.49859
\(340\) 0 0
\(341\) −8.48528 −0.459504
\(342\) 0 0
\(343\) −19.8731 −1.07305
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −11.6909 −0.627598 −0.313799 0.949489i \(-0.601602\pi\)
−0.313799 + 0.949489i \(0.601602\pi\)
\(348\) 0 0
\(349\) 11.3012 0.604939 0.302469 0.953159i \(-0.402189\pi\)
0.302469 + 0.953159i \(0.402189\pi\)
\(350\) 0 0
\(351\) 1.14855 0.0613051
\(352\) 0 0
\(353\) −25.1190 −1.33695 −0.668476 0.743734i \(-0.733053\pi\)
−0.668476 + 0.743734i \(0.733053\pi\)
\(354\) 0 0
\(355\) 56.9536 3.02278
\(356\) 0 0
\(357\) 23.5396 1.24585
\(358\) 0 0
\(359\) −15.9761 −0.843186 −0.421593 0.906785i \(-0.638529\pi\)
−0.421593 + 0.906785i \(0.638529\pi\)
\(360\) 0 0
\(361\) −6.36860 −0.335189
\(362\) 0 0
\(363\) 11.8781 0.623438
\(364\) 0 0
\(365\) −20.0376 −1.04882
\(366\) 0 0
\(367\) −0.337877 −0.0176370 −0.00881851 0.999961i \(-0.502807\pi\)
−0.00881851 + 0.999961i \(0.502807\pi\)
\(368\) 0 0
\(369\) −14.7294 −0.766780
\(370\) 0 0
\(371\) 17.2083 0.893411
\(372\) 0 0
\(373\) 2.17582 0.112660 0.0563298 0.998412i \(-0.482060\pi\)
0.0563298 + 0.998412i \(0.482060\pi\)
\(374\) 0 0
\(375\) −63.6355 −3.28613
\(376\) 0 0
\(377\) −5.97078 −0.307511
\(378\) 0 0
\(379\) −3.99367 −0.205141 −0.102571 0.994726i \(-0.532707\pi\)
−0.102571 + 0.994726i \(0.532707\pi\)
\(380\) 0 0
\(381\) 19.5499 1.00157
\(382\) 0 0
\(383\) 16.2398 0.829816 0.414908 0.909863i \(-0.363814\pi\)
0.414908 + 0.909863i \(0.363814\pi\)
\(384\) 0 0
\(385\) 19.4028 0.988861
\(386\) 0 0
\(387\) 4.32431 0.219817
\(388\) 0 0
\(389\) 3.96170 0.200866 0.100433 0.994944i \(-0.467977\pi\)
0.100433 + 0.994944i \(0.467977\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −20.9375 −1.05616
\(394\) 0 0
\(395\) 28.7509 1.44661
\(396\) 0 0
\(397\) 9.53339 0.478467 0.239234 0.970962i \(-0.423104\pi\)
0.239234 + 0.970962i \(0.423104\pi\)
\(398\) 0 0
\(399\) −16.4254 −0.822299
\(400\) 0 0
\(401\) −3.05120 −0.152370 −0.0761848 0.997094i \(-0.524274\pi\)
−0.0761848 + 0.997094i \(0.524274\pi\)
\(402\) 0 0
\(403\) −4.69882 −0.234065
\(404\) 0 0
\(405\) −40.4819 −2.01156
\(406\) 0 0
\(407\) 4.76529 0.236206
\(408\) 0 0
\(409\) 39.7028 1.96318 0.981589 0.191003i \(-0.0611742\pi\)
0.981589 + 0.191003i \(0.0611742\pi\)
\(410\) 0 0
\(411\) −9.21092 −0.454341
\(412\) 0 0
\(413\) −27.8779 −1.37178
\(414\) 0 0
\(415\) 20.2294 0.993022
\(416\) 0 0
\(417\) −1.26714 −0.0620523
\(418\) 0 0
\(419\) 30.8981 1.50947 0.754736 0.656028i \(-0.227765\pi\)
0.754736 + 0.656028i \(0.227765\pi\)
\(420\) 0 0
\(421\) −2.14868 −0.104720 −0.0523602 0.998628i \(-0.516674\pi\)
−0.0523602 + 0.998628i \(0.516674\pi\)
\(422\) 0 0
\(423\) 6.06477 0.294879
\(424\) 0 0
\(425\) −58.9756 −2.86074
\(426\) 0 0
\(427\) 11.6003 0.561376
\(428\) 0 0
\(429\) −7.89315 −0.381085
\(430\) 0 0
\(431\) 25.1005 1.20905 0.604524 0.796587i \(-0.293363\pi\)
0.604524 + 0.796587i \(0.293363\pi\)
\(432\) 0 0
\(433\) −5.95292 −0.286079 −0.143040 0.989717i \(-0.545688\pi\)
−0.143040 + 0.989717i \(0.545688\pi\)
\(434\) 0 0
\(435\) 42.5782 2.04147
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −24.1766 −1.15389 −0.576943 0.816784i \(-0.695755\pi\)
−0.576943 + 0.816784i \(0.695755\pi\)
\(440\) 0 0
\(441\) −8.49998 −0.404761
\(442\) 0 0
\(443\) −6.51214 −0.309401 −0.154701 0.987961i \(-0.549441\pi\)
−0.154701 + 0.987961i \(0.549441\pi\)
\(444\) 0 0
\(445\) 65.4278 3.10158
\(446\) 0 0
\(447\) 6.63406 0.313780
\(448\) 0 0
\(449\) 29.7300 1.40304 0.701522 0.712647i \(-0.252504\pi\)
0.701522 + 0.712647i \(0.252504\pi\)
\(450\) 0 0
\(451\) −13.6480 −0.642659
\(452\) 0 0
\(453\) 52.7459 2.47822
\(454\) 0 0
\(455\) 10.7445 0.503712
\(456\) 0 0
\(457\) −4.37251 −0.204538 −0.102269 0.994757i \(-0.532610\pi\)
−0.102269 + 0.994757i \(0.532610\pi\)
\(458\) 0 0
\(459\) −4.31282 −0.201305
\(460\) 0 0
\(461\) 7.86593 0.366353 0.183177 0.983080i \(-0.441362\pi\)
0.183177 + 0.983080i \(0.441362\pi\)
\(462\) 0 0
\(463\) 21.9472 1.01997 0.509987 0.860182i \(-0.329650\pi\)
0.509987 + 0.860182i \(0.329650\pi\)
\(464\) 0 0
\(465\) 33.5077 1.55388
\(466\) 0 0
\(467\) −29.6404 −1.37159 −0.685797 0.727793i \(-0.740546\pi\)
−0.685797 + 0.727793i \(0.740546\pi\)
\(468\) 0 0
\(469\) 17.1819 0.793387
\(470\) 0 0
\(471\) 29.6775 1.36747
\(472\) 0 0
\(473\) 4.00684 0.184235
\(474\) 0 0
\(475\) 41.1518 1.88818
\(476\) 0 0
\(477\) 23.3838 1.07067
\(478\) 0 0
\(479\) 38.7485 1.77046 0.885232 0.465150i \(-0.153999\pi\)
0.885232 + 0.465150i \(0.153999\pi\)
\(480\) 0 0
\(481\) 2.63883 0.120320
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 34.9831 1.58850
\(486\) 0 0
\(487\) −15.6777 −0.710426 −0.355213 0.934785i \(-0.615592\pi\)
−0.355213 + 0.934785i \(0.615592\pi\)
\(488\) 0 0
\(489\) 15.0437 0.680300
\(490\) 0 0
\(491\) 16.8561 0.760705 0.380352 0.924842i \(-0.375803\pi\)
0.380352 + 0.924842i \(0.375803\pi\)
\(492\) 0 0
\(493\) 22.4204 1.00976
\(494\) 0 0
\(495\) 26.3659 1.18506
\(496\) 0 0
\(497\) 27.2119 1.22062
\(498\) 0 0
\(499\) 16.9853 0.760368 0.380184 0.924911i \(-0.375861\pi\)
0.380184 + 0.924911i \(0.375861\pi\)
\(500\) 0 0
\(501\) −49.1138 −2.19424
\(502\) 0 0
\(503\) 5.66325 0.252512 0.126256 0.991998i \(-0.459704\pi\)
0.126256 + 0.991998i \(0.459704\pi\)
\(504\) 0 0
\(505\) 63.4609 2.82397
\(506\) 0 0
\(507\) 26.5121 1.17745
\(508\) 0 0
\(509\) 10.4262 0.462131 0.231066 0.972938i \(-0.425779\pi\)
0.231066 + 0.972938i \(0.425779\pi\)
\(510\) 0 0
\(511\) −9.57376 −0.423518
\(512\) 0 0
\(513\) 3.00939 0.132868
\(514\) 0 0
\(515\) −40.0049 −1.76283
\(516\) 0 0
\(517\) 5.61952 0.247146
\(518\) 0 0
\(519\) −3.79664 −0.166654
\(520\) 0 0
\(521\) 27.8011 1.21799 0.608995 0.793174i \(-0.291573\pi\)
0.608995 + 0.793174i \(0.291573\pi\)
\(522\) 0 0
\(523\) −21.1154 −0.923312 −0.461656 0.887059i \(-0.652745\pi\)
−0.461656 + 0.887059i \(0.652745\pi\)
\(524\) 0 0
\(525\) −53.5123 −2.33547
\(526\) 0 0
\(527\) 17.6441 0.768589
\(528\) 0 0
\(529\) 0 0
\(530\) 0 0
\(531\) −37.8824 −1.64396
\(532\) 0 0
\(533\) −7.55773 −0.327361
\(534\) 0 0
\(535\) −8.58162 −0.371016
\(536\) 0 0
\(537\) 21.0743 0.909423
\(538\) 0 0
\(539\) −7.87594 −0.339241
\(540\) 0 0
\(541\) −31.1340 −1.33856 −0.669278 0.743012i \(-0.733396\pi\)
−0.669278 + 0.743012i \(0.733396\pi\)
\(542\) 0 0
\(543\) −10.1350 −0.434933
\(544\) 0 0
\(545\) 45.3297 1.94171
\(546\) 0 0
\(547\) −23.8705 −1.02063 −0.510313 0.859988i \(-0.670471\pi\)
−0.510313 + 0.859988i \(0.670471\pi\)
\(548\) 0 0
\(549\) 15.7632 0.672758
\(550\) 0 0
\(551\) −15.6444 −0.666474
\(552\) 0 0
\(553\) 13.7369 0.584151
\(554\) 0 0
\(555\) −18.8177 −0.798767
\(556\) 0 0
\(557\) 46.8977 1.98712 0.993560 0.113305i \(-0.0361439\pi\)
0.993560 + 0.113305i \(0.0361439\pi\)
\(558\) 0 0
\(559\) 2.21883 0.0938465
\(560\) 0 0
\(561\) 29.6389 1.25135
\(562\) 0 0
\(563\) −6.76143 −0.284960 −0.142480 0.989798i \(-0.545508\pi\)
−0.142480 + 0.989798i \(0.545508\pi\)
\(564\) 0 0
\(565\) 47.2913 1.98956
\(566\) 0 0
\(567\) −19.3419 −0.812281
\(568\) 0 0
\(569\) 2.06692 0.0866497 0.0433248 0.999061i \(-0.486205\pi\)
0.0433248 + 0.999061i \(0.486205\pi\)
\(570\) 0 0
\(571\) 17.8482 0.746924 0.373462 0.927645i \(-0.378171\pi\)
0.373462 + 0.927645i \(0.378171\pi\)
\(572\) 0 0
\(573\) 8.51969 0.355915
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −14.8779 −0.619376 −0.309688 0.950838i \(-0.600225\pi\)
−0.309688 + 0.950838i \(0.600225\pi\)
\(578\) 0 0
\(579\) −36.3160 −1.50924
\(580\) 0 0
\(581\) 9.66540 0.400988
\(582\) 0 0
\(583\) 21.6671 0.897359
\(584\) 0 0
\(585\) 14.6004 0.603652
\(586\) 0 0
\(587\) −29.5524 −1.21976 −0.609879 0.792495i \(-0.708782\pi\)
−0.609879 + 0.792495i \(0.708782\pi\)
\(588\) 0 0
\(589\) −12.3117 −0.507293
\(590\) 0 0
\(591\) 18.5286 0.762163
\(592\) 0 0
\(593\) 24.1392 0.991276 0.495638 0.868529i \(-0.334934\pi\)
0.495638 + 0.868529i \(0.334934\pi\)
\(594\) 0 0
\(595\) −40.3459 −1.65402
\(596\) 0 0
\(597\) −57.3460 −2.34701
\(598\) 0 0
\(599\) 12.0404 0.491959 0.245980 0.969275i \(-0.420890\pi\)
0.245980 + 0.969275i \(0.420890\pi\)
\(600\) 0 0
\(601\) 32.6696 1.33262 0.666310 0.745675i \(-0.267873\pi\)
0.666310 + 0.745675i \(0.267873\pi\)
\(602\) 0 0
\(603\) 23.3480 0.950803
\(604\) 0 0
\(605\) −20.3585 −0.827692
\(606\) 0 0
\(607\) −4.09287 −0.166124 −0.0830622 0.996544i \(-0.526470\pi\)
−0.0830622 + 0.996544i \(0.526470\pi\)
\(608\) 0 0
\(609\) 20.3434 0.824357
\(610\) 0 0
\(611\) 3.11187 0.125893
\(612\) 0 0
\(613\) 29.7094 1.19995 0.599975 0.800019i \(-0.295177\pi\)
0.599975 + 0.800019i \(0.295177\pi\)
\(614\) 0 0
\(615\) 53.8948 2.17325
\(616\) 0 0
\(617\) −20.8936 −0.841146 −0.420573 0.907259i \(-0.638171\pi\)
−0.420573 + 0.907259i \(0.638171\pi\)
\(618\) 0 0
\(619\) −36.3294 −1.46020 −0.730102 0.683339i \(-0.760527\pi\)
−0.730102 + 0.683339i \(0.760527\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 31.2607 1.25244
\(624\) 0 0
\(625\) 51.1745 2.04698
\(626\) 0 0
\(627\) −20.6813 −0.825933
\(628\) 0 0
\(629\) −9.90883 −0.395091
\(630\) 0 0
\(631\) −1.77569 −0.0706890 −0.0353445 0.999375i \(-0.511253\pi\)
−0.0353445 + 0.999375i \(0.511253\pi\)
\(632\) 0 0
\(633\) −0.239099 −0.00950333
\(634\) 0 0
\(635\) −33.5077 −1.32971
\(636\) 0 0
\(637\) −4.36139 −0.172805
\(638\) 0 0
\(639\) 36.9773 1.46280
\(640\) 0 0
\(641\) 33.0344 1.30478 0.652389 0.757884i \(-0.273767\pi\)
0.652389 + 0.757884i \(0.273767\pi\)
\(642\) 0 0
\(643\) 43.0895 1.69928 0.849642 0.527360i \(-0.176818\pi\)
0.849642 + 0.527360i \(0.176818\pi\)
\(644\) 0 0
\(645\) −15.8227 −0.623017
\(646\) 0 0
\(647\) 0.0891034 0.00350302 0.00175151 0.999998i \(-0.499442\pi\)
0.00175151 + 0.999998i \(0.499442\pi\)
\(648\) 0 0
\(649\) −35.1013 −1.37785
\(650\) 0 0
\(651\) 16.0096 0.627466
\(652\) 0 0
\(653\) −9.03587 −0.353601 −0.176801 0.984247i \(-0.556575\pi\)
−0.176801 + 0.984247i \(0.556575\pi\)
\(654\) 0 0
\(655\) 35.8860 1.40218
\(656\) 0 0
\(657\) −13.0095 −0.507548
\(658\) 0 0
\(659\) 7.78944 0.303433 0.151717 0.988424i \(-0.451520\pi\)
0.151717 + 0.988424i \(0.451520\pi\)
\(660\) 0 0
\(661\) 27.8692 1.08399 0.541993 0.840383i \(-0.317670\pi\)
0.541993 + 0.840383i \(0.317670\pi\)
\(662\) 0 0
\(663\) 16.4128 0.637422
\(664\) 0 0
\(665\) 28.1524 1.09170
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 14.5321 0.561845
\(670\) 0 0
\(671\) 14.6059 0.563856
\(672\) 0 0
\(673\) 0.885122 0.0341189 0.0170595 0.999854i \(-0.494570\pi\)
0.0170595 + 0.999854i \(0.494570\pi\)
\(674\) 0 0
\(675\) 9.80428 0.377367
\(676\) 0 0
\(677\) −45.3102 −1.74141 −0.870707 0.491802i \(-0.836338\pi\)
−0.870707 + 0.491802i \(0.836338\pi\)
\(678\) 0 0
\(679\) 16.7146 0.641446
\(680\) 0 0
\(681\) −58.2105 −2.23063
\(682\) 0 0
\(683\) 51.8395 1.98358 0.991791 0.127866i \(-0.0408128\pi\)
0.991791 + 0.127866i \(0.0408128\pi\)
\(684\) 0 0
\(685\) 15.7871 0.603195
\(686\) 0 0
\(687\) 33.1931 1.26640
\(688\) 0 0
\(689\) 11.9984 0.457102
\(690\) 0 0
\(691\) −31.3012 −1.19075 −0.595377 0.803447i \(-0.702997\pi\)
−0.595377 + 0.803447i \(0.702997\pi\)
\(692\) 0 0
\(693\) 12.5974 0.478534
\(694\) 0 0
\(695\) 2.17183 0.0823821
\(696\) 0 0
\(697\) 28.3793 1.07494
\(698\) 0 0
\(699\) −11.5370 −0.436368
\(700\) 0 0
\(701\) −12.3084 −0.464881 −0.232440 0.972611i \(-0.574671\pi\)
−0.232440 + 0.972611i \(0.574671\pi\)
\(702\) 0 0
\(703\) 6.91416 0.260772
\(704\) 0 0
\(705\) −22.1910 −0.835762
\(706\) 0 0
\(707\) 30.3210 1.14034
\(708\) 0 0
\(709\) 19.3568 0.726959 0.363480 0.931602i \(-0.381589\pi\)
0.363480 + 0.931602i \(0.381589\pi\)
\(710\) 0 0
\(711\) 18.6666 0.700052
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 13.5285 0.505937
\(716\) 0 0
\(717\) 25.3243 0.945752
\(718\) 0 0
\(719\) −0.616416 −0.0229885 −0.0114942 0.999934i \(-0.503659\pi\)
−0.0114942 + 0.999934i \(0.503659\pi\)
\(720\) 0 0
\(721\) −19.1139 −0.711840
\(722\) 0 0
\(723\) −31.7873 −1.18218
\(724\) 0 0
\(725\) −50.9679 −1.89290
\(726\) 0 0
\(727\) −45.3126 −1.68055 −0.840275 0.542160i \(-0.817607\pi\)
−0.840275 + 0.542160i \(0.817607\pi\)
\(728\) 0 0
\(729\) −20.2484 −0.749940
\(730\) 0 0
\(731\) −8.33173 −0.308160
\(732\) 0 0
\(733\) −17.3915 −0.642370 −0.321185 0.947017i \(-0.604081\pi\)
−0.321185 + 0.947017i \(0.604081\pi\)
\(734\) 0 0
\(735\) 31.1014 1.14719
\(736\) 0 0
\(737\) 21.6339 0.796893
\(738\) 0 0
\(739\) −33.9686 −1.24956 −0.624778 0.780803i \(-0.714810\pi\)
−0.624778 + 0.780803i \(0.714810\pi\)
\(740\) 0 0
\(741\) −11.4525 −0.420718
\(742\) 0 0
\(743\) −25.9127 −0.950643 −0.475321 0.879812i \(-0.657668\pi\)
−0.475321 + 0.879812i \(0.657668\pi\)
\(744\) 0 0
\(745\) −11.3705 −0.416582
\(746\) 0 0
\(747\) 13.1340 0.480548
\(748\) 0 0
\(749\) −4.10021 −0.149818
\(750\) 0 0
\(751\) −21.5515 −0.786427 −0.393213 0.919447i \(-0.628637\pi\)
−0.393213 + 0.919447i \(0.628637\pi\)
\(752\) 0 0
\(753\) 8.17831 0.298034
\(754\) 0 0
\(755\) −90.4041 −3.29014
\(756\) 0 0
\(757\) −30.5862 −1.11167 −0.555837 0.831292i \(-0.687602\pi\)
−0.555837 + 0.831292i \(0.687602\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 22.0332 0.798702 0.399351 0.916798i \(-0.369235\pi\)
0.399351 + 0.916798i \(0.369235\pi\)
\(762\) 0 0
\(763\) 21.6581 0.784074
\(764\) 0 0
\(765\) −54.8247 −1.98219
\(766\) 0 0
\(767\) −19.4377 −0.701855
\(768\) 0 0
\(769\) −42.3961 −1.52884 −0.764421 0.644717i \(-0.776975\pi\)
−0.764421 + 0.644717i \(0.776975\pi\)
\(770\) 0 0
\(771\) 20.8853 0.752164
\(772\) 0 0
\(773\) −10.2548 −0.368838 −0.184419 0.982848i \(-0.559040\pi\)
−0.184419 + 0.982848i \(0.559040\pi\)
\(774\) 0 0
\(775\) −40.1101 −1.44080
\(776\) 0 0
\(777\) −8.99091 −0.322547
\(778\) 0 0
\(779\) −19.8025 −0.709497
\(780\) 0 0
\(781\) 34.2626 1.22601
\(782\) 0 0
\(783\) −3.72723 −0.133200
\(784\) 0 0
\(785\) −50.8659 −1.81548
\(786\) 0 0
\(787\) 48.6462 1.73405 0.867025 0.498265i \(-0.166030\pi\)
0.867025 + 0.498265i \(0.166030\pi\)
\(788\) 0 0
\(789\) 40.6129 1.44586
\(790\) 0 0
\(791\) 22.5953 0.803396
\(792\) 0 0
\(793\) 8.08820 0.287220
\(794\) 0 0
\(795\) −85.5615 −3.03455
\(796\) 0 0
\(797\) −46.1175 −1.63356 −0.816782 0.576946i \(-0.804244\pi\)
−0.816782 + 0.576946i \(0.804244\pi\)
\(798\) 0 0
\(799\) −11.6851 −0.413390
\(800\) 0 0
\(801\) 42.4792 1.50093
\(802\) 0 0
\(803\) −12.0544 −0.425390
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 10.1720 0.358070
\(808\) 0 0
\(809\) 33.9809 1.19470 0.597352 0.801979i \(-0.296220\pi\)
0.597352 + 0.801979i \(0.296220\pi\)
\(810\) 0 0
\(811\) −5.04290 −0.177080 −0.0885400 0.996073i \(-0.528220\pi\)
−0.0885400 + 0.996073i \(0.528220\pi\)
\(812\) 0 0
\(813\) −32.3885 −1.13592
\(814\) 0 0
\(815\) −25.7842 −0.903182
\(816\) 0 0
\(817\) 5.81369 0.203395
\(818\) 0 0
\(819\) 6.97592 0.243759
\(820\) 0 0
\(821\) 2.44191 0.0852231 0.0426116 0.999092i \(-0.486432\pi\)
0.0426116 + 0.999092i \(0.486432\pi\)
\(822\) 0 0
\(823\) 2.84938 0.0993232 0.0496616 0.998766i \(-0.484186\pi\)
0.0496616 + 0.998766i \(0.484186\pi\)
\(824\) 0 0
\(825\) −67.3777 −2.34579
\(826\) 0 0
\(827\) 3.88626 0.135139 0.0675693 0.997715i \(-0.478476\pi\)
0.0675693 + 0.997715i \(0.478476\pi\)
\(828\) 0 0
\(829\) 20.3631 0.707239 0.353620 0.935389i \(-0.384951\pi\)
0.353620 + 0.935389i \(0.384951\pi\)
\(830\) 0 0
\(831\) 72.0751 2.50026
\(832\) 0 0
\(833\) 16.3771 0.567432
\(834\) 0 0
\(835\) 84.1789 2.91313
\(836\) 0 0
\(837\) −2.93321 −0.101387
\(838\) 0 0
\(839\) −7.05733 −0.243646 −0.121823 0.992552i \(-0.538874\pi\)
−0.121823 + 0.992552i \(0.538874\pi\)
\(840\) 0 0
\(841\) −9.62388 −0.331858
\(842\) 0 0
\(843\) 21.9933 0.757490
\(844\) 0 0
\(845\) −45.4406 −1.56321
\(846\) 0 0
\(847\) −9.72710 −0.334227
\(848\) 0 0
\(849\) −35.0145 −1.20169
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −22.4781 −0.769635 −0.384818 0.922993i \(-0.625736\pi\)
−0.384818 + 0.922993i \(0.625736\pi\)
\(854\) 0 0
\(855\) 38.2554 1.30831
\(856\) 0 0
\(857\) 6.43977 0.219978 0.109989 0.993933i \(-0.464918\pi\)
0.109989 + 0.993933i \(0.464918\pi\)
\(858\) 0 0
\(859\) −37.7008 −1.28633 −0.643167 0.765726i \(-0.722380\pi\)
−0.643167 + 0.765726i \(0.722380\pi\)
\(860\) 0 0
\(861\) 25.7504 0.877571
\(862\) 0 0
\(863\) −34.5566 −1.17632 −0.588159 0.808745i \(-0.700147\pi\)
−0.588159 + 0.808745i \(0.700147\pi\)
\(864\) 0 0
\(865\) 6.50727 0.221254
\(866\) 0 0
\(867\) −21.2449 −0.721513
\(868\) 0 0
\(869\) 17.2962 0.586733
\(870\) 0 0
\(871\) 11.9800 0.405926
\(872\) 0 0
\(873\) 22.7129 0.768715
\(874\) 0 0
\(875\) 52.1118 1.76170
\(876\) 0 0
\(877\) −7.17164 −0.242169 −0.121085 0.992642i \(-0.538637\pi\)
−0.121085 + 0.992642i \(0.538637\pi\)
\(878\) 0 0
\(879\) 37.5062 1.26505
\(880\) 0 0
\(881\) −8.08174 −0.272281 −0.136140 0.990690i \(-0.543470\pi\)
−0.136140 + 0.990690i \(0.543470\pi\)
\(882\) 0 0
\(883\) 41.0042 1.37990 0.689950 0.723857i \(-0.257633\pi\)
0.689950 + 0.723857i \(0.257633\pi\)
\(884\) 0 0
\(885\) 138.612 4.65939
\(886\) 0 0
\(887\) 37.8321 1.27028 0.635138 0.772398i \(-0.280943\pi\)
0.635138 + 0.772398i \(0.280943\pi\)
\(888\) 0 0
\(889\) −16.0096 −0.536945
\(890\) 0 0
\(891\) −24.3534 −0.815871
\(892\) 0 0
\(893\) 8.15361 0.272850
\(894\) 0 0
\(895\) −36.1204 −1.20737
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 15.2484 0.508562
\(900\) 0 0
\(901\) −45.0541 −1.50097
\(902\) 0 0
\(903\) −7.55991 −0.251578
\(904\) 0 0
\(905\) 17.3709 0.577427
\(906\) 0 0
\(907\) −15.9611 −0.529978 −0.264989 0.964251i \(-0.585368\pi\)
−0.264989 + 0.964251i \(0.585368\pi\)
\(908\) 0 0
\(909\) 41.2022 1.36659
\(910\) 0 0
\(911\) 37.5172 1.24300 0.621501 0.783414i \(-0.286523\pi\)
0.621501 + 0.783414i \(0.286523\pi\)
\(912\) 0 0
\(913\) 12.1698 0.402760
\(914\) 0 0
\(915\) −57.6776 −1.90676
\(916\) 0 0
\(917\) 17.1460 0.566210
\(918\) 0 0
\(919\) 26.7175 0.881330 0.440665 0.897672i \(-0.354743\pi\)
0.440665 + 0.897672i \(0.354743\pi\)
\(920\) 0 0
\(921\) 78.2979 2.58000
\(922\) 0 0
\(923\) 18.9733 0.624513
\(924\) 0 0
\(925\) 22.5256 0.740638
\(926\) 0 0
\(927\) −25.9733 −0.853076
\(928\) 0 0
\(929\) −43.8177 −1.43761 −0.718805 0.695211i \(-0.755311\pi\)
−0.718805 + 0.695211i \(0.755311\pi\)
\(930\) 0 0
\(931\) −11.4275 −0.374523
\(932\) 0 0
\(933\) −47.3251 −1.54936
\(934\) 0 0
\(935\) −50.7997 −1.66133
\(936\) 0 0
\(937\) 34.4360 1.12498 0.562488 0.826805i \(-0.309844\pi\)
0.562488 + 0.826805i \(0.309844\pi\)
\(938\) 0 0
\(939\) −22.9787 −0.749883
\(940\) 0 0
\(941\) −35.8492 −1.16865 −0.584326 0.811519i \(-0.698641\pi\)
−0.584326 + 0.811519i \(0.698641\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 6.70722 0.218186
\(946\) 0 0
\(947\) −0.975923 −0.0317132 −0.0158566 0.999874i \(-0.505048\pi\)
−0.0158566 + 0.999874i \(0.505048\pi\)
\(948\) 0 0
\(949\) −6.67524 −0.216688
\(950\) 0 0
\(951\) 43.5903 1.41351
\(952\) 0 0
\(953\) −16.6476 −0.539267 −0.269634 0.962963i \(-0.586903\pi\)
−0.269634 + 0.962963i \(0.586903\pi\)
\(954\) 0 0
\(955\) −14.6024 −0.472522
\(956\) 0 0
\(957\) 25.6145 0.827999
\(958\) 0 0
\(959\) 7.54292 0.243574
\(960\) 0 0
\(961\) −19.0000 −0.612903
\(962\) 0 0
\(963\) −5.57164 −0.179544
\(964\) 0 0
\(965\) 62.2440 2.00370
\(966\) 0 0
\(967\) −52.3940 −1.68488 −0.842439 0.538792i \(-0.818881\pi\)
−0.842439 + 0.538792i \(0.818881\pi\)
\(968\) 0 0
\(969\) 43.0043 1.38150
\(970\) 0 0
\(971\) −51.8696 −1.66457 −0.832287 0.554344i \(-0.812969\pi\)
−0.832287 + 0.554344i \(0.812969\pi\)
\(972\) 0 0
\(973\) 1.03768 0.0332664
\(974\) 0 0
\(975\) −37.3111 −1.19491
\(976\) 0 0
\(977\) −18.1728 −0.581399 −0.290699 0.956814i \(-0.593888\pi\)
−0.290699 + 0.956814i \(0.593888\pi\)
\(978\) 0 0
\(979\) 39.3606 1.25797
\(980\) 0 0
\(981\) 29.4304 0.939641
\(982\) 0 0
\(983\) 23.6079 0.752975 0.376488 0.926422i \(-0.377132\pi\)
0.376488 + 0.926422i \(0.377132\pi\)
\(984\) 0 0
\(985\) −31.7571 −1.01187
\(986\) 0 0
\(987\) −10.6026 −0.337486
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −3.77401 −0.119885 −0.0599427 0.998202i \(-0.519092\pi\)
−0.0599427 + 0.998202i \(0.519092\pi\)
\(992\) 0 0
\(993\) −60.6694 −1.92529
\(994\) 0 0
\(995\) 98.2884 3.11595
\(996\) 0 0
\(997\) −14.6939 −0.465361 −0.232681 0.972553i \(-0.574750\pi\)
−0.232681 + 0.972553i \(0.574750\pi\)
\(998\) 0 0
\(999\) 1.64727 0.0521175
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8464.2.a.cb.1.4 8
4.3 odd 2 1058.2.a.n.1.6 yes 8
12.11 even 2 9522.2.a.ce.1.1 8
23.22 odd 2 inner 8464.2.a.cb.1.3 8
92.91 even 2 1058.2.a.n.1.5 8
276.275 odd 2 9522.2.a.ce.1.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1058.2.a.n.1.5 8 92.91 even 2
1058.2.a.n.1.6 yes 8 4.3 odd 2
8464.2.a.cb.1.3 8 23.22 odd 2 inner
8464.2.a.cb.1.4 8 1.1 even 1 trivial
9522.2.a.ce.1.1 8 12.11 even 2
9522.2.a.ce.1.8 8 276.275 odd 2