Properties

Label 1100.2.cb.c.49.1
Level $1100$
Weight $2$
Character 1100.49
Analytic conductor $8.784$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,2,Mod(49,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 5, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1100.cb (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.78354422234\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: 16.0.45212176000000000000.9
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 5x^{14} + 6x^{12} - 20x^{10} - 79x^{8} - 80x^{6} + 96x^{4} + 320x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 220)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 49.1
Root \(-1.41395 + 0.0272949i\) of defining polynomial
Character \(\chi\) \(=\) 1100.49
Dual form 1100.2.cb.c.449.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.59076 + 2.18949i) q^{3} +(-2.21063 - 3.04267i) q^{7} +(-1.33631 - 4.11275i) q^{9} +(2.98808 + 1.43922i) q^{11} +(3.10977 - 1.01043i) q^{13} +(-3.71739 - 1.20785i) q^{17} +(3.49851 + 2.54182i) q^{19} +10.1785 q^{21} +6.41755i q^{23} +(3.40887 + 1.10761i) q^{27} +(5.25946 - 3.82122i) q^{29} +(1.69594 + 5.21956i) q^{31} +(-7.90449 + 4.25294i) q^{33} +(5.88836 + 8.10463i) q^{37} +(-2.73458 + 8.41617i) q^{39} +(-6.48659 - 4.71279i) q^{41} -0.906850i q^{43} +(3.24853 - 4.47122i) q^{47} +(-2.20785 + 6.79507i) q^{49} +(8.55805 - 6.21779i) q^{51} +(1.03790 - 0.337233i) q^{53} +(-11.1306 + 3.61654i) q^{57} +(-5.36707 + 3.89940i) q^{59} +(-2.78882 + 8.58309i) q^{61} +(-9.55965 + 13.1577i) q^{63} +13.9684i q^{67} +(-14.0512 - 10.2088i) q^{69} +(-3.20544 + 9.86533i) q^{71} +(-2.16454 - 2.97923i) q^{73} +(-2.22648 - 12.2734i) q^{77} +(-2.24798 - 6.91858i) q^{79} +(2.64774 - 1.92370i) q^{81} +(5.81476 + 1.88933i) q^{83} +17.5942i q^{87} +12.1209 q^{89} +(-9.94895 - 7.22834i) q^{91} +(-14.1260 - 4.58982i) q^{93} +(11.7354 - 3.81305i) q^{97} +(1.92613 - 14.2125i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{9} + 10 q^{11} + 14 q^{19} + 56 q^{21} - 6 q^{29} - 4 q^{31} + 34 q^{39} - 24 q^{41} - 42 q^{49} + 42 q^{51} + 18 q^{59} - 68 q^{61} + 2 q^{69} - 52 q^{71} - 38 q^{79} + 24 q^{81} + 16 q^{89}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.59076 + 2.18949i −0.918426 + 1.26410i 0.0457808 + 0.998952i \(0.485422\pi\)
−0.964206 + 0.265153i \(0.914578\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.21063 3.04267i −0.835540 1.15002i −0.986866 0.161539i \(-0.948354\pi\)
0.151326 0.988484i \(-0.451646\pi\)
\(8\) 0 0
\(9\) −1.33631 4.11275i −0.445437 1.37092i
\(10\) 0 0
\(11\) 2.98808 + 1.43922i 0.900941 + 0.433941i
\(12\) 0 0
\(13\) 3.10977 1.01043i 0.862495 0.280242i 0.155825 0.987785i \(-0.450196\pi\)
0.706670 + 0.707543i \(0.250196\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.71739 1.20785i −0.901599 0.292947i −0.178702 0.983903i \(-0.557190\pi\)
−0.722897 + 0.690956i \(0.757190\pi\)
\(18\) 0 0
\(19\) 3.49851 + 2.54182i 0.802613 + 0.583133i 0.911680 0.410902i \(-0.134786\pi\)
−0.109066 + 0.994034i \(0.534786\pi\)
\(20\) 0 0
\(21\) 10.1785 2.22113
\(22\) 0 0
\(23\) 6.41755i 1.33815i 0.743194 + 0.669075i \(0.233310\pi\)
−0.743194 + 0.669075i \(0.766690\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 3.40887 + 1.10761i 0.656037 + 0.213159i
\(28\) 0 0
\(29\) 5.25946 3.82122i 0.976658 0.709583i 0.0196984 0.999806i \(-0.493729\pi\)
0.956959 + 0.290223i \(0.0937294\pi\)
\(30\) 0 0
\(31\) 1.69594 + 5.21956i 0.304599 + 0.937460i 0.979826 + 0.199850i \(0.0640455\pi\)
−0.675227 + 0.737610i \(0.735954\pi\)
\(32\) 0 0
\(33\) −7.90449 + 4.25294i −1.37599 + 0.740341i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 5.88836 + 8.10463i 0.968040 + 1.33239i 0.943031 + 0.332705i \(0.107961\pi\)
0.0250091 + 0.999687i \(0.492039\pi\)
\(38\) 0 0
\(39\) −2.73458 + 8.41617i −0.437883 + 1.34767i
\(40\) 0 0
\(41\) −6.48659 4.71279i −1.01304 0.736014i −0.0481922 0.998838i \(-0.515346\pi\)
−0.964844 + 0.262824i \(0.915346\pi\)
\(42\) 0 0
\(43\) 0.906850i 0.138293i −0.997607 0.0691467i \(-0.977972\pi\)
0.997607 0.0691467i \(-0.0220276\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.24853 4.47122i 0.473846 0.652194i −0.503461 0.864018i \(-0.667940\pi\)
0.977308 + 0.211824i \(0.0679404\pi\)
\(48\) 0 0
\(49\) −2.20785 + 6.79507i −0.315407 + 0.970724i
\(50\) 0 0
\(51\) 8.55805 6.21779i 1.19837 0.870665i
\(52\) 0 0
\(53\) 1.03790 0.337233i 0.142566 0.0463225i −0.236865 0.971543i \(-0.576120\pi\)
0.379431 + 0.925220i \(0.376120\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −11.1306 + 3.61654i −1.47428 + 0.479023i
\(58\) 0 0
\(59\) −5.36707 + 3.89940i −0.698733 + 0.507659i −0.879519 0.475863i \(-0.842136\pi\)
0.180786 + 0.983522i \(0.442136\pi\)
\(60\) 0 0
\(61\) −2.78882 + 8.58309i −0.357071 + 1.09895i 0.597727 + 0.801699i \(0.296071\pi\)
−0.954799 + 0.297253i \(0.903929\pi\)
\(62\) 0 0
\(63\) −9.55965 + 13.1577i −1.20440 + 1.65772i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 13.9684i 1.70651i 0.521496 + 0.853254i \(0.325374\pi\)
−0.521496 + 0.853254i \(0.674626\pi\)
\(68\) 0 0
\(69\) −14.0512 10.2088i −1.69156 1.22899i
\(70\) 0 0
\(71\) −3.20544 + 9.86533i −0.380416 + 1.17080i 0.559336 + 0.828941i \(0.311056\pi\)
−0.939751 + 0.341858i \(0.888944\pi\)
\(72\) 0 0
\(73\) −2.16454 2.97923i −0.253340 0.348692i 0.663338 0.748320i \(-0.269139\pi\)
−0.916677 + 0.399628i \(0.869139\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.22648 12.2734i −0.253731 1.39868i
\(78\) 0 0
\(79\) −2.24798 6.91858i −0.252918 0.778401i −0.994233 0.107244i \(-0.965797\pi\)
0.741315 0.671157i \(-0.234203\pi\)
\(80\) 0 0
\(81\) 2.64774 1.92370i 0.294193 0.213744i
\(82\) 0 0
\(83\) 5.81476 + 1.88933i 0.638253 + 0.207381i 0.610227 0.792226i \(-0.291078\pi\)
0.0280255 + 0.999607i \(0.491078\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 17.5942i 1.88630i
\(88\) 0 0
\(89\) 12.1209 1.28482 0.642408 0.766363i \(-0.277936\pi\)
0.642408 + 0.766363i \(0.277936\pi\)
\(90\) 0 0
\(91\) −9.94895 7.22834i −1.04293 0.757736i
\(92\) 0 0
\(93\) −14.1260 4.58982i −1.46480 0.475942i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 11.7354 3.81305i 1.19155 0.387157i 0.354901 0.934904i \(-0.384514\pi\)
0.836644 + 0.547747i \(0.184514\pi\)
\(98\) 0 0
\(99\) 1.92613 14.2125i 0.193583 1.42841i
\(100\) 0 0
\(101\) 0.0257235 + 0.0791689i 0.00255959 + 0.00787760i 0.952328 0.305076i \(-0.0986817\pi\)
−0.949769 + 0.312953i \(0.898682\pi\)
\(102\) 0 0
\(103\) 6.52631 + 8.98269i 0.643056 + 0.885091i 0.998774 0.0495024i \(-0.0157635\pi\)
−0.355718 + 0.934593i \(0.615764\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.56420 + 10.4112i −0.731259 + 1.00649i 0.267815 + 0.963470i \(0.413698\pi\)
−0.999074 + 0.0430216i \(0.986302\pi\)
\(108\) 0 0
\(109\) −7.51183 −0.719503 −0.359752 0.933048i \(-0.617139\pi\)
−0.359752 + 0.933048i \(0.617139\pi\)
\(110\) 0 0
\(111\) −27.1120 −2.57336
\(112\) 0 0
\(113\) −0.274680 + 0.378065i −0.0258398 + 0.0355654i −0.821741 0.569861i \(-0.806997\pi\)
0.795902 + 0.605426i \(0.206997\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −8.31125 11.4395i −0.768375 1.05758i
\(118\) 0 0
\(119\) 4.54267 + 13.9809i 0.416426 + 1.28163i
\(120\) 0 0
\(121\) 6.85729 + 8.60102i 0.623390 + 0.781911i
\(122\) 0 0
\(123\) 20.6372 6.70544i 1.86080 0.604609i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 17.1681 + 5.57825i 1.52342 + 0.494990i 0.946746 0.321982i \(-0.104349\pi\)
0.576677 + 0.816972i \(0.304349\pi\)
\(128\) 0 0
\(129\) 1.98554 + 1.44258i 0.174817 + 0.127012i
\(130\) 0 0
\(131\) 6.48010 0.566169 0.283085 0.959095i \(-0.408642\pi\)
0.283085 + 0.959095i \(0.408642\pi\)
\(132\) 0 0
\(133\) 16.2638i 1.41025i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.84278 + 0.598754i 0.157439 + 0.0511550i 0.386676 0.922216i \(-0.373623\pi\)
−0.229237 + 0.973371i \(0.573623\pi\)
\(138\) 0 0
\(139\) 11.1449 8.09724i 0.945297 0.686799i −0.00439260 0.999990i \(-0.501398\pi\)
0.949690 + 0.313192i \(0.101398\pi\)
\(140\) 0 0
\(141\) 4.62207 + 14.2253i 0.389248 + 1.19798i
\(142\) 0 0
\(143\) 10.7465 + 1.45641i 0.898666 + 0.121791i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −11.3656 15.6434i −0.937419 1.29025i
\(148\) 0 0
\(149\) −2.99396 + 9.21446i −0.245275 + 0.754878i 0.750317 + 0.661079i \(0.229901\pi\)
−0.995591 + 0.0937990i \(0.970099\pi\)
\(150\) 0 0
\(151\) 13.4658 + 9.78349i 1.09583 + 0.796169i 0.980375 0.197143i \(-0.0631663\pi\)
0.115458 + 0.993312i \(0.463166\pi\)
\(152\) 0 0
\(153\) 16.9027i 1.36650i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0.563214 0.775197i 0.0449494 0.0618675i −0.785951 0.618289i \(-0.787826\pi\)
0.830900 + 0.556422i \(0.187826\pi\)
\(158\) 0 0
\(159\) −0.912674 + 2.80892i −0.0723798 + 0.222762i
\(160\) 0 0
\(161\) 19.5265 14.1868i 1.53890 1.11808i
\(162\) 0 0
\(163\) −4.22775 + 1.37368i −0.331143 + 0.107595i −0.469870 0.882736i \(-0.655699\pi\)
0.138726 + 0.990331i \(0.455699\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −13.2666 + 4.31059i −1.02660 + 0.333563i −0.773446 0.633862i \(-0.781469\pi\)
−0.253156 + 0.967425i \(0.581469\pi\)
\(168\) 0 0
\(169\) −1.86751 + 1.35682i −0.143654 + 0.104371i
\(170\) 0 0
\(171\) 5.77874 17.7851i 0.441911 1.36006i
\(172\) 0 0
\(173\) 9.50098 13.0770i 0.722346 0.994224i −0.277097 0.960842i \(-0.589372\pi\)
0.999443 0.0333821i \(-0.0106278\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 17.9542i 1.34952i
\(178\) 0 0
\(179\) 14.8705 + 10.8041i 1.11148 + 0.807534i 0.982895 0.184165i \(-0.0589579\pi\)
0.128580 + 0.991699i \(0.458958\pi\)
\(180\) 0 0
\(181\) 3.42315 10.5354i 0.254441 0.783088i −0.739499 0.673158i \(-0.764937\pi\)
0.993939 0.109930i \(-0.0350627\pi\)
\(182\) 0 0
\(183\) −14.3563 19.7597i −1.06125 1.46068i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −9.36950 8.95930i −0.685166 0.655169i
\(188\) 0 0
\(189\) −4.16566 12.8206i −0.303007 0.932561i
\(190\) 0 0
\(191\) −7.78172 + 5.65375i −0.563066 + 0.409091i −0.832580 0.553905i \(-0.813137\pi\)
0.269514 + 0.962996i \(0.413137\pi\)
\(192\) 0 0
\(193\) 18.6937 + 6.07395i 1.34560 + 0.437213i 0.891211 0.453590i \(-0.149857\pi\)
0.454391 + 0.890802i \(0.349857\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.1768i 0.867562i −0.901018 0.433781i \(-0.857179\pi\)
0.901018 0.433781i \(-0.142821\pi\)
\(198\) 0 0
\(199\) −8.44164 −0.598412 −0.299206 0.954189i \(-0.596722\pi\)
−0.299206 + 0.954189i \(0.596722\pi\)
\(200\) 0 0
\(201\) −30.5836 22.2203i −2.15720 1.56730i
\(202\) 0 0
\(203\) −23.2535 7.55551i −1.63207 0.530293i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 26.3937 8.57584i 1.83449 0.596062i
\(208\) 0 0
\(209\) 6.79561 + 12.6303i 0.470062 + 0.873655i
\(210\) 0 0
\(211\) −6.75302 20.7837i −0.464897 1.43081i −0.859112 0.511788i \(-0.828984\pi\)
0.394215 0.919018i \(-0.371016\pi\)
\(212\) 0 0
\(213\) −16.5010 22.7117i −1.13063 1.55618i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 12.1323 16.6987i 0.823595 1.13358i
\(218\) 0 0
\(219\) 9.96626 0.673458
\(220\) 0 0
\(221\) −12.7807 −0.859721
\(222\) 0 0
\(223\) 15.5319 21.3778i 1.04009 1.43157i 0.143002 0.989722i \(-0.454324\pi\)
0.897092 0.441844i \(-0.145676\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5.83010 8.02445i −0.386957 0.532601i 0.570454 0.821330i \(-0.306767\pi\)
−0.957411 + 0.288729i \(0.906767\pi\)
\(228\) 0 0
\(229\) 4.01140 + 12.3458i 0.265081 + 0.815834i 0.991675 + 0.128767i \(0.0411020\pi\)
−0.726594 + 0.687067i \(0.758898\pi\)
\(230\) 0 0
\(231\) 30.4142 + 14.6491i 2.00111 + 0.963839i
\(232\) 0 0
\(233\) −6.33388 + 2.05800i −0.414946 + 0.134824i −0.509048 0.860738i \(-0.670002\pi\)
0.0941012 + 0.995563i \(0.470002\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 18.7242 + 6.08386i 1.21627 + 0.395189i
\(238\) 0 0
\(239\) −17.7108 12.8677i −1.14562 0.832340i −0.157726 0.987483i \(-0.550416\pi\)
−0.987892 + 0.155143i \(0.950416\pi\)
\(240\) 0 0
\(241\) 10.6517 0.686134 0.343067 0.939311i \(-0.388534\pi\)
0.343067 + 0.939311i \(0.388534\pi\)
\(242\) 0 0
\(243\) 19.6102i 1.25800i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 13.4479 + 4.36948i 0.855668 + 0.278023i
\(248\) 0 0
\(249\) −13.3866 + 9.72591i −0.848339 + 0.616354i
\(250\) 0 0
\(251\) −3.75973 11.5713i −0.237312 0.730372i −0.996806 0.0798576i \(-0.974553\pi\)
0.759494 0.650514i \(-0.225447\pi\)
\(252\) 0 0
\(253\) −9.23626 + 19.1762i −0.580679 + 1.20560i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3.59372 4.94633i −0.224170 0.308544i 0.682087 0.731271i \(-0.261073\pi\)
−0.906257 + 0.422728i \(0.861073\pi\)
\(258\) 0 0
\(259\) 11.6428 35.8327i 0.723445 2.22654i
\(260\) 0 0
\(261\) −22.7440 16.5245i −1.40782 1.02284i
\(262\) 0 0
\(263\) 0.446463i 0.0275301i −0.999905 0.0137650i \(-0.995618\pi\)
0.999905 0.0137650i \(-0.00438168\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −19.2815 + 26.5387i −1.18001 + 1.62414i
\(268\) 0 0
\(269\) −0.00246118 + 0.00757473i −0.000150061 + 0.000461840i −0.951132 0.308786i \(-0.900077\pi\)
0.950981 + 0.309248i \(0.100077\pi\)
\(270\) 0 0
\(271\) −15.0380 + 10.9257i −0.913493 + 0.663691i −0.941896 0.335905i \(-0.890958\pi\)
0.0284029 + 0.999597i \(0.490958\pi\)
\(272\) 0 0
\(273\) 31.6528 10.2846i 1.91571 0.622453i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −6.61897 + 2.15063i −0.397695 + 0.129219i −0.501035 0.865427i \(-0.667047\pi\)
0.103339 + 0.994646i \(0.467047\pi\)
\(278\) 0 0
\(279\) 19.2004 13.9499i 1.14950 0.835159i
\(280\) 0 0
\(281\) −6.91031 + 21.2678i −0.412235 + 1.26873i 0.502466 + 0.864597i \(0.332426\pi\)
−0.914701 + 0.404131i \(0.867574\pi\)
\(282\) 0 0
\(283\) 13.7237 18.8891i 0.815792 1.12284i −0.174612 0.984637i \(-0.555867\pi\)
0.990404 0.138204i \(-0.0441329\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 30.1548i 1.77998i
\(288\) 0 0
\(289\) −1.39323 1.01224i −0.0819548 0.0595436i
\(290\) 0 0
\(291\) −10.3195 + 31.7601i −0.604939 + 1.86181i
\(292\) 0 0
\(293\) 2.05796 + 2.83254i 0.120227 + 0.165479i 0.864889 0.501964i \(-0.167389\pi\)
−0.744661 + 0.667443i \(0.767389\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 8.59189 + 8.21574i 0.498552 + 0.476725i
\(298\) 0 0
\(299\) 6.48445 + 19.9571i 0.375006 + 1.15415i
\(300\) 0 0
\(301\) −2.75925 + 2.00471i −0.159040 + 0.115550i
\(302\) 0 0
\(303\) −0.214260 0.0696172i −0.0123089 0.00399940i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 8.26358i 0.471628i −0.971798 0.235814i \(-0.924224\pi\)
0.971798 0.235814i \(-0.0757755\pi\)
\(308\) 0 0
\(309\) −30.0493 −1.70945
\(310\) 0 0
\(311\) −9.35397 6.79606i −0.530415 0.385369i 0.290098 0.956997i \(-0.406312\pi\)
−0.820513 + 0.571628i \(0.806312\pi\)
\(312\) 0 0
\(313\) 18.3694 + 5.96859i 1.03830 + 0.337364i 0.778067 0.628181i \(-0.216200\pi\)
0.260234 + 0.965546i \(0.416200\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −21.2785 + 6.91381i −1.19512 + 0.388318i −0.837964 0.545726i \(-0.816254\pi\)
−0.357157 + 0.934044i \(0.616254\pi\)
\(318\) 0 0
\(319\) 21.2153 3.84862i 1.18783 0.215481i
\(320\) 0 0
\(321\) −10.7625 33.1235i −0.600704 1.84878i
\(322\) 0 0
\(323\) −9.93518 13.6746i −0.552808 0.760875i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 11.9495 16.4471i 0.660810 0.909527i
\(328\) 0 0
\(329\) −20.7858 −1.14596
\(330\) 0 0
\(331\) −5.17876 −0.284650 −0.142325 0.989820i \(-0.545458\pi\)
−0.142325 + 0.989820i \(0.545458\pi\)
\(332\) 0 0
\(333\) 25.4636 35.0476i 1.39540 1.92060i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −3.24843 4.47108i −0.176953 0.243555i 0.711322 0.702866i \(-0.248097\pi\)
−0.888276 + 0.459310i \(0.848097\pi\)
\(338\) 0 0
\(339\) −0.390820 1.20282i −0.0212264 0.0653283i
\(340\) 0 0
\(341\) −2.44448 + 18.0373i −0.132376 + 0.976774i
\(342\) 0 0
\(343\) 0.517788 0.168240i 0.0279579 0.00908408i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8.16765 + 2.65383i 0.438463 + 0.142465i 0.519926 0.854211i \(-0.325959\pi\)
−0.0814636 + 0.996676i \(0.525959\pi\)
\(348\) 0 0
\(349\) 11.8706 + 8.62451i 0.635419 + 0.461659i 0.858273 0.513193i \(-0.171537\pi\)
−0.222854 + 0.974852i \(0.571537\pi\)
\(350\) 0 0
\(351\) 11.7200 0.625565
\(352\) 0 0
\(353\) 5.79041i 0.308192i −0.988056 0.154096i \(-0.950753\pi\)
0.988056 0.154096i \(-0.0492466\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −37.8374 12.2941i −2.00257 0.650674i
\(358\) 0 0
\(359\) −9.19282 + 6.67898i −0.485179 + 0.352503i −0.803327 0.595538i \(-0.796939\pi\)
0.318148 + 0.948041i \(0.396939\pi\)
\(360\) 0 0
\(361\) −0.0925809 0.284935i −0.00487268 0.0149966i
\(362\) 0 0
\(363\) −29.7402 + 1.33185i −1.56095 + 0.0699038i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 2.69468 + 3.70890i 0.140661 + 0.193603i 0.873535 0.486761i \(-0.161822\pi\)
−0.732874 + 0.680364i \(0.761822\pi\)
\(368\) 0 0
\(369\) −10.7144 + 32.9755i −0.557768 + 1.71663i
\(370\) 0 0
\(371\) −3.32050 2.41248i −0.172392 0.125250i
\(372\) 0 0
\(373\) 22.8487i 1.18306i 0.806283 + 0.591530i \(0.201476\pi\)
−0.806283 + 0.591530i \(0.798524\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12.4947 17.1974i 0.643508 0.885712i
\(378\) 0 0
\(379\) 6.50498 20.0203i 0.334139 1.02837i −0.633006 0.774147i \(-0.718179\pi\)
0.967145 0.254226i \(-0.0818208\pi\)
\(380\) 0 0
\(381\) −39.5239 + 28.7158i −2.02487 + 1.47115i
\(382\) 0 0
\(383\) −0.247179 + 0.0803134i −0.0126303 + 0.00410382i −0.315325 0.948984i \(-0.602114\pi\)
0.302695 + 0.953087i \(0.402114\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −3.72964 + 1.21183i −0.189588 + 0.0616010i
\(388\) 0 0
\(389\) −12.7514 + 9.26447i −0.646524 + 0.469727i −0.862085 0.506763i \(-0.830842\pi\)
0.215561 + 0.976490i \(0.430842\pi\)
\(390\) 0 0
\(391\) 7.75145 23.8565i 0.392008 1.20648i
\(392\) 0 0
\(393\) −10.3083 + 14.1881i −0.519984 + 0.715697i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 7.62978i 0.382928i 0.981500 + 0.191464i \(0.0613235\pi\)
−0.981500 + 0.191464i \(0.938677\pi\)
\(398\) 0 0
\(399\) 35.6096 + 25.8719i 1.78271 + 1.29521i
\(400\) 0 0
\(401\) −9.31703 + 28.6749i −0.465270 + 1.43195i 0.393372 + 0.919379i \(0.371309\pi\)
−0.858642 + 0.512575i \(0.828691\pi\)
\(402\) 0 0
\(403\) 10.5479 + 14.5180i 0.525431 + 0.723193i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 5.93057 + 32.6919i 0.293967 + 1.62048i
\(408\) 0 0
\(409\) −9.62526 29.6235i −0.475939 1.46479i −0.844688 0.535259i \(-0.820214\pi\)
0.368749 0.929529i \(-0.379786\pi\)
\(410\) 0 0
\(411\) −4.24238 + 3.08227i −0.209261 + 0.152037i
\(412\) 0 0
\(413\) 23.7292 + 7.71010i 1.16764 + 0.379389i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 37.2824i 1.82573i
\(418\) 0 0
\(419\) −13.3733 −0.653328 −0.326664 0.945141i \(-0.605925\pi\)
−0.326664 + 0.945141i \(0.605925\pi\)
\(420\) 0 0
\(421\) 8.87736 + 6.44978i 0.432656 + 0.314343i 0.782710 0.622386i \(-0.213837\pi\)
−0.350054 + 0.936730i \(0.613837\pi\)
\(422\) 0 0
\(423\) −22.7300 7.38543i −1.10517 0.359092i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 32.2806 10.4886i 1.56217 0.507579i
\(428\) 0 0
\(429\) −20.2839 + 21.2126i −0.979314 + 1.02415i
\(430\) 0 0
\(431\) −5.01099 15.4223i −0.241371 0.742864i −0.996212 0.0869561i \(-0.972286\pi\)
0.754841 0.655908i \(-0.227714\pi\)
\(432\) 0 0
\(433\) −12.6163 17.3649i −0.606302 0.834503i 0.389965 0.920830i \(-0.372487\pi\)
−0.996267 + 0.0863271i \(0.972487\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −16.3122 + 22.4518i −0.780319 + 1.07402i
\(438\) 0 0
\(439\) −5.94741 −0.283855 −0.141927 0.989877i \(-0.545330\pi\)
−0.141927 + 0.989877i \(0.545330\pi\)
\(440\) 0 0
\(441\) 30.8968 1.47127
\(442\) 0 0
\(443\) 13.9546 19.2068i 0.663003 0.912545i −0.336574 0.941657i \(-0.609268\pi\)
0.999576 + 0.0291124i \(0.00926808\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −15.4123 21.2132i −0.728978 1.00335i
\(448\) 0 0
\(449\) −10.6354 32.7325i −0.501917 1.54474i −0.805892 0.592063i \(-0.798314\pi\)
0.303975 0.952680i \(-0.401686\pi\)
\(450\) 0 0
\(451\) −12.5998 23.4178i −0.593299 1.10270i
\(452\) 0 0
\(453\) −42.8418 + 13.9201i −2.01288 + 0.654025i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 14.1043 + 4.58276i 0.659770 + 0.214372i 0.619717 0.784825i \(-0.287247\pi\)
0.0400529 + 0.999198i \(0.487247\pi\)
\(458\) 0 0
\(459\) −11.3343 8.23482i −0.529038 0.384368i
\(460\) 0 0
\(461\) 29.8441 1.38998 0.694990 0.719020i \(-0.255409\pi\)
0.694990 + 0.719020i \(0.255409\pi\)
\(462\) 0 0
\(463\) 6.87337i 0.319433i 0.987163 + 0.159716i \(0.0510580\pi\)
−0.987163 + 0.159716i \(0.948942\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −1.34034 0.435503i −0.0620236 0.0201527i 0.277841 0.960627i \(-0.410381\pi\)
−0.339864 + 0.940474i \(0.610381\pi\)
\(468\) 0 0
\(469\) 42.5012 30.8789i 1.96252 1.42586i
\(470\) 0 0
\(471\) 0.801351 + 2.46631i 0.0369243 + 0.113641i
\(472\) 0 0
\(473\) 1.30516 2.70974i 0.0600111 0.124594i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −2.77391 3.81795i −0.127008 0.174812i
\(478\) 0 0
\(479\) 7.19055 22.1302i 0.328544 1.01116i −0.641271 0.767315i \(-0.721592\pi\)
0.969815 0.243841i \(-0.0784075\pi\)
\(480\) 0 0
\(481\) 26.5006 + 19.2538i 1.20832 + 0.877897i
\(482\) 0 0
\(483\) 65.3210i 2.97221i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 10.9647 15.0917i 0.496859 0.683868i −0.484775 0.874639i \(-0.661099\pi\)
0.981635 + 0.190770i \(0.0610986\pi\)
\(488\) 0 0
\(489\) 3.71768 11.4418i 0.168119 0.517418i
\(490\) 0 0
\(491\) 33.9898 24.6951i 1.53394 1.11447i 0.579943 0.814657i \(-0.303075\pi\)
0.953997 0.299815i \(-0.0969251\pi\)
\(492\) 0 0
\(493\) −24.1669 + 7.85231i −1.08842 + 0.353650i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 37.1030 12.0555i 1.66430 0.540764i
\(498\) 0 0
\(499\) −4.22493 + 3.06959i −0.189134 + 0.137414i −0.678323 0.734764i \(-0.737293\pi\)
0.489189 + 0.872178i \(0.337293\pi\)
\(500\) 0 0
\(501\) 11.6660 35.9043i 0.521199 1.60409i
\(502\) 0 0
\(503\) −16.9494 + 23.3289i −0.755737 + 1.04018i 0.241820 + 0.970321i \(0.422256\pi\)
−0.997557 + 0.0698614i \(0.977744\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 6.24728i 0.277451i
\(508\) 0 0
\(509\) 4.46973 + 3.24745i 0.198117 + 0.143940i 0.682421 0.730959i \(-0.260927\pi\)
−0.484304 + 0.874900i \(0.660927\pi\)
\(510\) 0 0
\(511\) −4.27983 + 13.1720i −0.189329 + 0.582693i
\(512\) 0 0
\(513\) 9.11062 + 12.5397i 0.402244 + 0.553641i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 16.1419 8.68502i 0.709921 0.381967i
\(518\) 0 0
\(519\) 13.5182 + 41.6047i 0.593382 + 1.82624i
\(520\) 0 0
\(521\) 23.8297 17.3133i 1.04400 0.758509i 0.0729362 0.997337i \(-0.476763\pi\)
0.971062 + 0.238828i \(0.0767631\pi\)
\(522\) 0 0
\(523\) 2.10696 + 0.684593i 0.0921309 + 0.0299351i 0.354720 0.934973i \(-0.384576\pi\)
−0.262589 + 0.964908i \(0.584576\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 21.4515i 0.934444i
\(528\) 0 0
\(529\) −18.1849 −0.790648
\(530\) 0 0
\(531\) 23.2093 + 16.8626i 1.00720 + 0.731773i
\(532\) 0 0
\(533\) −24.9337 8.10146i −1.08000 0.350913i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −47.3109 + 15.3722i −2.04162 + 0.663361i
\(538\) 0 0
\(539\) −16.3768 + 17.1267i −0.705401 + 0.737697i
\(540\) 0 0
\(541\) 10.4175 + 32.0616i 0.447882 + 1.37844i 0.879292 + 0.476282i \(0.158016\pi\)
−0.431411 + 0.902156i \(0.641984\pi\)
\(542\) 0 0
\(543\) 17.6217 + 24.2542i 0.756220 + 1.04085i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −16.4992 + 22.7092i −0.705455 + 0.970976i 0.294428 + 0.955674i \(0.404871\pi\)
−0.999883 + 0.0153018i \(0.995129\pi\)
\(548\) 0 0
\(549\) 39.0268 1.66562
\(550\) 0 0
\(551\) 28.1131 1.19766
\(552\) 0 0
\(553\) −16.0815 + 22.1343i −0.683856 + 0.941247i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −9.12189 12.5552i −0.386507 0.531981i 0.570787 0.821098i \(-0.306638\pi\)
−0.957294 + 0.289117i \(0.906638\pi\)
\(558\) 0 0
\(559\) −0.916305 2.82010i −0.0387556 0.119277i
\(560\) 0 0
\(561\) 34.5209 6.26236i 1.45748 0.264397i
\(562\) 0 0
\(563\) −19.1581 + 6.22486i −0.807419 + 0.262346i −0.683504 0.729946i \(-0.739545\pi\)
−0.123915 + 0.992293i \(0.539545\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −11.7064 3.80363i −0.491621 0.159737i
\(568\) 0 0
\(569\) 25.4623 + 18.4994i 1.06743 + 0.775536i 0.975449 0.220224i \(-0.0706789\pi\)
0.0919848 + 0.995760i \(0.470679\pi\)
\(570\) 0 0
\(571\) −14.3295 −0.599673 −0.299836 0.953991i \(-0.596932\pi\)
−0.299836 + 0.953991i \(0.596932\pi\)
\(572\) 0 0
\(573\) 26.0318i 1.08749i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −10.9004 3.54175i −0.453789 0.147445i 0.0731994 0.997317i \(-0.476679\pi\)
−0.526989 + 0.849872i \(0.676679\pi\)
\(578\) 0 0
\(579\) −43.0361 + 31.2675i −1.78852 + 1.29943i
\(580\) 0 0
\(581\) −7.10568 21.8690i −0.294793 0.907281i
\(582\) 0 0
\(583\) 3.58667 + 0.486080i 0.148545 + 0.0201314i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −5.53801 7.62242i −0.228578 0.314611i 0.679287 0.733872i \(-0.262289\pi\)
−0.907865 + 0.419262i \(0.862289\pi\)
\(588\) 0 0
\(589\) −7.33390 + 22.5714i −0.302188 + 0.930039i
\(590\) 0 0
\(591\) 26.6611 + 19.3704i 1.09669 + 0.796792i
\(592\) 0 0
\(593\) 28.2270i 1.15914i 0.814922 + 0.579571i \(0.196780\pi\)
−0.814922 + 0.579571i \(0.803220\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 13.4286 18.4829i 0.549597 0.756455i
\(598\) 0 0
\(599\) −1.24633 + 3.83580i −0.0509235 + 0.156726i −0.973284 0.229603i \(-0.926257\pi\)
0.922361 + 0.386329i \(0.126257\pi\)
\(600\) 0 0
\(601\) −30.0829 + 21.8565i −1.22711 + 0.891544i −0.996670 0.0815436i \(-0.974015\pi\)
−0.230435 + 0.973088i \(0.574015\pi\)
\(602\) 0 0
\(603\) 57.4483 18.6661i 2.33948 0.760142i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 17.2426 5.60247i 0.699856 0.227397i 0.0625883 0.998039i \(-0.480064\pi\)
0.637268 + 0.770642i \(0.280064\pi\)
\(608\) 0 0
\(609\) 53.5334 38.8943i 2.16928 1.57608i
\(610\) 0 0
\(611\) 5.58435 17.1868i 0.225918 0.695306i
\(612\) 0 0
\(613\) 5.01682 6.90505i 0.202627 0.278893i −0.695595 0.718434i \(-0.744859\pi\)
0.898222 + 0.439542i \(0.144859\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 24.5659i 0.988985i −0.869182 0.494492i \(-0.835354\pi\)
0.869182 0.494492i \(-0.164646\pi\)
\(618\) 0 0
\(619\) −30.9640 22.4967i −1.24455 0.904218i −0.246657 0.969103i \(-0.579332\pi\)
−0.997893 + 0.0648846i \(0.979332\pi\)
\(620\) 0 0
\(621\) −7.10813 + 21.8766i −0.285239 + 0.877876i
\(622\) 0 0
\(623\) −26.7949 36.8800i −1.07352 1.47757i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −38.4641 5.21281i −1.53611 0.208179i
\(628\) 0 0
\(629\) −12.1001 37.2403i −0.482463 1.48487i
\(630\) 0 0
\(631\) −16.7407 + 12.1628i −0.666435 + 0.484194i −0.868830 0.495110i \(-0.835128\pi\)
0.202395 + 0.979304i \(0.435128\pi\)
\(632\) 0 0
\(633\) 56.2481 + 18.2761i 2.23566 + 0.726410i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 23.3620i 0.925635i
\(638\) 0 0
\(639\) 44.8571 1.77452
\(640\) 0 0
\(641\) 6.75967 + 4.91119i 0.266991 + 0.193980i 0.713223 0.700937i \(-0.247234\pi\)
−0.446232 + 0.894917i \(0.647234\pi\)
\(642\) 0 0
\(643\) −27.9623 9.08552i −1.10273 0.358298i −0.299576 0.954073i \(-0.596845\pi\)
−0.803152 + 0.595775i \(0.796845\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −22.3489 + 7.26160i −0.878626 + 0.285483i −0.713387 0.700770i \(-0.752840\pi\)
−0.165240 + 0.986253i \(0.552840\pi\)
\(648\) 0 0
\(649\) −21.6494 + 3.92736i −0.849812 + 0.154162i
\(650\) 0 0
\(651\) 17.2621 + 53.1272i 0.676554 + 2.08222i
\(652\) 0 0
\(653\) 9.06240 + 12.4733i 0.354639 + 0.488119i 0.948645 0.316342i \(-0.102455\pi\)
−0.594006 + 0.804460i \(0.702455\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −9.36032 + 12.8834i −0.365181 + 0.502628i
\(658\) 0 0
\(659\) −12.2785 −0.478301 −0.239151 0.970982i \(-0.576869\pi\)
−0.239151 + 0.970982i \(0.576869\pi\)
\(660\) 0 0
\(661\) 25.8163 1.00414 0.502070 0.864827i \(-0.332572\pi\)
0.502070 + 0.864827i \(0.332572\pi\)
\(662\) 0 0
\(663\) 20.3310 27.9832i 0.789589 1.08678i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 24.5229 + 33.7528i 0.949529 + 1.30692i
\(668\) 0 0
\(669\) 22.0991 + 68.0140i 0.854401 + 2.62957i
\(670\) 0 0
\(671\) −20.6862 + 21.6333i −0.798581 + 0.835144i
\(672\) 0 0
\(673\) 30.7506 9.99147i 1.18535 0.385143i 0.350997 0.936377i \(-0.385843\pi\)
0.834351 + 0.551234i \(0.185843\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −29.9506 9.73155i −1.15110 0.374014i −0.329540 0.944142i \(-0.606894\pi\)
−0.821556 + 0.570128i \(0.806894\pi\)
\(678\) 0 0
\(679\) −37.5444 27.2776i −1.44082 1.04682i
\(680\) 0 0
\(681\) 26.8438 1.02866
\(682\) 0 0
\(683\) 13.3758i 0.511812i 0.966702 + 0.255906i \(0.0823738\pi\)
−0.966702 + 0.255906i \(0.917626\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −33.4122 10.8563i −1.27476 0.414193i
\(688\) 0 0
\(689\) 2.88687 2.09743i 0.109981 0.0799058i
\(690\) 0 0
\(691\) −8.48261 26.1068i −0.322694 0.993149i −0.972471 0.233024i \(-0.925138\pi\)
0.649777 0.760125i \(-0.274862\pi\)
\(692\) 0 0
\(693\) −47.5019 + 25.5580i −1.80445 + 0.970867i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 18.4208 + 25.3541i 0.697739 + 0.960355i
\(698\) 0 0
\(699\) 5.56970 17.1418i 0.210665 0.648362i
\(700\) 0 0
\(701\) 0.175085 + 0.127207i 0.00661287 + 0.00480453i 0.591087 0.806608i \(-0.298699\pi\)
−0.584474 + 0.811413i \(0.698699\pi\)
\(702\) 0 0
\(703\) 43.3212i 1.63389i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0.184020 0.253282i 0.00692078 0.00952564i
\(708\) 0 0
\(709\) 15.6953 48.3050i 0.589448 1.81413i 0.00882347 0.999961i \(-0.497191\pi\)
0.580624 0.814172i \(-0.302809\pi\)
\(710\) 0 0
\(711\) −25.4504 + 18.4908i −0.954463 + 0.693458i
\(712\) 0 0
\(713\) −33.4967 + 10.8838i −1.25446 + 0.407600i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 56.3473 18.3084i 2.10433 0.683738i
\(718\) 0 0
\(719\) −27.5398 + 20.0089i −1.02706 + 0.746204i −0.967719 0.252033i \(-0.918901\pi\)
−0.0593435 + 0.998238i \(0.518901\pi\)
\(720\) 0 0
\(721\) 12.9041 39.7149i 0.480575 1.47906i
\(722\) 0 0
\(723\) −16.9443 + 23.3218i −0.630163 + 0.867346i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 16.2361i 0.602162i 0.953599 + 0.301081i \(0.0973475\pi\)
−0.953599 + 0.301081i \(0.902652\pi\)
\(728\) 0 0
\(729\) −34.9932 25.4241i −1.29605 0.941633i
\(730\) 0 0
\(731\) −1.09534 + 3.37111i −0.0405126 + 0.124685i
\(732\) 0 0
\(733\) −17.5154 24.1078i −0.646944 0.890443i 0.352018 0.935993i \(-0.385496\pi\)
−0.998962 + 0.0455508i \(0.985496\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −20.1035 + 41.7387i −0.740524 + 1.53746i
\(738\) 0 0
\(739\) 13.0551 + 40.1794i 0.480239 + 1.47802i 0.838760 + 0.544501i \(0.183281\pi\)
−0.358522 + 0.933521i \(0.616719\pi\)
\(740\) 0 0
\(741\) −30.9593 + 22.4932i −1.13732 + 0.826310i
\(742\) 0 0
\(743\) −19.8890 6.46233i −0.729657 0.237080i −0.0794519 0.996839i \(-0.525317\pi\)
−0.650205 + 0.759759i \(0.725317\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 26.4394i 0.967366i
\(748\) 0 0
\(749\) 48.3997 1.76849
\(750\) 0 0
\(751\) −23.0107 16.7182i −0.839672 0.610058i 0.0826069 0.996582i \(-0.473675\pi\)
−0.922279 + 0.386525i \(0.873675\pi\)
\(752\) 0 0
\(753\) 31.3160 + 10.1752i 1.14122 + 0.370805i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 37.7291 12.2589i 1.37129 0.445558i 0.471492 0.881870i \(-0.343716\pi\)
0.899795 + 0.436312i \(0.143716\pi\)
\(758\) 0 0
\(759\) −27.2934 50.7274i −0.990688 1.84129i
\(760\) 0 0
\(761\) −15.0740 46.3929i −0.546430 1.68174i −0.717565 0.696492i \(-0.754743\pi\)
0.171134 0.985248i \(-0.445257\pi\)
\(762\) 0 0
\(763\) 16.6059 + 22.8561i 0.601174 + 0.827445i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −12.7503 + 17.5493i −0.460387 + 0.633668i
\(768\) 0 0
\(769\) 10.7632 0.388132 0.194066 0.980988i \(-0.437832\pi\)
0.194066 + 0.980988i \(0.437832\pi\)
\(770\) 0 0
\(771\) 16.5467 0.595915
\(772\) 0 0
\(773\) −14.3828 + 19.7962i −0.517313 + 0.712021i −0.985131 0.171804i \(-0.945040\pi\)
0.467818 + 0.883825i \(0.345040\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 59.9346 + 82.4929i 2.15014 + 2.95942i
\(778\) 0 0
\(779\) −10.7144 32.9755i −0.383882 1.18147i
\(780\) 0 0
\(781\) −23.7765 + 24.8651i −0.850790 + 0.889744i
\(782\) 0 0
\(783\) 22.1612 7.20062i 0.791978 0.257329i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −4.61653 1.50000i −0.164561 0.0534692i 0.225578 0.974225i \(-0.427573\pi\)
−0.390139 + 0.920756i \(0.627573\pi\)
\(788\) 0 0
\(789\) 0.977527 + 0.710215i 0.0348009 + 0.0252843i
\(790\) 0 0
\(791\) 1.75755 0.0624911
\(792\) 0 0
\(793\) 29.5093i 1.04791i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −4.38135 1.42359i −0.155195 0.0504261i 0.230389 0.973099i \(-0.426000\pi\)
−0.385584 + 0.922673i \(0.626000\pi\)
\(798\) 0 0
\(799\) −17.4766 + 12.6975i −0.618278 + 0.449205i
\(800\) 0 0
\(801\) −16.1973 49.8503i −0.572305 1.76137i
\(802\) 0 0
\(803\) −2.18005 12.0174i −0.0769324 0.424086i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −0.0126697 0.0174383i −0.000445994 0.000613858i
\(808\) 0 0
\(809\) −9.79491 + 30.1456i −0.344371 + 1.05986i 0.617549 + 0.786532i \(0.288126\pi\)
−0.961920 + 0.273331i \(0.911874\pi\)
\(810\) 0 0
\(811\) −11.6743 8.48190i −0.409941 0.297840i 0.363637 0.931541i \(-0.381535\pi\)
−0.773578 + 0.633701i \(0.781535\pi\)
\(812\) 0 0
\(813\) 50.3058i 1.76430i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 2.30505 3.17262i 0.0806434 0.110996i
\(818\) 0 0
\(819\) −16.4334 + 50.5768i −0.574230 + 1.76730i
\(820\) 0 0
\(821\) −44.0551 + 32.0079i −1.53753 + 1.11708i −0.585677 + 0.810545i \(0.699171\pi\)
−0.951858 + 0.306539i \(0.900829\pi\)
\(822\) 0 0
\(823\) 0.0577411 0.0187612i 0.00201273 0.000653975i −0.308010 0.951383i \(-0.599663\pi\)
0.310023 + 0.950729i \(0.399663\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 11.2485 3.65486i 0.391149 0.127092i −0.106838 0.994276i \(-0.534073\pi\)
0.497987 + 0.867184i \(0.334073\pi\)
\(828\) 0 0
\(829\) 13.5508 9.84525i 0.470640 0.341940i −0.327051 0.945007i \(-0.606055\pi\)
0.797691 + 0.603067i \(0.206055\pi\)
\(830\) 0 0
\(831\) 5.82039 17.9133i 0.201907 0.621407i
\(832\) 0 0
\(833\) 16.4149 22.5931i 0.568742 0.782806i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 19.6712i 0.679936i
\(838\) 0 0
\(839\) −0.734439 0.533601i −0.0253557 0.0184220i 0.575035 0.818129i \(-0.304988\pi\)
−0.600391 + 0.799707i \(0.704988\pi\)
\(840\) 0 0
\(841\) 4.09870 12.6145i 0.141335 0.434983i
\(842\) 0 0
\(843\) −35.5730 48.9620i −1.22520 1.68634i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 11.0111 39.8782i 0.378347 1.37023i
\(848\) 0 0
\(849\) 19.5264 + 60.0961i 0.670144 + 2.06249i
\(850\) 0 0
\(851\) −52.0118 + 37.7888i −1.78294 + 1.29538i
\(852\) 0 0
\(853\) −50.6690 16.4634i −1.73487 0.563695i −0.740735 0.671798i \(-0.765522\pi\)
−0.994140 + 0.108103i \(0.965522\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 37.1487i 1.26898i 0.772933 + 0.634488i \(0.218789\pi\)
−0.772933 + 0.634488i \(0.781211\pi\)
\(858\) 0 0
\(859\) −26.8141 −0.914887 −0.457443 0.889239i \(-0.651235\pi\)
−0.457443 + 0.889239i \(0.651235\pi\)
\(860\) 0 0
\(861\) −66.0238 47.9691i −2.25008 1.63478i
\(862\) 0 0
\(863\) 16.6726 + 5.41724i 0.567541 + 0.184405i 0.578711 0.815532i \(-0.303556\pi\)
−0.0111706 + 0.999938i \(0.503556\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 4.43259 1.44024i 0.150539 0.0489130i
\(868\) 0 0
\(869\) 3.24019 23.9086i 0.109916 0.811045i
\(870\) 0 0
\(871\) 14.1140 + 43.4384i 0.478235 + 1.47185i
\(872\) 0 0
\(873\) −31.3642 43.1691i −1.06152 1.46105i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 12.2116 16.8079i 0.412358 0.567562i −0.551434 0.834219i \(-0.685919\pi\)
0.963792 + 0.266657i \(0.0859191\pi\)
\(878\) 0 0
\(879\) −9.47556 −0.319603
\(880\) 0 0
\(881\) 36.3078 1.22324 0.611621 0.791151i \(-0.290518\pi\)
0.611621 + 0.791151i \(0.290518\pi\)
\(882\) 0 0
\(883\) 21.8070 30.0147i 0.733863 1.01008i −0.265085 0.964225i \(-0.585400\pi\)
0.998948 0.0458509i \(-0.0145999\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −12.9204 17.7834i −0.433825 0.597109i 0.535001 0.844852i \(-0.320311\pi\)
−0.968826 + 0.247742i \(0.920311\pi\)
\(888\) 0 0
\(889\) −20.9795 64.5684i −0.703631 2.16555i
\(890\) 0 0
\(891\) 10.6803 1.93749i 0.357803 0.0649082i
\(892\) 0 0
\(893\) 22.7300 7.38543i 0.760631 0.247144i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −54.0111 17.5493i −1.80338 0.585953i
\(898\) 0 0
\(899\) 28.8648 + 20.9715i 0.962695 + 0.699439i
\(900\) 0 0
\(901\) −4.26559 −0.142107
\(902\) 0 0
\(903\) 9.23037i 0.307168i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 19.6678 + 6.39045i 0.653058 + 0.212191i 0.616762 0.787150i \(-0.288444\pi\)
0.0362960 + 0.999341i \(0.488444\pi\)
\(908\) 0 0
\(909\) 0.291227 0.211589i 0.00965939 0.00701796i
\(910\) 0 0
\(911\) −10.5882 32.5873i −0.350804 1.07966i −0.958403 0.285420i \(-0.907867\pi\)
0.607598 0.794244i \(-0.292133\pi\)
\(912\) 0 0
\(913\) 14.6558 + 14.0142i 0.485037 + 0.463802i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −14.3251 19.7168i −0.473057 0.651107i
\(918\) 0 0
\(919\) −5.15152 + 15.8548i −0.169933 + 0.523000i −0.999366 0.0356062i \(-0.988664\pi\)
0.829433 + 0.558607i \(0.188664\pi\)
\(920\) 0 0
\(921\) 18.0931 + 13.1454i 0.596186 + 0.433155i
\(922\) 0 0
\(923\) 33.9178i 1.11642i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 28.2223 38.8447i 0.926943 1.27583i
\(928\) 0 0
\(929\) −11.4967 + 35.3832i −0.377194 + 1.16089i 0.564792 + 0.825234i \(0.308957\pi\)
−0.941986 + 0.335652i \(0.891043\pi\)
\(930\) 0 0
\(931\) −24.9960 + 18.1607i −0.819211 + 0.595192i
\(932\) 0 0
\(933\) 29.7598 9.66956i 0.974293 0.316567i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −14.8818 + 4.83539i −0.486167 + 0.157965i −0.541836 0.840484i \(-0.682271\pi\)
0.0556691 + 0.998449i \(0.482271\pi\)
\(938\) 0 0
\(939\) −42.2895 + 30.7251i −1.38007 + 1.00268i
\(940\) 0 0
\(941\) −4.47359 + 13.7683i −0.145835 + 0.448834i −0.997117 0.0758737i \(-0.975825\pi\)
0.851282 + 0.524708i \(0.175825\pi\)
\(942\) 0 0
\(943\) 30.2445 41.6280i 0.984897 1.35559i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 56.2394i 1.82754i −0.406238 0.913768i \(-0.633159\pi\)
0.406238 0.913768i \(-0.366841\pi\)
\(948\) 0 0
\(949\) −9.74150 7.07762i −0.316223 0.229749i
\(950\) 0 0
\(951\) 18.7113 57.5874i 0.606755 1.86740i
\(952\) 0 0
\(953\) −13.0071 17.9028i −0.421342 0.579928i 0.544597 0.838698i \(-0.316683\pi\)
−0.965939 + 0.258770i \(0.916683\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −25.3219 + 52.5730i −0.818541 + 1.69944i
\(958\) 0 0
\(959\) −2.25188 6.93059i −0.0727171 0.223800i
\(960\) 0 0
\(961\) 0.711966 0.517274i 0.0229666 0.0166862i
\(962\) 0 0
\(963\) 52.9269 + 17.1970i 1.70555 + 0.554165i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 32.2808i 1.03808i 0.854750 + 0.519039i \(0.173710\pi\)
−0.854750 + 0.519039i \(0.826290\pi\)
\(968\) 0 0
\(969\) 45.7449 1.46954
\(970\) 0 0
\(971\) 22.5473 + 16.3816i 0.723576 + 0.525709i 0.887525 0.460760i \(-0.152423\pi\)
−0.163948 + 0.986469i \(0.552423\pi\)
\(972\) 0 0
\(973\) −49.2745 16.0103i −1.57967 0.513265i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −10.1409 + 3.29499i −0.324437 + 0.105416i −0.466707 0.884412i \(-0.654560\pi\)
0.142270 + 0.989828i \(0.454560\pi\)
\(978\) 0 0
\(979\) 36.2184 + 17.4447i 1.15754 + 0.557534i
\(980\) 0 0
\(981\) 10.0382 + 30.8943i 0.320494 + 0.986378i
\(982\) 0 0
\(983\) 17.9958 + 24.7691i 0.573977 + 0.790011i 0.993019 0.117955i \(-0.0376340\pi\)
−0.419042 + 0.907967i \(0.637634\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 33.0651 45.5103i 1.05247 1.44861i
\(988\) 0 0
\(989\) 5.81975 0.185057
\(990\) 0 0
\(991\) 12.2099 0.387859 0.193929 0.981015i \(-0.437877\pi\)
0.193929 + 0.981015i \(0.437877\pi\)
\(992\) 0 0
\(993\) 8.23817 11.3389i 0.261430 0.359828i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 7.95313 + 10.9465i 0.251878 + 0.346681i 0.916168 0.400795i \(-0.131266\pi\)
−0.664290 + 0.747475i \(0.731266\pi\)
\(998\) 0 0
\(999\) 11.0959 + 34.1496i 0.351058 + 1.08045i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1100.2.cb.c.49.1 16
5.2 odd 4 1100.2.n.c.401.2 8
5.3 odd 4 220.2.m.a.181.1 yes 8
5.4 even 2 inner 1100.2.cb.c.49.4 16
11.9 even 5 inner 1100.2.cb.c.449.4 16
15.8 even 4 1980.2.z.c.181.1 8
20.3 even 4 880.2.bo.f.401.2 8
55.3 odd 20 2420.2.a.n.1.4 4
55.8 even 20 2420.2.a.m.1.4 4
55.9 even 10 inner 1100.2.cb.c.449.1 16
55.42 odd 20 1100.2.n.c.801.2 8
55.53 odd 20 220.2.m.a.141.1 8
165.53 even 20 1980.2.z.c.361.1 8
220.3 even 20 9680.2.a.ck.1.1 4
220.63 odd 20 9680.2.a.cl.1.1 4
220.163 even 20 880.2.bo.f.801.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.2.m.a.141.1 8 55.53 odd 20
220.2.m.a.181.1 yes 8 5.3 odd 4
880.2.bo.f.401.2 8 20.3 even 4
880.2.bo.f.801.2 8 220.163 even 20
1100.2.n.c.401.2 8 5.2 odd 4
1100.2.n.c.801.2 8 55.42 odd 20
1100.2.cb.c.49.1 16 1.1 even 1 trivial
1100.2.cb.c.49.4 16 5.4 even 2 inner
1100.2.cb.c.449.1 16 55.9 even 10 inner
1100.2.cb.c.449.4 16 11.9 even 5 inner
1980.2.z.c.181.1 8 15.8 even 4
1980.2.z.c.361.1 8 165.53 even 20
2420.2.a.m.1.4 4 55.8 even 20
2420.2.a.n.1.4 4 55.3 odd 20
9680.2.a.ck.1.1 4 220.3 even 20
9680.2.a.cl.1.1 4 220.63 odd 20